

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Impact of monocarbonyl analogs of curcumin (MACs) C66 and B2BrBC on the expression of diabetes-associated genes in streptozotocin-treated rat pancreatic RIN-m cells—Quantitative RT-PCR array data

Radoslav Stojchevski^{a,b,c}, Sara Velichkovikj^d, Jane Bogdanov^e, Nikola Hadzi-Petrushev^f, Mitko Mladenov^f, Leonid Poretsky^{a,b,c}, Dimiter Avtanski^{a,b,c,*}

^a Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA

^b Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA

^c Feinstein Institutes for Medical Research, Manhasset, NY, USA

^d Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, NY, USA

^e Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University, Skopje, North Macedonia

^fFaculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, Skopje, North Macedonia

ARTICLE INFO

Article history: Received 19 August 2024 Revised 11 September 2024 Accepted 13 September 2024 Available online 16 September 2024

Dataset link: Expression of diabetes-related genes in rodent β -cell line (RIN-m) treated with monocarbonyl curcumin analogues (C66 and B2BrBC) in presence or absence of streptozotocin – PCR array data (Original data)

ABSTRACT

This paper presents a dataset obtained from an RT²-qPCR array analysis of rat pancreatic RIN-m cells treated with two monocarbonyl analogs of curcumin (MACs), C66 and B2BrBC in the presence or absence of streptozotocin (STZ). The array quantified the expression of 84 genes associated with the onset, development, and progression of diabetes. This dataset provides information on the gene expression profiles of pancreatic cells modulated by two specific MACs in a diabetic context. The data can serve as a foundation for developing new hypotheses, designing follow-up experiments, and

E-mail address: davtanski@northwell.edu (D. Avtanski). Social media: 🎔 @DimiterAvtanski (D. Avtanski)

https://doi.org/10.1016/j.dib.2024.110952

2352-3409/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)

^{*} Corresponding author at: Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110E 59th Street, Suite 8B, Room 837, New York, NY 10022, USA.

Keywords: Monocarbonyl analogs of curcumin (MACs) Streptozotocin (STZ) Pancreatic β -cells Gene expression identifying novel targets for treatment. It can be used to investigate further the molecular mechanisms underlying the therapeutic effects of these MACs and in comparative studies using other experimental antidiabetic compounds. © 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)

Specifications Table

Subject	Biological Sciences
Specific subject area	Gene expression analysis
Data format	Raw and analyzed
Type of data	Tables
Data collection	Rat pancreatic RIN-m cells were cultured in vitro and treated with
	monocarbonyl analogs of curcumin (MACs) C66 or B2BrBC (50 μ M) for 72 h,
	followed by streptozotocin (STZ) treatment (1.5 mM) for 24 h. RNA was
	extracted using TRIzol reagent and chloroform, quantified using a NanoDrop
	One spectrophotometer, normalized to 1 µg, and converted to cDNA using the
	qScript cDNA SuperMix and SimpliAmp thermocycler. Quantitative PCR was
	performed using the RT ² Profiler PCR Array (Rat Diabetes Panel Kit) and
	QuantStudio 3 Real-Time PCR System. Data were analyzed using the GeneGlobe
	Data Analysis Center.
Data source location	 Institution: Friedman Diabetes Institute, Northwell Health
	 City/Town/Region: New York, NY
	Country: USA
Data accessibility	Repository name: Mendeley Data
	Data identification number: 10.17632/vdgz7pk6vh.1
	Direct URL to data: https://data.mendeley.com/datasets/vdgz7pk6vh/1
Related research article	Monocarbonyl analogs of curcumin C66 and B2BrBC modulate oxidative stress,
	JNK activity, and pancreatic gene expression in rats with
	streptozotocin-induced diabetes
	Data identification number: 10.1016/j.bcp.2024.116491
	Direct URL to data: https://
	//www.sciencedirect.com/science/article/nii/S000629522400474X2via%3Dibub

1. Value of the Data

By providing a thorough gene expression profile, this data supports further research into the pharmacological properties of curcumin derivatives in diabetes treatment, making it valuable for both basic and translational research. Researchers can leverage this dataset to design follow-up experiments or conduct comparative studies using other antidiabetic compounds, particularly those aimed at oxidative stress and inflammatory pathways.

