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Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas
framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of
the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI
atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution
MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped
atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous
manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented
details the methodology used for the creation of the atlases using a technique previously proposed, where
atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template
nonlinear transformation estimation. Dice’s Kappa metric was used to demonstrate high quality registration
and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/
atlases/tree/master/5-atlas-subcortical.
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Background and Summary
The subcortical structures of the brain, such as the striatum and thalamus, are positioned deep below the
cortical manifold and serve as important network hubs and relays. Amongst their many roles in brain
function, these regions are critically involved in motor function, addiction, and mood regulation1–3.
Further, these structures have multiple reciprocal connections between one another and to regions
implicated in complex cognitive tasks such as the frontal cortex3,4, and are amongst the last to mature
(as indexed by age of peak volume attainment) through the course of normal development5,6. Despite
their importance in daily functioning and implication in neuropsychiatric disorders (such as
schizophrenia7–9 and geriatric depression10,11) and in movement disorders (such as Parkinson’s disease
and Huntington's diseases), these regions are under-studied, in part due to the paucity of methods
available for accurate visualization and analysis of in vivo magnetic resonance imaging (MRI)7,12.

The gold standard for neuroanatomical MR image segmentation is manual delineation by an expert
human rater based on prior histological and functional data. However, with the availability of
increasingly large MRI datasets13–15, the time and expertise required for manual segmentation becomes
prohibitive. Automated segmentation techniques, methodologies where expertly manually labelled MRI
atlases are warped to target MR images using nonlinear registration methods, are thus actively used in
neuroimaging experiments, given that these methods are reliable, objective, and reproducible7,16.

Given the proliferation of automated segmentation tools, a recent study by our group7 sought to
establish the validity and reliability of segmentation methods in defining the striatum, globus pallidus,
and thalamus using FreeSurfer17 (http://surfer.nmr.mgh.harvard.edu), FSL-FIRST18 (http://fsl.fmrib.ox.
ac.uk), and MAGeT-Brain16,19 (https://github.com/CobraLab/MAGeTbrain). When comparing manually
defined labels to labels generated using each segmentation tool on thirty subjects (15 patients with first
episode psychosis and 15 controls), correlations between automated and manually segmented volumes
were strongest for MAGeT-Brain7.

The current implementation of the MAGeT-Brain pipeline allows for subject-based segmentation of
the hippocampal subfields16,20, hippocampal white matter21, cerebellar lobules22, and the striatum, globus
pallidus, and thalamus23. For hippocampal and cerebellar segmentation, five atlases, created from manual
segmentation on five high-resolution MRI templates, are used to derive subject-based segmentation20–22.
However, segmentation of the striatum, globus pallidus, and thalamus are derived from a single input
atlas, which was derived from reconstructed histological data warped onto the Colin27 MRI template23.
As the basal ganglia and thalamus atlas was created long before our more recent atlases, the resulting
difference in input atlas source requires two separate executions of MAGeT-Brain. Thus, reproducing
segmentation of the striatum, globus pallidus and thalamus in the same five MRI templates would
homogenize our input atlases and accordingly streamline future work-flows, allowing simultaneous
multi-structure segmentation.

Moreover, many groups24–30, including our own7,16,19,22,31, have shown that multiple atlases improve
overall segmentation reliability over model-based single atlas approaches. This is specifically true when
using MAGeT-Brain which was designed to facilitate segmentation using a small number of hard-to-
define input atlases. Although our group demonstrated reliable segmentation of the striatum, pallidum,
and thalamus using a single atlas19,32, we have also shown that multi-atlas segmentation improves
segmentation accuracy (and has been seen to plateau) with the inclusion of up to five input atlases, for
hippocampal subfield segmentation16, and improved segmentation accuracy for the basal ganglia and
thalamus with the inclusion of three MRI templates as input atlases19.

In this paper, we detail the steps used to adapt an existing high-resolution atlas of the basal ganglia and
thalamus23 to match five high-resolution MRIs using atlas-to-template warping techniques previously
described by our group23,32. The creation and use of five de novo atlases of the striatum, globus pallidus
and thalamus, along with three-dimensional surface rendering of these structures will serve as a new set
of priors for input into an existing multi-atlas segmentation pipeline, MAGeT-Brain19, with the primary
benefit of homogenizing and improving upon its current implementation. MAGeT-Brain with the five
newly-created input atlases will provide improved subject-based automated identification and estimation
of volume and shape of striatum, globus pallidus and thalamus, and allow for the investigation of
subcortical morphology in various subject groups ranging from healthy individuals to patient
populations.

