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ABSTRACT

Objective: Deep significance clustering (DICE) is a self-supervised learning framework. DICE identifies clinically

similar and risk-stratified subgroups that neither unsupervised clustering algorithms nor supervised risk predic-

tion algorithms alone are guaranteed to generate.

Materials and Methods: Enabled by an optimization process that enforces statistical significance between the

outcome and subgroup membership, DICE jointly trains 3 components, representation learning, clustering, and

outcome prediction while providing interpretability to the deep representations. DICE also allows unseen

patients to be predicted into trained subgroups for population-level risk stratification. We evaluated DICE using

electronic health record datasets derived from 2 urban hospitals. Outcomes and patient cohorts used include

discharge disposition to home among heart failure (HF) patients and acute kidney injury among COVID-19

(Cov-AKI) patients, respectively.

Results: Compared to baseline approaches including principal component analysis, DICE demonstrated superior

performance in the cluster purity metrics: Silhouette score (0.48 for HF, 0.51 for Cov-AKI), Calinski-Harabasz index

(212 for HF, 254 for Cov-AKI), and Davies-Bouldin index (0.86 for HF, 0.66 for Cov-AKI), and prediction metric: area

under the Receiver operating characteristic (ROC) curve (0.83 for HF, 0.78 for Cov-AKI). Clinical evaluation of DICE-

generated subgroups revealed more meaningful distributions of member characteristics across subgroups, and

higher risk ratios between subgroups. Furthermore, DICE-generated subgroup membership alone was moderately

predictive of outcomes.

Discussion: DICE addresses a gap in current machine learning approaches where predicted risk may not lead di-

rectly to actionable clinical steps.

Conclusion: DICE demonstrated the potential to apply in heterogeneous populations, where having the same

quantitative risk does not equate with having a similar clinical profile.
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INTRODUCTION

Background and significance
Risk stratification involving clinical and sociodemographic factors is

crucial to the management of disease in medicine. Risk stratification

is often implemented in clinical pathways in directing care to distinct

subgroups of patients according to risk status.1–4 While risk stratifi-

cation has been particularly successful within specific disease or out-

come contexts, clinical pathways that address risk in a broad cohort

of patients with heterogenous sociodemographic and clinical profiles

are more complex to implement due to the need to identify interven-

tions specific to risk levels and patient subgroups.5–9 For example,

heart failure (HF) impacts nearly 6 million Americans where more

than 80% of individuals suffer from 3 or more comorbidities.10 The

complexity due to frequent comorbidity and the lack of guidelines

that incorporate heterogeneity present challenges in the discovery of

patient strata to assist with clinical decision-making.11 Another mo-

tivating example is acute kidney injury among COVID-19 patients

(Cov-AKI),12–14 where the initial kidney recovery during admission

ranges from 30% to 75%.12,14–16 The high degree of heterogeneity

potentially originate from different pathophysiologic mechanisms

such as volume depletion, acute tubular necrosis leading to fibrosis,

and cardiometabolic disease leading to the incident cardiorenal syn-

drome.12,14–16 Effective treatment strategies against Cov-AKI may

benefit from risk stratification that targets each stratum.

Machine learning has been widely explored for risk stratification

in medicine,17 with supervised algorithms showing great potential in

predicting individual risks. However, in a heterogenous population,

patients may have the same risk levels while exhibiting different dis-

ease manifestations and thus requiring different interventions. Thus,

to support the use in real patient care, there remains a gap between

predicted risks and the next reasonable clinical actions. From an op-

posite angle, unsupervised machine learning algorithms have been

used in previous literature to identify patient subgroups who do ex-

hibit similar disease manifestations and thus requiring similar inter-

ventions.18–22 However, the lack of supervision may lead to patient

subgroups derived as clusters without actually stratifying patients

based on the outcome of interests.23–25 Existing clustering algo-

rithms are also not designed to be predictive, limiting the utility of

applying to unseen patients. Thus, distinctively partitioned patient

subgroups, or precisely predicted individualized risks, without a

bridge to the next clinical steps, may still bear limited translational

values.26–29 Yet, few existing clustering and risk prediction algo-

rithms jointly achieve outcome-driven clustering in an end-to-end

fashion for clinical applications.23–25,30

This gap between practical needs in medicine and existing ma-

chine learning solutions inspired deep significance clustering

(DICE), an end-to-end, risk-stratifying, and predictive clustering al-

gorithm. By jointly training representation learning, clustering, and

classification, DICE identifies deep representations that generate

outcome-driven cluster membership as subgroups. Patients within

each subgroup are intended to have similar levels of risk of an out-

come, as well as similar clinical needs. The novelty and feasibility of

DICE originate from the use of a combined objective function in-

cluding a constraint requiring significantly different outcome distri-

butions across clusters. This framework design enforces

backpropagation through the representation, clustering, and out-

come prediction components. In addition, this design allows unseen

patients to be predicted into risk-stratified subgroups trained in

DICE as a multiclass classification task. Lastly, DICE performs neu-

ral architecture search (NAS) designed with an alternative grid

search strategy over the number of clusters and representation di-

mension size to heuristically optimize outcome prediction. The ar-

chitecture of DICE is illustrated in Figure 1. Supplementary Figure

S1 provides an illustration of DICE using a simple example to pro-

vide the motivation for its development.

DICE is customized to medicine by considering statistical signifi-

cance, a concept familiar to many medical researchers, into a ma-

chine learning framework. Previous work on risk stratification and

subtyping has commonly conducted post hoc analysis on variable

significance,22,31 whereas DICE directly incorporates the statistical

significance as a constraint. For evaluation, we applied DICE on 2

real-world electronic health record (EHR) datasets to compare the

performance of DICE to baseline methods through extensive experi-

ments, ablation studies, and fairness evaluation. Baseline methods

compared include principal component analysis (PCA),32 as well as

autoencoder (AE),33 k-means clustering, and logistic regression per-

formed in separate steps without having the statistical significance

constraint. Since the ground truth for stratification is unknown, we

used Silhouette score,34 Calinski-Harabasz index,35 and Davies-

Bouldin index36 to evaluate the clustering performance. We also

computed the relative risk ratios across the subgroups to assess the

associations between subgroups and the outcomes. In addition, we

evaluated the predictiveness of the DICE-learned representation by

area under the ROC curve (AUC).

MATERIALS AND METHODS

Related work
Unsupervised learning is a fundamental topic in machine learning

and has been widely applied to medical data.19,22,37,38 Clustering

algorithms such as k-means and hierarchical clustering separate a

population based on the similarities of input variables. For example,

k-means algorithm determines the cluster centroids by iterating be-

tween selecting centroids according to the assignment of data points

to clusters, and assigning data points to clusters according to current

centroids, until stopping criteria are met.39 The cluster assignment is

mainly driven by the cluster purity in terms of distances within or

between clusters, but not by whether the distribution of one target

variable differs across clusters. There are also semisupervised learn-

ing algorithms that make use of a small amount of labeled data with

a large amount of unlabeled data.40 Neither purely unsupervised

learning nor semisupervised learning directly address the need for

risk-stratified clustering of patients.