2. Background

Curcumin, a bioactive compound derived from turmeric (*Curcuma longa*), has been recognized for its anti-diabetic actions related to its antioxidant and anti-inflammatory properties [1–5]. However, its poor bioavailability limits its clinical applications [6]. Consequently, monocarbonyl analogs of curcumin (MACs) lacking β -diketone moiety were synthesized to enhance the therapeutic efficacy of curcumin [7]. This RT²-qPCR array dataset was generated to deepen our understanding of the mechanisms of action of the two experimental MACs, C66 and B2BrBC, focusing particularly on diabetes. The motivation behind this study stems from the need to explore novel

interventions that can reduce the negative effects of dysregulated gene expression associated with diabetes. This approach allowed for simultaneous assessment of the expression of multiple genes, providing an overview of the preventive anti-diabetic effects of C66 and B2BrBC. This data article complements a research study by offering a detailed repository of gene expression changes, which can serve as a resource for researchers seeking to understand the genetic land-scape of diabetes and the impact of curcumin-based therapies.

3. Data Description

The present dataset comprises the effects of C66 and B2BrBC in the presence or absence of STZ on the expression of 84 diabetes-related genes in rat pancreatic RIN-m cells. The genes included in the PCR panel and their functions are listed in Tables 1 and 2. Individual Ct values obtained from the array have been previously published in a data repository [8]. This paper shows the gene expression levels presented as a fold-change of treatment relative to the control or STZ (Tables 3 and 4). Preliminary analysis of the gene expression data suggests that C66 and B2BrBC modulate the expression of several key genes involved in β -cell function and survival and the pathogenesis of diabetes. For instance, altered expression of *Ins* is directly related to glucose homeostasis and the regulation of β -cell function [9]. The MACs also influenced genes involved in oxidative stress and inflammatory responses, commonly associated with diabetes, including Retn, Ccr2, Ccl5, Igfbp5, Srebf1, Gpd1, Slc2a4, Agt, Icam1, Serpine1, Dpp4, Fpb1, Cebpa, and Ctla4. Moreover, the ability of C66 and B2BrBC to alter *Tnfrsf1a* and *Mapk8* expression, both involved in the INK signaling pathway, further highlights the therapeutic potential of these analogs, as JNK signaling has been shown to be involved in insulin resistance and β -cell apoptosis [10,11]. Overall, our findings highlight the potential of MACs to target multiple pathways relevant to diabetes development and progression. Further studies are required to validate these molecular targets and explore their therapeutic significance.

4. Experimental Design, Materials and Methods

C66 and B2BrBC were synthesized by cross-aldol condensation [12,13]; STZ was purchased from MilliporeSigma (Cat. # S0130); RIN-m cells were purchased from ATCC (Cat. # CRL-2057). The cells were grown in RPMI-1640 medium (ATCC, Cat. # 30-2001), supplemented with 10 % fetal bovine serum (FBS) (VWR International, Cat. # 89510-186) and antibiotic/antimycotic solution (MP Biomedicals, Cat. # 1674049), and incubated at 37 °C with 5 % CO₂. For experiments, cells were initially seeded in 6-well plates in complete medium (0.3×10^6 cells/well) for 24 h, then treated with C66 or B2BrBC (50 μ M) for 72 h, followed by streptozotocin (STZ) treatment (1.5 mM) for 24 h. Control cells were incubated with the corresponding concentration of DMSO. At the end of the experiment, the cells were washed twice with PBS, and total RNA was extracted using TRIzol reagent (Ambion, Cat. # 5596018) and chloroform. The extracted RNA fraction was quantified using a NanoDrop One spectrophotometer (Thermo Fisher Scientific), normalized to 1 µg, and converted to cDNA using the gScript cDNA SuperMix (Quantabio, Cat. # 95048) and a SimpliAmp thermocycler (Thermo Fisher Scientific) under the following conditions: 5 min/25 °C, 30 min/42 °C, 5 min/85 °C. Quantitative PCR array was performed using the RT² Profiler PCR Array (Rat Diabetes Panel Kit) (QIAGEN, GeneGlobe ID # PARN-023ZA, Cat. # 330231) and QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific) under the following conditions: 10 min/95 °C, 15 s/95 °C and 1 min/60 °C (40 cycles), and 15 s/95 °C, 1 min/60 °C, 15 s/95 °C. Data were calculated using the $\Delta\Delta Ct$ method and the housekeeping genes Actb, B2m, Hprt1, Ldha, and Rplp1, and presented as fold-changes of treatment relative to the control or STZ. Statistical analysis was performed using the online-based GeneGlobe Data Analysis Center (https://geneglobe.giagen.com/us/analyze) (QIAGEN). Statistical differences between the treatment groups were assessed using Student's t-test. Data were considered statistically significant at p < 0.05.