Methods
Atlas-to-template warping technique
We present a continuation of work previously presented in Chakravarty et al. (2006), which describes the
creation of an atlas of the basal ganglia and thalamus derived from serial histological data, detailing 108
structures23. The brain used to create the histological data set was acquired in 1957 from a male patient
who died of non-neurological causes at the Montreal Neurological Institute/Hospital, in which is
intensively studied and used for teaching over the past 45 years. The histological images were manually
segmented and labeled combining information and nomenclature using three different references33–35.
Each image has a center-to-center voxel spacing of 0.034 mm× 0.034 mm and a slice-to-slice spacing of
0.7 mm. Serial histological sections were reconstructed into a contiguous 3D volume using a slice-to-slice
nonlinear registration technique which minimizes anatomic mis-registration throughout the recon-
structed data set and an intensity correction scheme which analyzes local neighborhoods on each slice in
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order to build a voxel-by-voxel multiplicative field to correct for local variations in image intensities
between slices. The reconstructed volume was registered to a standard MRI data set using a novel atlas-
to-template warping technique, described in Chakravarty et al. (2006, 2008). This methodology is
described in detail in previous work23,32 and was validated against manual segmentation23,36,
intraoperative recordings32, and functional MRI activations37,38.

High-resolution T1-weighted images used for the creation of five subcortical atlases were acquired
from 5 healthy subjects (2 male, 3 female, aged 29–57, average age of 37 years)20. All images were
acquired on a 3 T GE Discovery MR 750 system (General Electric, Milwaukee, WI) at the Centre for
Addiction and Mental Health (CAMH) in Toronto, Canada using an 8-channel head coil. Three sets of
high-resolution T1-weighted images were acquired from each subject. T1-weighted images were acquired
using the 3D inversion-prepared fast spoiled gradient-recalled echo acquisition (FSPGR-BRAVO; TE/
TR= 4.3 ms/9.2 ms, TI= 650ms, α= 8°, 2NEX, FOV= 22 cm, slice thickness= 0.6 mm, 384 × 384 in-
plane steps) with an isotropic voxel size of 0.6 mm. A final isotropic voxel size of 0.3 mm was obtained
using zero-filling reconstruction filters, ZIPX2 and ZIP512, done on the GE scanner. For each subject, the
three T1-weighted images were each corrected for RF inhomogeneity non-uniformity39 and normalized
to a fixed intensity range (0–10,000) on a voxel-by-voxel basis to enhance signal and contrast40 to
ultimately produce one final T1-weighted image volume. The final T1-weighted image volume was
produced from the average of the three corrected MR images for each subject using a rigid-body
alignment41. All images were converted to the MINC file format and subsequent image processing and
neuroanatomical labeling was performed using tools from the MINC software distribution (http://www.
bic.mni.mcgill.ca/ServicesSoftware/HomePage). The data acquisition was approved by the Centre for
Addiciton and Mental Health Research Ethics Board, and all subjects provided written, informed consent
for data acquisition and sharing. These templates were previously used by our group for the creation of
atlases of the hippocampal subfields16,20, hippocampal white matter21, and the cerebellum22.

The atlas-to-template warping technique used here for the creation of five atlases was initiated with
linear registration of the histologically-derived atlas to five T1-weighted high-resolution MRI templates20

(as described in Chakravarty et al. (2006)). By identifying homologous landmark-pairs, linear
transformations are estimated to map the atlas to each MRI using a 12-parameter transformation
(3 of each of translations, rotations, scales, and shears). After accounting for global differences with the
linear registration, the remaining morphological differences between the atlas and the templates were
accounted for using nonlinear registration to further refine the fit between the atlas and each template.
However, the inherent differences in contrast and morphology presents a challenge for customization of
the histology-derived atlas to MRI templates. To account for these differences, pseudo-MRIs were created
by manually assigning an intensity value to each label value of the atlas based on the intensity of the
matching structure in MRI template for which it is registered to. This remapping of the atlas labels to
match the intensity profile of the templates allows the nonlinear registration algorithm to treat the atlas as
a standard input MRI. Figure 1 details an overview of the atlas-to-template warping technique, from
linear transform to pseudo-MRI to final fit.