Most related to our proposed methodology is self-supervised

learning,41 and in particular, previous work on outcome-driven, or

predictive, clustering.23–25,42 Xia et al25 applied k-means clustering

on the learned representation from multitask classification model.

Liu et al23 applied agglomerative hierarchical clustering based on a

distance metric that best suits the patient population. In their experi-

ment, a linear discriminant analysis was chosen to learn a general-

ized Mahalanobis distance metric. These 2 methods are 2-stage,

with clustering process independent from the representation learning

process or metric learning. Locally Supervised Metric Learning pro-

posed by Sun et al minimizes the distance of neighborhoods with the

same class label while maximizing the distance of neighborhoods

with different class labels. In addition, Lee et al proposed an actor-

critic approach for predictive clustering by minimizing the Kullback-

Leibler (KL) divergence between a predictor’s output given learned

representations and that given the assigned centroids. This is to en-

sure that patients in the same cluster share similar future outcomes.
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Lastly, Zhang et al43 add a constraint on a centroid-based probabil-

ity distribution. Different from previous works, DICE proposes a

“back-propagation” through the cluster membership classification

component, to use cluster membership probabilities as input to pre-

dict the outcome to ensure that patients in the same cluster have sim-

ilar outcome distribution. Importantly, DICE proposes a novel

constraint to obtain ensure the outcome distribution is statistically

significantly different across clusters.

To select variables that most contribute the outcome-driven

stratification, DICE has a deep representation learning step to com-

press input data prior to clustering.43–47 The representation learning

component of DICE is related to other data transformation

approaches which map the raw data into a new feature set such as

PCA32 and AE.33 To reduce the dimensionality of input data, PCA

identifies principal components that most well explain the data by

computing eigenvectors and eigenvalues of the covariance matrix,

regardless of whether a target outcome variable represents the input

data. Recent deep clustering approaches are learning-based and con-

duct inference in one-shot, consisting of 2 stages, such as deep repre-

sentation learning followed by various clustering models.47 Caron

et al48 jointly learned the parameters of a deep network and the clus-

ter assignments of the resulting representation. Deep clustering via a

Gaussianmixture variational autoencoder with Graph embedding

(DGG) uses Gaussian mixture variational AEs and graph embedding

to improve the clustering and data representation abilities.49 Yang

et al use alternating stochastic optimization to update clustering

centroids and representation learning parameters iteratively. Differ-

ent from these methods, DICE constructs a clustering prediction net-

work and updates representation learning parameters through self-

supervised learning by considering cluster memberships as pseudola-

bels of the clustering prediction network.

In addition to machine learning approaches, DICE has similar

objectives to statistical approaches including finite mixture

model,50,51 Gaussian Mixture Models (GMM),39 kernel methods,52

model-based clustering,53,54 and spectral methods.55,56 Compared

to these models, DICE does not have distribution assumptions on

observations54 and can handle high computational complexity on

large-scale datasets.57 Jagabathula et al58 proposed a conditional

gradient approach for nonparametric estimation of mixing distribu-

tions. However, clustering of high-dimensional heterogeneous data

remains challenging because of inefficient data representation.

NAS is a technique to find the network architecture with the best

performance on the validation set. Early NAS conducted architec-

ture optimization and network learning in a nested manner.59–61

These works typically used reinforcement learning or evolution

algorithms to explore the architecture search space A. A recent

work decoupled architecture search and weight optimization in a

one-shot NAS framework and uses evolutionary architecture search

to find candidate architectures after training.62 EfficientNet and

EfficientDet63,64 further used grid search to balance network depth,

width, and resolution and achieve state-of-the-art results on the

ImageNet and COCO datasets, respectively.65,66 We propose an al-

ternative grid search to optimize the number of clusters and other

hyperparameters in the DICE framework.

Representation learning
Given a dataset X ¼ fX1; . . . ;XPg with P subjects, we denote each

subject as a sequence of events Xp ¼ x1
p; x

2
p; . . . ; x

np

p

� �
of length np.

A multivariate feature vector xt
p ¼ xt

p;1; x
t
p;2; . . . ; xt

p;F

h i
2 R

F is the

tth instance of subject p in sequence Xp, where F is the number of

features at each timestamp. We have an outcome yp for each subject

p. The first step is to transform discrete sequences into latent contin-

uous representations, followed by clustering and outcome predic-

tion. The latent representation learning for each subject is

performed by a long short-term memory (LSTM) AE.33 The AE con-

sists of 2 parts, the encoder and the decoder, denoted as E and F , re-

spectively. Given the pth input sequence Xp ¼ x1
p; x

2
p; . . . ; x

np

p

� �
, the

encoder can be formulated as zp ¼ E Xp; hE
� �

, where zp 2 R
d is the

representation, d is the dimension of representation, and E is an

LSTM network with parameter hE :
67 We choose the last hidden

state zp of LSTM to be the representation of the input Xp. The de-

Figure 1. The framework of the proposed DICE. Clustering is applied to the representation zp. A statistical significance constraint is explicitly added to ensure the

association of the clustering membership c and outcome y, which facilitates the learning of discriminative representations zp. DICE: deep significance clustering;

NAS: neural architecture search.
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coder can be formulated as X
�

p ¼ F zp; hF
� �

, and F is the other

LSTM network with parameter hF . The representation learning is

achieved by minimizing the reconstruction error

minhE ;hF LAE ¼
1

P

XP

p¼1
k FðEðXp; hEÞ; hF Þ �Xp k2

L2
; (1)

where we use L2 norm in the loss.

Self-supervised clustering
The obtained representations Z ¼ fzpgP

p¼1 can be employed for clus-

tering with K clusters,

minM;fcpgPp¼1
Lclustering ¼

PP
p¼1 k zp �Mcp k2

2

s:t: 1Tcp ¼ 1; ck
p 2 f0; 1g;

8p 2 1; 2; . . . ;Pf g; k 2 f1; 2; . . . ;Kg

(2)

where K is a hyperparameter of total number of clusters to tune,

cp ¼ ½c1
p; . . . ; cK

p �, ck
p is the cluster membership of cluster k, M

2 R
d�K and the k-th columns of M is the centroid of the k-th cluster.

To enable fast inference and learn representation with the driven of

outcome, we build a cluster classification network for deep cluster-

ing based on self-supervision from cp in Equation (2). We employ

the a priori clustering results fcpgP
p¼1 in Equation (2) as pseudolabels

to update the parameters of the encoder E and F . The cluster mem-

bership assignment can be formulated as a classification network,

c^p ¼ g zp; h1

� �
; min h1

L1 ¼ �
PP

p¼1

PK
k¼1 ck

plogðc^p kÞ; (3)

where c^p ¼ ½c^p 1; . . . ; c^p K� is the predicted cluster membership from

the cluster classification network gð�; h1Þ, h1 is the parameter in the

cluster classification network, L1 is the negative log-likelihood loss

for multiclass cluster classification.