Table 1

List of genes included in the rat diabetes panel.

Gene Symbol	Gene full name	UniCene ID	Accession Number
Ace	Angiotensin L converting enzyme (nentidyl-dipentidase A) 1	Rn 10149	NM 012544
Achy	ATP citrate luase	Rn 29771	NM_016987
Adra1a	Adrenergic alpha-14, recentor	Rn 0001	NM_017101
Adrh3	Adrenergic, heta-3-, receptor	Rn 10100	NM_013108
Aat	Angiotonsinogon (sorpin pontidase inhibitor clade A	Rii.10100 Pp 6210	NM 124422
ngi	member 8)	KII.0313	NNL134432
Akt2	V-akt murine thymoma viral oncogene homolog 2	Rn 87066	NM 017093
Aan2	Aguaporin 2 (collecting duct)	Rn 90076	NM_012909
Ccl5	Chemokine $(C-C motif)$ ligand 5	Rn 8019	NM_031116
Ccr2	Chemokine (C–C motif) recentor 2	Rn 211983	NM_021866
Cd28	Cd28 molecule	Rn 10327	NM_013121
Ceacam1	Carcinoembryonic antigen-related cell adhesion molecule 1	Rn 91235	NM_031755
ceucumi	(hiliary glyconrotein)	101.51255	1111_051755
Cehna	(CAAT/enhancer binding protein (C/FBP) alpha	Rn 204833	NM 012524
Ctla4	Cytotoxic T-lymphocyte-associated protein 4	Rn.10259	NM 031674
Dpp4	Dipeptidylpeptidase 4	Rn.91364	NM 012789
Dusp4	Dual specificity phosphatase 4	Rn.44407	NM 022199
	Ectonucleotide pyrophosphatase/phosphodiesterase 1	Rn.1199	NM 053535
Fbp1	Fructose-1.6-bisphosphatase 1	Rn.33703	NM 012558
Foxc2	Forkhead box C2	Rn.216723	NM 001101680
Foxg1	Forkhead box G1	Rn.9864	NM 012560
Foxp3	Forkhead box P3	Rn.177272	NM_001108250
G6pc	Glucose-6-phosphatase, catalytic subunit	Rn.10992	NM_013098
Gcg	Glucagon	Rn.54383	NM_012707
Gcgr	Glucagon receptor	Rn.11225	NM_172092
Gck	Glucokinase	Rn.10447	NM_012565
Glp1r	Glucagon-like peptide 1 receptor	Rn.11408	NM_012728
Gpd1	Glycerol-3-phosphate dehydrogenase 1 (soluble)	Rn.44452	NM_022215
Gsk3b	Glycogen synthase kinase 3 beta	Rn.10426	NM_032080
Hmox1	Heme oxygenase (decycling) 1	Rn.3160	NM_012580
Hnf1b	HNF1 homeobox B	Rn.11342	NM_013103
Hnf4a	Hepatocyte nuclear factor 4, alpha	Rn.44442	NM_022180
Icam1	Intercellular adhesion molecule 1	Rn.12	NM_012967
Ide	Insulin degrading enzyme	Rn.45029	NM_013159
Ifng	Interferon gamma	Rn.10795	NM_138880
Igfbp5	Insulin-like growth factor binding protein 5	Rn.1593	NM_012817
Ikbkb	Inhibitor of kappa light polypeptide gene enhancer in Becelle, kingse beta	Rn.19222	NM_053355
1110	Interleykin 10	Rn 9868	NM 012854
II10 II12h	Interleukin 10	Rn 48686	NM_022611
ll4ra	Interleukin 4 recentor alpha	Rn 10471	NM 133380
116	Interleukin 6	Rn 9873	NM_012589
Inppl1	Inositol polyphosphate phosphatase-like 1	Rn.42902	NM 022944
Ins1	Insulin 1	Rn.962	NM 019129
Irs1	Insulin receptor substrate 1	Rn.10476	NM_012969
Irs2	Insulin receptor substrate 2	Rn.10718	NM_001168633
Mapk14	Mitogen activated protein kinase 14	Rn.88085	NM_031020
Mapk8	Mitogen-activated protein kinase 8	Rn.4090	XM_341399
Neurod1	Neurogenic differentiation 1	Rn.44289	NM_019218
Nfkb1	Nuclear factor of kappa light polypeptide gene enhancer in Becells 1	Rn.2411	XM_342346
Nkx2-1	NK2 homeobox 1	Rn.34265	NM_013093
Nos3	Nitric oxide synthase 3, endothelial cell	Rn.44265	NM_021838
Nrf1	Nuclear respiratory factor 1	Rn.17159	NM_001100708
Nsf	N-ethylmaleimide-sensitive factor	Rn.13345	NM_021748
Parp1	Poly (ADP-ribose) polymerase 1	Rn.11327	NM_013063
Pdx1	Pancreatic and duodenal homeobox 1	Rn.54603	NM_022852
Pik3cd	Phosphoinositide-3-kinase, catalytic, delta polypeptide	Rn.11530	NM_001108978
Pik3r1	Phosphoinositide-3-kinase, regulatory subunit 1 (alpha)	Rn.10599	NM_013005