The nonlinear registration was performed using the automatic nonlinear image matching and
automatic labeling algorithm (ANIMAL)42,43 to register the pseudo-MRIs to the MRI templates. This
nonlinear transformation is estimated in a hierarchical fashion, where large deformations are estimated
using volumes blurred with a Gaussian kernel with a large full-width at half maximum (FWHM), which
gets progressively smaller to refine deformations, to optimize a transformation that maximizes the
similarity between the source and target image. The final nonlinear transformation is represented by a
deformation field (defined by vectors spaced on a grid representing a three-dimensional translation at
each node of the lattice grid) that is iteratively estimated in a two step process; the first step involves the
calculation of local translations for each node that optimizes a local objective function (the correlation
coefficient) and the second is a regularization step to ensure that the deformation field is continuous. The
definition of the final deformation field produced by ANIMAL’s two-step algorithm is dependent upon
the step size (the spacing between the lattice points of the grid), sublattice diameter (the diameter of a
local spherical neighbourhood around each node in which the deformation is estimated) and the
sublattice (number of nodes contained within a local spherical neighbourhood)32,40,42. Additionally, three
regularization parameters are used to improve the quality of the nonlinear transformation estimated,
where the weight parameter determines the proportion of each local translation estimated at each
iteration that will be used at the next iteration, the stiffness parameter is the smoothing factor between
iterations (to ensure continuity), and the similarity-cost ratio parameter balances the similarity between
the volumes with the cost of the transformation32,40,42,43. The parameters used to calculate the atlas-to-
template transformation using ANIMAL are given in Table 1. The final transformation was achieved
through an optimization of a correlation coefficient objective function, and described in Collins & Evans
(1997) and Chakravarty et al. (2006, 2008). Other nonlinear registration algorithms were attempted, and
are discussed in section “Nonlinear Registration Algorithms”.

Atlas warping evaluation
The atlas-to-template warping technique presented in section “Atlas-to-template warping technique” was
evaluated against manual segmentation of the striatum, globus pallidus, and thalamus to validate the
accuracy of the atlas labels before using these atlases as input to the MAGeT-Brain pipeline.
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Dice’s Kappa Overlap Metric
The labels defined in the atlas were compared to manual segmentation to determine the accuracy of the
atlas-to-template warping technique. Dice similarity coefficient (also referred to as Dice's Kappa) (κ)
metric is used here to evaluate the quality of the overlap of the atlas labels derived from the atlas-to-
template warping technique with manual segmentation, as this segmentation method is the current gold-
standard method. The Dice’s Kappa overlap metric score is determined by:

κ ¼ 2a= 2aþ bþ cð Þ
where a is the number of voxels common to both methods of segmentation, and b+c is the sum of the
voxels uniquely labeled by each segmentation method. A higher Kappa value denotes a higher degree of
overlap, where a score of 0 represents no overlap and a value of 1 represents perfect overlap, and scores
greater than 0.7 are deemed acceptable in the segmentation literature32,44–46.

Manual Segmentations
To evaluate the ‘‘goodness of fit” of atlas labels, segmentations of the striatum, globus pallidus, and
thalamus, were generated using MAGeT-Brain segmentation19 using the current single input atlas by one
of the authors (M.T.M.P.) to obtain labels on the five high-resolution T1 weighted images. Subsequently,
these labels were manually corrected, particularly in regions where the endogenous contrast boundaries
are not as distinct. These semi-manual segmentation were then used to evaluate segmentation accuracy of
the atlas labels.

Surface Representations
A single surface-based representation of the striatum, globus pallidus and thalamus are defined on a
model atlas. The model was created using atlas-creation methods described previously47–49. Briefly, one of
the five MR templates is selected as the target, and the other four templates are registered in a
6-parameter (3 translations and 3 rotations) linear registration to this target (carried out using ANTs
for MINC formatted images). These images are then registered to each other on a pairwise basis using a
12-parameter linear registration (3 translations, 3 rotations, 3 scales, and 3 shears), and resampled to
normalize each image for average linear brain size. The resampled images are then averaged to create an
initial model (M0). Next, the resampled images are non-linearly registered to M0 using ANTs, resampled
again, and averaged to create M1. This step is repeated twice more, with each additional step improving
the accuracy of the model in representing the mean anatomy of the five original atlases50. This model
atlas provides an averaged neuroanatomical representation of the five atlases for the striatum, globus
pallidus and thalamus. The model atlas labels were generated using a majority voting label fusion
technique. This atlas has superior contrast, signal, and definition when compared to a single atlas, and