Outcome prediction
After obtaining cluster membership fc^pg

P

p¼1
for K clusters, we use

the cluster membership and other confounders such as demo-

graphics to predict the outcome, formulated as:

y^
p ¼ gð½c^p; vp�; h2Þ;

minh2
L2 ¼ �

PP
p¼1ðyplogðy^

pÞ þ ð1� ypÞlogð1� y^
pÞÞ;

(4)

where vp represents confounders to adjust in testing the significance,

½�; �� denotes the concatenation of cluster membership feature and

confounders. gð�; h2Þ is the logistic regression for the outcome pre-

diction, and L2 is the negative log-likelihood loss for the classifica-

tion. This approach partially addresses interpretability in the

application of deep learning methods in medicine. Using the cluster

membership from the learned representation as the input to predict

the outcome allows us to infer a broad theme (ie, risk-stratified stra-

tum) with a set of learned representations. Interpretability is further

enhanced by enforcing the following statistical significance con-

straint to the cluster membership with respect to the outcome.

Statistical significance constraint
The main novelty of DICE is the introduction of a statistical signifi-

cance constraint to the cluster membership with respect to the out-

come distribution to drive the deep clustering process. This step also

drives the interpretation of the representation learning. After obtain-

ing cluster memberships fc^pg
P

p¼1
for K clusters, we require that

the association between the cluster membership and outcome be sta-

tistically significant while adjusting for relevant confounders.

To quantify the significant difference of cluster k1 and cluster k2

(k1 6¼ k2), we use likelihood-ratio test to calculate the P value of var-

iable ĉk2 when considering cluster ĉk1 as the reference, where ĉk

refers to the cluster membership belonging to cluster k, formulated

as,

Gk1 ;k2
¼ �2log

L2 g
^
c

^
c
k1
; ĉk2; v

� �
; h2

� 	
; y

� 	

L2 g
^
c

^
c
k1
; v

� �
; h2

� 	
; y

� 	
2
664

3
775: (5)

Then we obtain the P value from Chi-square distribution,

denoted as Sk1 ;k2
. A predefined threshold of significance a (equiva-

lently, Gk1 ;k2
> aG) is used to measure significance. In this paper, we

use a ¼ :05. In implementation, we design a mask technique to re-

move variables of input bc, corresponding to cluster k1 and cluster

k2, in Equation (5), then calculate the likelihood ratio Gk1 ;k2
, and

add significance constraint to the likelihood-ratio Gk1 ;k2
, that is,

Gk1 ;k2
> aG;8k1 6¼ k2.

Objective function
The neural weights optimization is denoted as:

min
h
L N K; d; hð Þð Þ ¼ min

h
k1LAE þ Lclustering þ k2L1 þ k3L2

þ k4ðaG �Gk1 ;k2
Þ (6)

s:t: 1Tcp ¼ 1; cj
p 2 f0;1g;

8p 2 f1; . . . ;Pg; k1 2 f1; . . . ;Kg; k2 2 f1; . . . ;Kg;k1 6¼ k2 ;

where k1, k2, k3, and k4 are tradeoffs for LAE, L1, L2, and the statis-

tical significance constraint. We iteratively optimize deep clustering

and the other components with the statistical significance constraint.

We firstly employ a priori, such as k-means,68 to obtain pseudola-

bels for the cluster classification network. Then, we can optimize

LAE for the representation learning network, L1 for cluster classifi-

cation network, L2 for outcome prediction network, and the statisti-

cal significance constraint jointly. The algorithm is elaborated in

Algorithm 1.

Algorithm 1. DICE: Deep significance clustering

Input: X; fvg;K ;d
Output: fzpgP

p¼1; fcpgP
p¼1

Initialize the AE of representation learning through LAE ;

Extract representations fzg;
For i ¼ 1 : niter do

Optimize Lclustering by k-means;

Calculate the cluster membership;

Use the cluster memberships as pseudo-labels for

cluster classification network in L1;

For j ¼ 1 : nepoch do

Jointly optimize LAE , L1, L2, and Gk1 ;k2
;

end

Extract representations fzg;
end

return fzpgP
p¼1; fcpgP

p¼1
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Architecture search
We utilize NAS to optimize the network hyperparameters in the

DICE: the hyperparameter in the clustering and the network hyper-

parameters in the representation learning. NAS conducts 2 processes

sequentially. The first is the neural weights optimization of a given

network architecture with the fixed number of clusters K and hidden

state dimension d in DICE. The second is the NAS process. NAS is

conducted in the search space to select the combination of hyper-

parameters and has no direct link to the cost function of neural

weights optimization. We choose the network architecture which is

trained on the training set and has the best evaluation performance

on the validation set, that is

K�; d�ð Þ ¼ argmax
K;d

AUCval N K; d; hð Þð Þ; (7)

where AUCvalð�Þ is the AUC score on the validation set.

Experimental setting
Data

Study data included HF and COVID-19 patients treated in the inpa-

tient and emergency department (ED) settings in 2 hospitals of an

urban academic center, respectively. EHR variables extracted in-

clude information on sociodemographics, vital signs, diagnoses,

therapeutics orders, medication prescriptions, laboratory test orders

and test results, and census-tract level social determinants of health

(SDOH). The sociodemographic information included age, gender,

race, marital status, preferred language, and insurance payor. Diag-

noses were extracted using International Classification of Diseases,

Ninth/Tenth Revision, Clinical Modification (ICD-9/10-CM)

codes.69 Outcomes are defined as discharged to home among HF

patients and Cov-AKI among COVID-19 patients. Continuous vari-

ables for each patient were represented as normalized vectors, and

they were normalized with mean of 0 and standard deviation of 1.

Categorical variables were converted to binary vectors, whose val-

ues were represented as 1 or 0, using one-hot encoding. Missing val-

ues in laboratory and SDOH variables were imputed with mean

values.