Table 1 (continued)

Gene Symbol	Gene full name	UniGene ID	Accession Number
Ppara	Peroxisome proliferator activated receptor alpha	Rn.9753	NM_013196
Pparg	Peroxisome proliferator-activated receptor gamma	Rn.23443	NM_013124
Ppargc1a	Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha	Rn.19172	NM_031347
Ptpn1	Protein tyrosine phosphatase, non-receptor type 1	Rn.11317	NM_012637
Pygl	Phosphorylase, glycogen, liver	Rn.21399	NM_022268
Rab4a	RAB4A, member RAS oncogene family	Rn.3016	NM_013019
Retn	Resistin	Rn.16746	NM_144741
Sell	Selectin L	Rn.10461	NM_019177
Serpine1	Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type1), member 1	Rn.29367	NM_012620
Slc14a2	Solute carrier family 14 (urea transporter), member 2	Rn.10157	NM_019347
Slc2a4	Solute carrier family 2 (facilitated glucose transporter), member 4	Rn.1314	NM_012751
Snap23	Synaptosomal-associated protein 23	Rn.14789	NM_022689
Snap25	Synaptosomal-associated protein 25	Rn.107689	NM_030991
Sod2	Superoxide dismutase 2, mitochondrial	Rn.10488	NM_017051
Srebf1	Sterol regulatory element binding transcription factor 1	Rn.221929	XM_213329
Stx4	Syntaxin 4	Rn.33218	NM_031125
Stxbp1	Syntaxin binding protein 1	Rn.80843	NM_013038
Stxbp2	Syntaxin binding protein 2	Rn.10121	NM_031126
Stxbp4	Syntaxin binding protein 4	Rn.49449	NM_001107038
Tgfb1	Transforming growth factor, beta 1	Rn.40136	NM_021578
Tnf	Tumor necrosis factor (TNF superfamily, member 2)	Rn.2275	NM_012675
Tnfrsf1a	Tumor necrosis factor receptor superfamily, member 1a	Rn.11119	NM_013091
Tnfrsf1b	Tumor necrosis factor receptor superfamily, member 1b	Rn.83633	NM_130426
Trib3	Tribbles homolog 3 (Drosophila)	Rn.22325	NM_144755
Ucp2	Uncoupling protein 2 (mitochondrial, proton carrier)	Rn.13333	NM_019354
Vamp2	Vesicle-associated membrane protein 2	Rn.12939	NM_012663
Vamp3	Vesicle-associated membrane protein 3	Rn.219999	NM_057097
Vapa	VAMP (vesicle-associated membrane protein)-associated protein A	Rn.162275	NM_031631
Vegfa	Vascular endothelial growth factor A	Rn.1923	NM_031836
Actb	Actin, beta	Rn.94978	NM_031144
B2m	Beta-2 microglobulin	Rn.1868	NM_012512
Hprt1	Hypoxanthine phosphoribosyltransferase 1	Rn.47	NM_012583
Ldha	Lactate dehydrogenase A	Rn.107896	NM_017025
Rplp1	Ribosomal protein, large, P1	Rn.973	NM_001007604