Resulting Atlas

Nonlinear Registration

ANIMAL

pseudo-MRI

Linear Registration

MRI Template

Histologically-dervied Atlas

Figure 1. Outline of the workflow of the atlas-to-template customization. Atlas of the striatum, globus

pallidus, and thalamus derived from a histologically-derived atlas (Chakravarty et al., 2006) was warped to each

of the five high-resolution T1-weighted MRI reference brain scans using linear registration, pseudo MRI

creation, and nonlinear registration.
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most importantly provides a common space for analysis of surface-based metrics generated by the
MAGeT-Brain pipeline50. Using this model atlas, the striatum, globus pallidus and thalamus were
extracted as objects using the marching cubes algorithm in the Display software (part of the MINCtools
package, http://www.bic.mni.mcgill.ca/ServicesSoftware/HomePage) to obtain a 3D triangular mesh for
each structure bilaterally. These meshes were subsequently manually smoothed using the MeshLab open
source system for processing and editing 3D triangular meshes51. After manual smoothing, the objects
were re-meshed at approximately 0.3 mm vertex-to-vertex spacing on the surface to match the voxel size
of the atlases (and consequently, matching the deformation grids from MAGeT-Brain), and an additional
quadratic space smoothing was performed52. The resulting surfaces have approximately 13000 vertices
per striatum, 3000 vertices per globus pallidus, and 6500 vertices per thalamus. The model atlas with
surface representations of the striatum, globus pallidus, and thalamus are shown in Figure 2.

The surface representations of the striatum, globus pallidus and thalamus were created to obtain
surface-based metrics, including surface area and displacement for shape analysis, using the MAGeT-
Brain pipeline. This methodology is described in detail in previous work by our group6,7,16,31.

Code availability
The atlases were created using tools from the MINC software distribution (http://www.bic.mni.mcgill.ca/
ServicesSoftware/HomePage); however, NIfTI format (https://nifti.nimh.nih.gov/pub/dist/src/niftilib/
nifti1.h) is also availble on our Figshare repository (Data Citation 1). The conversion from MINC to

Step Step Size (mm) Sublattice diameter Sublattice

1 4 8 6

2 2 6 6

3 1 6 3

Table 1. ANIMAL parameters used for atlas-to-template transformation.

anterior

posterior

dorsal

ventral

Left Striatum

Left Thalamus

Left Globus Pallidus

Right Striatum

Right Thalamus

Right Globus Pallidus

Figure 2. Three dimensional reconstruction of high-resolution striatum, globus pallidus and thalamus

atlases. The five subcortical atlases were averaged to obtain a model atlas in which was used to derive surface

representations of the striatum, globus pallidus and thalamus. (a) presents a superior view, (b) presents an

inferior view, (c) presents a posterior view and (d) presents an anterior view of the bilateral striatum, globus

pallidus and thalamus.
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NIfTI-1 format was performed using mnc2nii (part of the MINCtools package: http://www.bic.mni.
mcgill.ca/ServicesSoftware/HomePage).

The code for creation of the atlases is accessible through our Figshare repository (Data Citation 1). The
ANIMAL script details the commands for the nonlinear registration step of the atlas-to-template warping
technique. The resulting atlases contain 108 subcortical structures, all of the structures present in the
histologically-derived atlas23 (Data Citation 1). The final atlases of the striatum, globus pallidus and
thalamus, in which will be used as input atlases for the automated segmentation pipeline MAGeT-Brain,
were generated using the mask script, also available in our Figshare repository (Data Citation 1).

MAGeT-Brain (https://github.com/CobraLab/MAGeTbrain), the automated segmentation pipeline,
for which these atlases will be used as input to derive subject-based segmentation of the striatum, globus
pallidus, and thalamus, is supported on the BIDS app (https://github.com/BIDS-Apps/MAGeTbrain) and
OpenNeuro (reproducibility.stanford.edu/openneuro-app-highlights-maget-brain/), in addition to being
available as an open source tool from our website (http://cobralab.ca/software/MAGeTbrain/).

Data Records
The final customized atlases and surface representations of the striatum, globus pallidus, and thalamus, as
well as the five MR templates can be retrieved from the Figshare repository (Data Citation 1) and is
available in both MINC (http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC) and NIfTI-1 (https://
nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h) format.