HF data include adult patients from years 2014 to 2018 who

were treated on the inpatient Medicine services. Only those patients

whose initial (acute, ED, admitting) and principal diagnoses both

contained HF codes were included to ensure that HF was the work-

ing diagnosis throughout the hospital stay and was being treated

from the beginning of the encounter. In the HF data, variables were

timestamped into day intervals since ED arrival and used as sequen-

tial features. Figure 2 describes the datasets and the inclusion/exclu-

sion criteria for the HF cohort. HF definitions in ICD-9/10-CM are

listed in Supplementary Table S4. COVID-19 was defined by a posi-

tive polymerase chain reaction test. COVID-19 data included adult

patients who were admitted to the hospital in March and April 2020

from the ED.14 We define baseline creatinine to be the closest creati-

nine obtained prior to March 2020, and alternatively, if not avail-

able, the earliest creatinine at the time of ED presentation. AKI was

defined by the Kidney Disease Improving Global Outcomes crite-

ria.70,71 It is defined as an increase in creatinine of 0.3 or greater

from the baseline creatinine during the hospitalization, or in an in-

crease of creatinine greater than 1.5 times the baseline creatinine

during the hospitalization, or initiation of renal replacement ther-

apy. Furthermore, this definition of AKI was verified by manual

chart reviews led by an MD coauthor.14 In COVID-19 data, demo-

graphic variables (age, gender, race), chronic conditions, and the

first values of commonly ordered laboratory tests obtained within

12 h of ED presentation were included as one-time features. Varia-

bles used are listed in Supplementary Table S5.

Baselines

We compared our method with baseline methods including (1) PCA

for representation learning followed by k-means clustering (PCA [k-

means]), (2) AE for representation learning followed by k-means

Figure 2. Inclusion and exclusion criteria for HF cohort. HF: heart failure.
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clustering (AE [k-means]), and (3) AE for representation learning

with classification followed by k-means clustering (AE w/class [k-

means]). For baseline (1), we treated sequential data as one-time fea-

tures in HF dataset to learn PCA representations, followed by k-

means clustering. In (2), k-means clustering was applied directly to

representations learned from AE.33 In (3), we first jointly trained AE

and outcome prediction with representation learned from AE as the

input for outcome prediction, then applied k-means clustering to the

final learned representation. We report the results of these baseline

methods of the same hyperparameters with DICE. Supplementary

Table S6 lists the baseline methods against DICE.

Training

Based on the dataset size and the number of features, the number of

clusters experimented was set to 2 through 5. The sizes of the repre-

sentation dimension were 20 through 100 for HF and 10–20 for

COVID-19, respectively. Experiments were conducted in PyTorch72

on NVIDIA GeForce RTX 2070. We initialized the AE with one ep-

och training. We set P value a ¼ 0:05 which leads to aG ¼ 3:841,

niter ¼ 150, nepoch ¼ 1. Parameters k1, k2, k3, k4 were set as 1.0, 10,

1.0, 1.0 for HF and COVID-19 based on the accuracy on the valida-

tion set. HF and COVID-19 datasets were split into training, valida-

tion, and test sets in a 4:1:1 ratio.

Evaluation

DICE was compared against 3 baseline methods with respect to

AUC on the outcome prediction, Silhouette score,34 Calinski-Hara-

basz index,35 and Davies-Bouldin index.36 Silhouette score, Calin-

ski-Harabasz index, and Davies-Bouldin index are normalized

metrics, and therefore, allow us to evaluate the cluster goodness

across methods regardless of the input representation scale. To eval-

uate the outcome-driven nature of the clusters, we computed risk ra-

tios between each cluster and the cluster with the lowest incidence

as CIci
=CIcr

where Ci is the cumulative incidences of clusters i and

Cr the reference cluster, r.

Code availability
Source code is available in https://github.com/YiyeZhangLab/DICE.

RESULTS

HF data contained 1585 patients, of whom 36.8% of the patients

were discharged to home (Figure 2). Supplementary Tables S1 and

S7 describe the demographic information in the data. Among the

1002 COVID-19 patients, 30.3% of the patients developed AKI sub-

sequently during hospitalization. The network hyperparameters

chosen were K ¼ 4, d ¼ 35 for discharged to home among HF

patients and K ¼ 3 and d ¼ 16 for AKI among COVID-19 patients.

Table 1, displaying performance on the test set, shows that DICE

can generate more distinctive clusters as subgroups. Experiments

and analyses demonstrate that DICE obtained better performance

than baseline methods in deriving subgroups that have higher risk

ratios in comparing the reference (lowest risk) with the other sub-

groups. We further demonstrate the clustering separation across the

2 datasets through the t-Distributed Stochastic Neighbor Embedding

(t-SNE) visualizations in Figures 3 and 4. Compared with baselines

shown in Figure 3B–D for HF, the 4 subgroups in Figure 3A discov-

ered by DICE displayed tighter separation (Silhouette score¼0.48,

Calinski-Harabasz index¼212, Davies-Bouldin index¼0.86). In

order of outcome rates, subgroups 1–4 had 79.9%, 38.8%, 29.7%,

and 8.6%, respectively. The baseline AE with classification also dis-

covered 4 subgroups with the outcome ratio in each subgroup rang-

ing from 72.2% to 5.8%, but the cluster purity metrics were lower

(Silhouette score¼0.35, Calinski-Harabasz index¼200, Davies-

Bouldin index¼1.30). PCA (k-means) and AE (k-means) did not

discover subgroups as clearly separated and outcome-driven as

DICE. Examining the visualizations for the COVID-19 dataset in

Figure 4, AE (k-means) achieved pure cluster metrics (Silhouette

score¼0.46, Calinski-Harabasz index¼163, Davies-Bouldin index-

¼0.84). However, the subgroups were similar with respect to the

outcome rates, ranging from 46.9% to 23.9% (risk ratios 1.88 and

1.10), showing that cluster purity does not necessarily guarantee

risk-stratified subgroups.

Table 2, displaying predictive performance on the test set, shows

that DICE-learned representations are predictive. To evaluate the

learned representation by DICE, we used the representations for

outcome prediction using L1-regularized logistic regression. DICE

outperformed the baselines in AUC, true positive rate (TPR), false

negative rate, positive predictive value (PPV), and negative predic-

tive value (NPV) in both HF dataset and COVID-19 dataset. Relat-

edly, we evaluated the AUC for outcome prediction using DICE

subgroup membership alone. Notably, the DICE subgroup member-

ship alone achieved moderately high prediction of the outcome

(AUC¼0.772 for HF, AUC¼0.627 for COVID-19). Supplemen-

tary Table S8 describes the predictiveness of the DICE cluster mem-

bership alone, including AUC with confidence bounds, accuracy

(ACC), TPR, true negative rate (TNR), PPV, and NPV.

Using HF data, we examined the advantage of the statistical sig-

nificance constraint as well as algorithm fairness. Figure 5 illustrates

Table 1. Clustering performance evaluation on the test set

Model Silhouette score" Calinski-Harabasz index" Davies-Bouldin index# Risk ratio*"

HF PCA (k-means) 0.097 16.1 2.609 1.54, 1.50, 1.39

AE (k-means) 0.281 68.1 1.744 1.91, 1.48, 1.43

AE w/class. (k-means) 0.346 200.0 1.304 9.2, 4.56, 2.65

DICE 0.484 212.2 0.864 6.77, 3.32, 2.94

COVID-19 PCA (k-means) 0.188 30.0 1.840 1.88, 1.10

AE (k-means) 0.462 162.8 0.841 1.11, 1.54

AE w/class. (k-means) 0.266 92.4 1.124 2.82, 1.39

DICE 0.514 253.6 0.664 5.06, 1.02

Notes :": higher values are superior; #: lower values are superior. *displaying risk ratio between each subgroup and the subgroup with the lowest incidence as

reference group. Bold values denote P < 0.05.

AE: autoencoder; DICE: deep significance clustering; PCA: principal component analysis.
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the AUC on the HF validation set across different neural network ar-

chitecture on the Y-axis and representation dimension d on the X-

axis. At each fixed cluster size and representation dimension, the ar-

chitecture network that met the statistical constraint achieved higher

AUC than those that did not. We further conducted ablation studies

to gauge the effect of the statistical significance constraint. When we

disabled the statistical significance constraint, 2 clusters were out-

putted by NAS, compared to the 4-level separation as reported in

Figure 3. Visualization of patient subtyping results by various methods on HF dataset. (A) DICE. (B) PCA (k-means). (C) AE (k-means). (D) AE w/class. (k-means).

AE: autoencoder; DICE: deep significance clustering; PCA: principal component analysis.
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Table 1. In addition, the percentage of neural networks that passed

the significance constraint in NAS decreased from 82.4% to 64.7%

when cluster size was set to 5 in the ablation study. The AUC was

lower when the statistical significance constraint was not met. These

results suggest that the statistical significance constraint contributes

to better stratification especially as we increase the number of clus-

Figure 4. Visualization of patient subtyping results by various methods on COVID-19 dataset. (A) DICE. (B) PCA (k-means). (C) AE (k-means). (D) AE w/class. (k-

means). AE: autoencoder; DICE: deep significance clustering; PCA: principal component analysis.
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Table 2. Outcome prediction comparison on the test set

AUC TPR TNR PPV NPV

HF PCA (k-means) 0.773 6 0.061 0.598 0.778 0.611 0.769

AE (k-means) 0.712 6 0.067 0.433 0.850 0.627 0.721

AE w/class. (k-means) 0.818 6 0.058 0.794 0.746 0.647 0.862

DICE 0.834 6 0.054 0.845 0.743 0.656 0.892

COVID-19 PCA (k-means) 0.738 6 0.087 0.647 0.724 0.508 0.824

AE (k-means) 0.686 6 0.091 0.647 0.716 0.500 0.822

AE w/class (k-means) 0.734 6 0:087 0.667 0.698 0.493 0.827

DICE 0.777 6 0.083 0.726 0.737 0.544 0.861

Bold values denote P < 0.05. AE: autoencoder; AUC: area under the ROC curve; DICE: deep significance clustering; NPV: negative predictive value; PCA: prin-

cipal component analysis; PPV: positive predictive value; TPR: true positive rate.

Figure 5. The model selection on HF dataset. “yes” represents that the architecture network met the significance constraint, and “no” otherwise. HF: heart failure.

Figure 6. Distribution of the laboratory variables across clusters in COVID-19 cohort. 1: high risk, 2: medium risk, and 3: low risk.
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Table 3. Characteristics of the clusters generated by DICE in HF cohort

Lowest (N¼ 572, 10.8%

discharged home)

Low (N¼ 308, 31.8%

discharged home)

High (N¼ 248, 35.9%

discharged home)

Highest (N¼ 457, 73.1%

discharged home)

Female* 334 (58.4) 151 (49.0) 87 (35.1) 132 (28.9)

Diagnosis

Anemia* 148 (25.9) 66 (21.4) 33 (13.3) 50 (10.9)

Chronic kidney disease* 305 (53.3) 144 (46.8) 87 (35.1) 136 (29.8)

Obesity* 31 (5.4) 11 (3.6) 7 (2.8) 7 (1.5)

Medication

Diatrizoate meglumine and sodium oral liq* 101 (17.7) 22 (7.1) 15 (6.0) 23 (5.0)

Heparin flush* 105 (18.4) 26 (8.4) 16 (6.5) 27 (5.9)

Metoprolol tartrate inj* 89 (15.6) 42 (13.6) 26 (10.5) 29 (6.3)

Acetaminophen tab* 395 (69.1) 181 (58.8) 136 (54.8) 225 (49.2)

Calcium gluconate inj* 116 (20.3) 36 (11.7) 15 (6.0) 25 (5.5)

Alteplase cath clearance þRþ* 59 (10.3) 12 (3.9) 7 (2.8) 5 (1.1)

Potassium chloride oral liq* 229 (40.0) 87 (28.2) 47 (19.0) 80 (17.5)

Bumetanide inj* 192 (33.6) 56 (18.2) 34 (13.7) 60 (13.1)

Lidocaine inj 1%* 122 (21.3) 33 (10.7) 25 (10.1) 26 (5.7)

Haloperidol inj* 39 (6.8) 17 (5.5) 11 (4.4) 2 (0.4)

Ondansetron inj* 111 (19.4) 47 (15.3) 25 (10.1) 34 (7.4)

Guaifenesin þ dextromethorphan oral liq* 58 (10.1) 27 (8.8) 19 (7.7) 23 (5.0)

Piperacillin tazobactam inj* 62 (10.8) 33 (10.7) 16 (6.5) 17 (3.7)

Insulin reg inj (humulin R)* 69 (12.1) 30 (9.7) 11 (4.4) 18 (3.9)

Morphine sulfate inj* 121 (21.2) 40 (13.0) 27 (10.9) 21 (4.6)

Vancomycin IVPB (initial-72 h stop)* 100 (17.5) 24 (7.8) 14 (5.6) 11 (2.4)

Lorazepam inj* 104 (18.2) 33 (10.7) 22 (8.9) 24 (5.3)

Potassium chloride inj* 194 (33.9) 42 (13.6) 31 (12.5) 42 (9.2)

Amiodarone inj* 78 (13.6) 13 (4.2) 10 (4.0) 15 (3.3)

Procedure

Social work nursing referral* 255 (44.6) 119 (38.6) 88 (35.5) 144 (31.5)

O2 via—nasal cannula* 243 (42.5) 111 (36.0) 82 (33.1) 131 (28.7)

Indwelling urinary catheter (Foley)* 196 (34.3) 61 (19.8) 42 (16.9) 26 (5.7)

Central venous line care* 68 (11.9) 17 (5.5) 6 (2.4) 9 (2.0)

*P < 0.05.

DICE: deep significance clustering.