Moreover, these files are also located on our GitHub repository as these atlases and surface
representations are to be used with MAGeT-Brain (http://cobralab.ca/software/MAGeTbrain/). The atlas
labels and surface representations for the striatum, globus palidus and thalamus can be found at https://
github.com/CobraLab/atlases/tree/master/5-atlas-subcortical, while the five high-resolution MRI tem-
plates can be found here (https://github.com/CobraLab/atlases), along with our other atlases created
using the same MRI templates, namely our hippocampal subfields and white matter atlases (Winterburn
et al., 2011, Pipitone et al., 2014 & Amaral et al., 2016), as well as the cerebellar atlases (Park et al., 2014).

As alluded to above, the atlas resulting from the atlas-to-template warping technique delineates 108
subcortical structures however, the final atlases in which will be used as input to the MAGeT-Brain
pipeline consist of only the striatum, globus pallidus and thalamus, as these structures were validated for
their accuracy, using the Dice’s kappa measures. Due to limited contrast and delineation of certain
structures included in the histologically-derived atlas, such as the thalamic nuclei subdivisions, the
accuracy of the segmentation for all 108 structures were not validated, as we do not have a gold-standard
to compare the automated labels to (due to the lack of manual segmentation protocols for these
structures). Nonetheless, the full atlas is available to download, however the accuracy of the automated
segmentation for all 108 structures have not been assessed and thus these labels should be used at the
discretion of the reader (Data Citation 1). Moreover, neither atlas versions (the 3 structures versus the
108 structure versions) parses the striatum into the caudate nucleus, putamen and nucleus accumbens.
Partial volume effects and lack of contrast between the subdivisions of the striatum (limited contrast to
delineate the border between the caudate nucleus and nucleus accumbens, as well as the fine-scale cell
bridges between the caudate and the putamen) were the main factors for providing a single label for the
entire striatum. Any attempt to subdivide the striatum further would be based on heuristic definition.

Technical Validation
Atlas-to-template warping technique validation
Given that manual segmentation is the current gold standard for anatomical delineation, the manual
segmentations mentioned in section “Manual Segmentations” were used to evaluate the “goodness-of-fit”
of the atlas labels generated using our atlas-to-template warping technique. All labels of the atlas had high
overlap scores (κ>0.83 for all structures bilaterally). Average Dice’s Kappa scores across all five atlases
show strong overlap between automated and manual segmentations for the striatum (mean left κ= 0.885;
right κ= 0.882), the globus pallidus (mean left κ= 0.836; right κ= 0.829) and the thalamus (mean left
κ= 0.903; right κ= 0.899). Average Dice’s Kappa scores across all atlases are shown in Table 2, and Dice’s
Kappa scores for each atlas are shown in Table 3. See Figure 3 for an example of the final segmentations
of striatum, globus pallidus and thalamus for one of the five atlases.

Based on the Dice’s Kappa scores obtained, the resulting segmentation of the striatum, globus pallidus
and thalamus from the atlas-to-template warping is quite accurate. While all Dice’s Kappa scores
obtained are accurate by segmentation literature standards, nonetheless, a possible explanation for Dice’s
Kappa scores observed for the globus pallidus being lower than those in the striatum and thalamus is the
limited resolution and contrast of certain of these structures in MRI data. Compared to the histologically-
derived atlas, in which the resolution allows for the posterior portions of the subcortical structures to be
well identified, there is limited resolution of these boundaries in MR images32. The limited contrast of the
pallidal borders may be discrepant with manual segmentation protocols7,53, which attests to the
challenges in its delineation, and will inevitably result in lower Dice’s Kappa overlap scores. Given the
limited contrast for the pallidum in T1w images, the atlas-to-template warping technique was originally
performed on high-resolution T2w MR templates however, the Dice’s kappa measures (striatum: left
κ= 0.803, right κ= 0.817; globus pallidus: left κ= 0.736, right κ= 0.747; thalamus: left κ= 0.811, right
κ= 0.809) were not nearly as high as those obtained when warping the histologically-derived atlas to T1w
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MR templates (Table 1). Thus, given the improved accuracy of the atlas labels produced on the T1w
images, the final atlases described in the paper were derived on T1w MR templates. Another possible
improvement of segmentation accuracy in the newly-created atlases could be the use of several sets of
serial histological data from multiple atlases. However, multiple large section histology (as the one used as
inputs here) are notoriously difficult to achieve. Thus, we chose to use the histological dataset detailed in
Chakravarty et al., (2006), given that this data was well studied and delineated by a neurosurgeon from
the Montreal Neurological Institute.