Table 4. Characteristics of the clusters generated by DICE in COVID-19 cohort

High risk (N¼ 75, 69.3% AKI) Medium risk (N¼ 444, 41.9% AKI) Low risk (N¼ 483, 13.7% AKI)

Age* 74.0 (66.50, 80.0) 69.0 (58.0, 79.0) 61.0 (49.50, 73.0)

Gender: male* 54 (72.0) 328 (73.9) 237 (49.1)

Alanine aminotransferase* 40.0 (28.0, 71.50) 39.0 (23.0, 74.0) 30.0 (21.0, 48.0)

Albumin level* 2.50 (2.30, 3.10) 3.10 (2.70, 3.40) 3.30 (3.0, 3.70)

Alkaline phosphatase* 94.0 (68.50, 153.50) 78.0 (61.0, 108.0) 70.0 (56.0, 87.0)

Aspartate aminotransferase* 56.0 (35.0, 98.0) 53.0 (34.0, 82.0) 34.0 (25.0, 50.0)

Bilirubin total* 0.70 (0.40, 1.10) 0.70 (0.50, 0.90) 0.50 (0.40, 0.70)

C-reactive protein* 20.05 (14.43, 28.93) 14.60 (8.40, 23.40) 7.30 (3.60, 13.15)

Creatine kinase* 194.0 (79.0, 417.0) 199.0 (96.0, 388.50) 107.50 (65.25, 200.75)

Creatinine* 1.89 (1.09, 3.58) 1.02 (0.85, 1.43) 0.88 (0.73, 1.07)

D-dimer* 2876.0 (880.0, 11470.0) 564.0 (339.0, 1099.50) 335.0 (216.50, 573.50)

Ferritin level* 1595.50 (1047.65, 3368.18) 1025.65 (513.13, 1635.38) 430.60 (227.95, 795.25)

Hemoglobin* 12.60 (9.90, 14.25) 13.40 (12.10, 14.80) 13.60 (12.50, 14.80)

Lactate dehydrogenase* 653.50 (551.75, 839.75) 477.0 (365.75, 591.25) 356.0 (280.25, 435.0)

Lactic acid level* 3.20 (1.70, 4.40) 1.70 (1.30, 2.50) 1.30 (1.0, 1.70)

Procalcitonin* 0.73 (0.37, 2.57) 0.29 (0.14, 0.58) 0.10 (0.06, 0.18)

Prothrombin time* 14.30 (13.10, 16.40) 13.60 (12.40, 15.08) 13.0 (12.20, 13.90)

Sedimentation rate* 93.0 (50.0, 129.0) 76.0 (51.0, 101.0) 68.0 (43.0, 91.0)

Troponin-I* 0.10 (0.04, 0.44) 0.03 (0.03, 0.06) 0.03 (0.03, 0.03)

White blood cell* 10.80 (6.30, 15.20) 7.70 (5.60, 10.70) 6.20 (4.75, 7.90)

Urine protein: positive* 58 (77.3) 278 (62.6) 168 (34.8)

Urine blood: positive* 58 (77.3) 231 (52.0) 72 (14.9)

*P < 0.05.

DICE: deep significance clustering.
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ters. To evaluate the fairness of the algorithm, we report the predic-

tive performance of DICE across racial subgroups. Using DICE sub-

group membership as predictors, the AUCs for unknown, Asian,

others, Black, and White patient population were 0.905, 0.882,

0.856, 0.832, and 0.847, respectively. When learned representation

was used as the predictor, the AUCs for unknown, Asian, others,

Black, and White are 0.863, 0.829, 0.782, 0.854, and 0.853, respec-

tively.

Subgroups generated by DICE were evaluated for their clinical

relevance. Figure 6 illustrates the distribution of relevant laboratory

variables across subgroups in the COVID-19 cohort. DICE discov-

ered 3 subgroups that had high (69%), medium (42%), and low

(14%) incidence of AKI. Distributions of laboratory measurements

across subgroups had linear trends from high- to low-risk sub-

groups. The distributions were consistent with clinically expected

risk factors of AKI among COVID patients ,73 including older age,

higher value of alkaline phosphatase, C-reactive protein, D-dimer,

Ferritin; and lower values of hemoglobin and albumin, correspond-

ing to severe illness and higher risk of AKI.73 Other baseline techni-

ques were unable to detect these AKI-focused subgroups (Figure 6).

Table 3 to Supplementary Table S2 and Table 4 to Supplementary

Table S3 show the notable characteristics across subgroups in the 2

datasets, respectively, comparing DICE and baseline AE w/class (k-

means). Only variables with a linear trend observed across the high-

est- to lowest-risk clusters are displayed. For example, we observe a

linear trend in comorbidity (chronic kidney disease and obesity)

across the clusters, where clusters with the lowest and the highest

percentages of patients discharged to home displaying the highest

and lowest percentages of comorbidity, respectively. Similarly, we

observe trends in the use of medications that are indicative of disease

severity and complexity, such as Bumetanide and Haloperidol being

more prevalent in the cluster with the lowest percentages of patients

discharged to home. This cluster of patients also has the highest

needs for social work referral as observed in the orders placed. P val-

ues were calculated using Kruskal-Wallis rank-sum test for continu-

ous variables and using Chi-square/Fisher’s exact test for categorical

variables.

DISCUSSION

DICE was motivated to join concepts of machine learning and statis-

tics as a customized machine learning algorithm for medicine. It is

intended to create risk-stratified and predictive subgroups to facili-

tate risk-stratified intervention designs. These features of DICE were

demonstrated in the evaluation using EHR datasets with different

sizes, variable types, incidence, and clinical areas. Compared to

DICE, applying baseline methods in COVID-19 data, we observed

that subgroups had good cluster purity but not clearly stratified by

the risk level of the outcome. In HF data, we observed that DICE

achieved cluster purity while the cluster membership also served a

predictive purpose. Evaluation results suggest that DICE has certain

advantage over baseline methods particularly when the characteris-

tics indicative of the outcome risk, or root causes, are heterogenous,

rendering outcome prediction challenging.

Beyond patient populations evaluated in this paper, DICE may

have the potential to be used in other clinical areas to facilitate

subgroup-specific care and clinical pathways for clinical decision

support. In this study, DICE jointly trained AE for representation

learning, k-means for clustering, and logistic regression for predic-

tion.74 Depending on the data structure, we can revise DICE to re-

place k-means with other clustering algorithms, and similarly,

logistic regression with other prediction algorithms. Moreover, if

clinical notes were used as input, Transformers may serve as the en-

coder and decoder in representation learning.75 Future studies may

also evaluate additional statistical concepts to better ensure the out-

come separation using metrics such as Tukey’s Honestly Significant

Difference and Cochran-Armitage test for trend to increase risk ratio

across clusters.76 In summary, DICE offers a flexible framework and

a conceptual innovation that may drive meaningful application ma-

chine learning in the EHR.

CONCLUSION

This paper demonstrated DICE, an outcome-driven clustering algo-

rithm for risk-stratifying patients. Compared to baseline methods,

DICE is optimized to cluster patients based on both the risk level of

an outcome and on the input clinical features. Because of this fea-

ture, we propose that DICE may be used to identify subgroups of

patients who require risk-stratified interventions in a heterogeneous

population, who are similar in ways that allow them to respond to

the similar treatments against their risk of an outcome. Beyond the

datasets used in this paper, DICE has the potential to be used in

other clinical areas.

FUNDING

This study was supported by NLM K01LM013257-01 (PI Zhang) and Center

for Transportation, Environment, and Community Health (CTECH) New

Research Initiatives Fund (PI Zhang).

AUTHOR CONTRIBUTIONS

YZ and YH designed the overall study in consultation with LS, PADS, KMA,

JRL, and SLT. YZ, YH, and YL performed data analysis. PADS, KMA, JRL,

and SLT provided clinical inputs, and interpretation to the study. YH and YZ

wrote the manuscript with inputs from all the authors. FW, JP, LS, and YL

provided suggestions to the manuscript.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American Medical Infor-

matics Association online.

CONFLICT OF INTEREST STATEMENT

YZ and JP have equity ownership at Iris OB Health. JRL has filed patent US-

2020-0048713-A1 titled “Methods of detecting cell-free DNA in biological

samples” and has received a grant from BioFire Diagnostics LLC.

DATA AVAILABILITY

The data generated and/or analyzed during the current study cannot be shared

publicly due to its inclusion of patient health information protected by the

Health Insurance Portability and Accountability Act, but will be shared on

reasonable request to the corresponding author.

REFERENCES

1. Lauck SB, Wood DA, Achtem L, et al. Risk stratification and clinical path-

ways to optimize length of stay after transcatheter aortic valve replace-

ment. Can J Cardiol 2014; 30 (12): 1583–7.

2. Shaheen AA, Riazi K, Medellin A, et al. Risk stratification of patients

with nonalcoholic fatty liver disease using a case identification pathway

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 12 2651

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab203#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab203#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab203#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab203#supplementary-data


in primary care: a cross-sectional study. CMAJ Open 2020; 8 (2):

E370–76.

3. Pillay SM, Oliver B, Butler L, Kennedy HG. Risk stratification and the

care pathway. Ir J Psychol Med 2008; 25 (4): 123–7.

4. Olin SS, McCord M, Stein REK, et al. Beyond screening: a stepped care

pathway for managing postpartum depression in pediatric settings. J

Womens Health (Larchmt) 2017; 26 (9): 966–75.

5. Suh EH, Bodnar DJ, Melville LD, Sharma M, Farmer BM. Crisis clinical

pathway for COVID-19. Emerg Med J 2020; 37 (11): 700–4.

6. Geleris P, Boudoulas H. Problems related to the application of guidelines in

clinical practice: a critical analysis. Hellenic J Cardiol 2011; 52 (2): 97–102.

7. Six A, Backus B, Kelder J. Chest pain in the emergency room: value of the

HEART score. Neth Heart J 2008; 16 (6): 191–6.

8. Navi BB, Kamel H, Shah MP, et al. Application of the ABCD2 score to

identify cerebrovascular causes of dizziness in the emergency department.

Stroke 2012; 43 (6): 1484–9.

9. Littlejohn LA, Gibbs J, Jordan LB, et al. Assessing the effectiveness of

NICE criteria for stratifying breast cancer risk in a UK cohort. Eur J Hum

Genet 2018; 26 (4): 599–603.

10. Savarese G, Lund LH. Global public health burden of heart failure. Card

Fail Rev 2017; 3 (1): 7–11.

11. Cubbon RM, Witte KK, Kearney LC, et al. Performance of 2014 NICE de-

fibrillator implantation guidelines in heart failure risk stratification. Heart

2016; 102 (10): 735–40.

12. Chan L, Chaudhary K, Saha A, et al.; Mount Sinai COVID Informatics

Center (MSCIC). AKI in hospitalized patients with COVID-19. J Am Soc

Nephrol 2021; 32 (1): 151–60.

13. Hirsch JS, Ng JH, Ross DW, et al.; Northwell Nephrology COVID-19 Re-

search Consortium. Acute kidney injury in patients hospitalized with

COVID-19. Kidney Int 2020; 98 (1): 209–18.

14. Lee JR, Silberzweig J, Akchurin O, et al. Characteristics of acute kidney

injury in hospitalized COVID-19 patients in an Urban Academic Medical

Center. Clin J Am Soc Nephrol 2021; 16 (2): 284–6.

15. Ng JH, Hirsch JS, Hazzan A, et al. Outcomes among patients hospitalized

with COVID-19 and acute kidney injury. Am J Kidney Dis 2021; 77 (2):

204–15.e1.

16. Fisher M, Neugarten J, Bellin E, et al. AKI in hospitalized patients with

and without COVID-19: a comparison study. J Am Soc Nephrol 2020; 31

(9): 2145–57.

17. Beaulieu-Jones BK, Yuan W, Brat GA, et al. Machine learning for patient

risk stratification: standing on, or looking over, the shoulders of clini-

cians? NPJ Digit Med 2021; 4 (1): 62.

18. Lakshmanan GT, Rozsnyai S, Wang F. Investigating clinical care path-

ways correlated with outcomes. Lect Notes Comput Sci 2013; 8094:

323–38.

19. Zhang Y, Padman R, Patel N. Paving the COWpath: learning and visualiz-

ing clinical pathways from electronic health record data. J Biomed Inform

2015; 58: 186–97.

20. Chaudhary K, Vaid A, Duffy A, et al. Utilization of deep learning for sub-

phenotype identification in sepsis-associated acute kidney injury. Clin J

Am Soc Nephrol 2020; 15 (11): 1557–65.

21. Xu Z, Chou J, Zhang XS, et al. Identifying sub-phenotypes of acute kidney

injury using structured and unstructured electronic health record data

with memory networks. J Biomed Inform 2020; 102: 103361.

22. Zhang X, Chou J, Liang J, et al. Data-driven subtyping of Parkinson’s dis-

ease using longitudinal clinical records: a cohort study. Sci Rep 2019; 9

(1): 797–12.

23. Liu H, Li X, Xie G, et al. Precision cohort finding with outcome-driven

similarity analytics: a case study of patients with atrial fibrillation. Stud

Health Technol Inform 2017; 245: 491–5.

24. Lee C, Van Der Schaar M, eds. Temporal phenotyping using deep predic-

tive clustering of disease progression. In: International Conference on Ma-

chine Learning. PMLR; 2020.

25. Xia E, Du X, Mei J, et al., eds. Outcome-Driven Clustering of Acute Coro-

nary Syndrome Patients Using Multi-Task Neural Network with Atten-

tion. MedInfo; 2019.

26. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases

in machine learning algorithms using electronic health record data. JAMA

Intern Med 2018; 178 (11): 1544–7.

27. Char DS, Shah NH, Magnus D. Implementing machine learning in health

care—addressing ethical challenges. N Engl J Med 2018; 378 (11): 981–3.

28. Sarwar S, Dent A, Faust K, et al. Physician perspectives on integration of

artificial intelligence into diagnostic pathology. NPJ Digit Med 2019; 2

(1): 28–7.