Nonlinear Registration Algorithms
The ANIMAL algorithm42,43 was used for the nonlinear registration of the histologically-derived atlas to
the five MRI templates, which deforms a source MRI volume, the pseudo-MRI atlas, to match a target
MRI volume, the MRI template. Alternate nonlinear registration algorithms were also examined. Based
on the results from Klein et al.54 (2009), where 15 registration algorithms were evaluated based on
overlap measures of manually labeled anatomical regions, two other of nonlinear registration algorithms
were used for the nonlinear registration step of the atlas-to-template warping. Given that a symmetric
normalization (SyN) nonlinear transformation delivered consistently high accuracy across subjects and
label sets in Klein et al. (2009), two iterations of the SyN transformation, using two different adaptations
of Advanced Normalization Tools (ANTS) registration suite55, mincANTS and antsRegistration, were
implemented. However, neither implementation produced superior registrations to those of ANIMAL, as
evidenced by Dice’s Kappa scores (data not shown). In keeping with the methodology for atlas-to-

Left hemisphere Right hemisphere Average

Striatum 0.885 0.882 0.884

Globus Pallidus 0.836 0.829 0.833

Thalamus 0.903 0.899 0.901

Table 2. Average Dice’s Kappa scores across all atlases: reliability analysis of the segmentation
accuracy of the atlas-to-template warping technique.

Left hemisphere Right hemisphere Average

BRAIN 1

Striatum 0.899 0.886 0.893

Globus Pallidus 0.846 0.838 0.842

Thalamus 0.916 0.899 0.907

BRAIN 2

Striatum 0.887 0.89 0.888

Globus Pallidus 0.833 0.828 0.83

Thalamus 0.904 0.903 0.903

BRAIN 3

Striatum 0.879 0.878 0.878

Globus Pallidus 0.809 0.819 0.814

Thalamus 0.895 0.892 0.893

BRAIN 4

Striatum 0.884 0.882 0.883

Globus Pallidus 0.843 0.827 0.835

Thalamus 0.906 0.904 0.905

BRAIN 5

Striatum 0.879 0.874 0.876

Globus Pallidus 0.851 0.831 0.841

Thalamus 0.895 0.897 0.896

Table 3. Dice’s Kappa scores for each MRI template: reliability analysis of the segmentation accuracy
of the atlas-to-template warping technique.
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template warping described in Chakravarty et al. (2006), ANIMAL was used to nonlinearly register the
pseudo-MRIs to the MRI templates to finalize the atlas-to-template warping. The comparison of
nonlinear warping techniques for atlas-to-template MRI warping is beyond the scope of this manuscript.

Moreover, two separate ANIMAL runs were performed using different parameters; the first using the
parameters described in Chakravarty et al. (2006) and a second from Chakravarty et al. (2008), where the
resolution of the deformation field begins at a higher resolution in the latter paper; that is, the sublattice
(the number of nodes) and the sublattice diameter (the diameter of a local spherical neighbourhood
around each node) is smaller for the first step of the nonlinear algorithm (sublattice= 8; sublattice
diameter= 10 in Chakravarty et al. (2006) whereas sublattice= 6; sublattice diameter= 8 in Chakravarty
et al. (2008)). When using the parameters described in Chakravarty et al. (2008), the atlases generated
had higher Dice’s Kappa scores, compared to the Dice’s Kappa obtained when using the Chakravarty
et al. (2006) parameters. Given that the resolution of the five MRI templates (0.3 mm3 isotropic) onto
which the histologically-derived atlas was warped is higher than the resolution of the Colin27 template
(1.0 mm3 isotropic) used in Chakravarty et al. (2006), increasing the resolution of initial step of ANIMAL
increased Dice’s Kappa scores. That is, the automated labels generated using the parameters described in
Chakravarty et al. (2008) for the ANIMAL nonlinear algorithm (as described in Table 1) allows for
greater accuracy in capturing the neuroanatomical variation present between the histologically-derived
atlas and the MRI templates, and so, these parameters were used for the creation of the five subcortical
atlases.

Recent work by Xiao et al.56–58 established a multi-contrast registration framework that non-rigidly
deforms the histologically-derived atlas used here (ref. 23) to MRI data of multiple contrasts (such as
T1w, T2*w and T2w images) to obtain segmentations of the subthalamic nucleus, substantia nigra, and
red nucleus. While this technique improves accuracy of the segmentations for these nuclei, since using
multiple MRI contrasts allows for enhanced visualization of these nuclei compared to the sole T1w
contrast, the use of multi-contrast registration is beyond the scope of this manuscript.
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