29. Verghese A, Shah NH, Harrington RA. What this computer needs is a

physician: humanism and artificial intelligence. JAMA 2018; 319 (1):

19–20.

30. Liang J, Chen K, Lin M, Zhang C, Wang F. Robust finite mixture regres-

sion for heterogeneous targets. Data Min Knowl Disc 2018; 32 (6):

1509–60.

31. Zhang Y, Wang S, Hermann A, Joly R, Pathak J. Development and valida-

tion of a machine learning algorithm for predicting the risk of postpartum

depression among pregnant women. J Affect Disord 2021; 279: 1–8.

32. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom

Intell Lab Syst 1987; 2 (1–3): 37–52.

33. Sutskever I, Vinyals O, Le QV, eds. Sequence to sequence learning with

neural networks. Advances in neural information processing systems;

2014.

34. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and vali-

dation of cluster analysis. J Comput Appl Math 1987; 20: 53–65.

35. Calinski T, Harabasz J. A dendrite method for cluster analysis. Comm

Stats Theory Methods 1974; 3 (1): 1–27.

36. Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pat-

tern Anal Mach Intell 1979; 1 (2): 224–7.

37. Zhang Y, Padman R, Levin JE. Paving the COWpath: data-driven design

of pediatric order sets. J Am Med Inform Assoc 2014; 21 (e2): e304–11.

38. Deo RC. Machine learning in medicine. Circulation 2015; 132 (20):

1920–30.

39. Svens�en M, Bishop CM. Pattern Recognition and Machine Learning. New

York: Springer; 2007.

40. Zhu X, Goldberg AB. Introduction to semi-supervised learning. Synth

Lect Artif Intell Mach Learn 2009; 3 (1): 1–130.

41. Jing L, Tian Y. Self-supervised visual feature learning with deep neural

networks: a survey. IEEE Trans Pattern Anal Mach Intell 2020. doi:

10.1109/TPAMI.2020.2992393.

42. Sun J, Wang F, Hu J, Edabollahi S. Supervised patient similarity measure of

heterogeneous patient records. Sigkdd Explor Newsl 2012; 14 (1): 16–24.

43. Zhang H, Basu S, Davidson I. A framework for deep constrained cluster-

ing—algorithms and advances. arXiv preprint arXiv:190110061; 2019.

44. Hershey JR, Chen Z, Le Roux J, Watanabe S, eds. Deep clustering: dis-

criminative embeddings for segmentation and separation. In: 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE; 2016.

45. Li F, Qiao H, Zhang B. Discriminatively boosted image clustering with

fully convolutional auto-encoders. Pattern Recognit 2018; 83: 161–73.

46. Xie J, Girshick R, Farhadi A, eds. Unsupervised deep embedding for clus-

tering analysis. In: International Conference on Machine Learning.

PMLR; 2016.

47. Yang B, Fu X, Sidiropoulos ND, Hong M, eds. Towards k-means-friendly

spaces: simultaneous deep learning and clustering. In: International Con-

ference on Machine Learning. PMLR; 2017.

48. Caron M, Bojanowski P, Joulin A, Douze M, eds. Deep clustering for

unsupervised learning of visual features. In: Proceedings of the European

Conference on Computer Vision (ECCV); 2018.

49. Yang L, Cheung N-M, Li J, Fang J, eds. Deep clustering by gaussian mix-

ture variational autoencoders with graph embedding. In: Proceedings of

the IEEE/CVF International Conference on Computer Vision; 2019.

50. McLachlan GJ, Peel D. Finite Mixture Models. New York: John Wiley\&

Sons; 2004.

51. Wedel M, DeSarbo WS. A review of recent developments in latent class re-

gression models. In: Bagozzi R, ed., Advanced Methods of Marketing Re-

search. Blackwell Pub; 1994: 352–88.

2652 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 12



52. Hofmann T, Scholkopf B, Smola AJ. Kernel methods in machine learning.

Ann Statist 2008; 36 (3): 1171–220.

53. Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and

density estimation. J Am Stat Assoc 2002; 97 (458): 611–31.

54. Zhong S, Ghosh J. A unified framework for model-based clustering. J

Mach Learn Res 2003; 4 (Nov): 1001–37.

55. Ng AY, Jordan MI, Weiss Y, eds. On spectral clustering: analysis and an

algorithm. In: Advances in Neural Information Processing Systems; 2002.

56. Von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007; 17

(4): 395–416.

57. Min E, Guo X, Liu Q, Zhang G, Cui J, Long J. A survey of clustering with

deep learning: from the perspective of network architecture. IEEE Access

2018; 6: 39501–14.

58. Jagabathula S, Subramanian L, Venkataraman A. A conditional gradient

approach for nonparametric estimation of mixing distributions. Manag

Sci 2020; 66 (8): 3635–56.

59. Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures

using reinforcement learning. arXiv preprint arXiv:161102167; 2016.

60. Zoph B, Le QV. Neural architecture search with reinforcement learning.

arXiv preprint arXiv:161101578; 2016.

61. Zoph B, Vasudevan V, Shlens J, Le QV, eds. Learning transferable archi-

tectures for scalable image recognition. In: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition; 2018.

62. Guo Z, Zhang X, Mu H, et al. Single path one-shot neural architecture

search with uniform sampling. arXiv preprint arXiv:190400420; 2019.

63. Tan M, Le Q, eds. EfficientNet: rethinking model scaling for convolu-

tional neural networks. In: International Conference on Machine Learn-

ing. PMLR; 2019.

64. Tan M, Pang R, Le QV. Efficientdet: scalable and efficient object detec-

tion. arXiv preprint arXiv:191109070; 2019.

65. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L, eds. Imagenet: a large-

scale hierarchical image database. In: 2009 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE; 2009.

66. Lin T-Y, Maire M, Belongie S, et al., eds. Microsoft coco: common objects

in context. In: European Conference on Computer Vision. Springer; 2014.

67. Hochreiter S, Schmidhuber J, rgen. Long short-term memory. Neural

Comput 1997; 9 (8): 1735–80.

68. MacQueen J, ed. Some methods for classification and analysis of multivar-

iate observations. In: Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability; 1967; Oakland, CA.

69. van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A modifi-

cation of the Elixhauser comorbidity measures into a point system for

hospital death using administrative data. Med Care 2009; 47 (6):

626–33.

70. Kdigo A. Work group: section 2: AKI definition. Kidney Int Suppl 2012;

2: 19–36.

71. Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the

2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kid-

ney Dis 2013; 61 (5): 649–72.

72. PyTorch. Secondary. https://pytorch.org Accessed September 14, 2021.

73. Kumar MP, Mishra S, Jha DK, et al. Coronavirus disease (COVID-19)

and the liver: a comprehensive systematic review and meta-analysis. Hep-

atol Int 2020; 14 (5): 711–22.
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