Table 2

List of genes included in the rat diabetes panel organized by their function.

Function	Gene
Receptors, Transporters & Channels	Adra1a, Adrb3, Aqp2, Ccr2, Cd28, Ceacam1, Ctla4, Gcgr, Glp1r, Icam1, Il4r, Nsf, Rab4a, Sell (Lecam-1), Slc14a2, Slc2a4 (Glut4), Snap23, Snap25, Stx4, Stxbp1, Stxbp2, Stxbp4, Tnfrsf1a (Tnfr1) Tnfrsf1b Yamp2 Yamp3 Yana
Nuclear Receptors	Ppara, Pparg
Metabolic Enzymes	Ace, Acly, Dpp4, Enpp1, Fbp1, G6pc, Gck, Gpd1, Gsk3b, Hmox1, Ide, Nos3 (eNOS), Parp1 (Adprt1), Pygl, Sod2
Cytokines & Growth Factors	Agt, Ccl5 (Rantes), Gcg, Ifng, Il10, Il12b, Il6, Ins1, Retn, Tgfb1, Tnf, Vegfa
Signal Transduction	Akt2, Dusp4, Igfbp5, Ikbkb (IKK2), Inppl1 (SHIP2), Irs1, Irs2, Mapk14 (p38alpha), Mapk8 (Jnk1), Pik3cd, Pik3r1 (PI3KA), Ptpn1 (Ptp), Trib3 (Skip3)
Transcription Factors	Cebpa, Foxc2, Foxg1, Foxp3, Hnf1b, Hnf4a, Neurod1, Nfkb1, Nkx2-1, Nrf1, Pdx1 (lpf1), Ppargc1a, Srebf1
Other Diabetes-associated Genes	Serpine1 (Pai-1), Ucp2

Table 3

Modulation of diabetes-associated genes in RIN-m cells. Data are calculated as fold-change of treatment (C66, B2BrBC, STZ, C66+STZ, or B2BrBC+STZ) compared to the control (vehicle-treated) group. Fold-change values > 2 or < 0.5 and p values < 0.5 are presented in bold.

Gene Symbol	C66 vs. C	Control	B2BrBC \	vs. Control	STZ vs. C	ontrol	C66+STZ	vs. Control	B2BrBC+ Control	-STZ vs.
-	Fold	n_value	Fold	n-value		n_value	Fold	n_v.)	Fold	n_value
	Change	<i>p</i> -value	Change	<i>p</i> -value	Change	<i>p</i> value	Change	p-value	Change	pvarae
Ace	0.86	0.442730	0.68	0.012600	0.77	0.088935	0.76	0.033801	0.54	0.006141
Acly	0.66	0.010746	1.02	0.787558	0.69	0.000010	0.61	0.000211	0.66	0.004857
Aara Ia	1.03	0.895608	1.28	0.220247	1.06	0.751310	0.85	0.520616	1.46	0.440154
Aurus	0.30	0.255909	0.62	0.32924/	0.77	0.223960	0.70	0.279599	0.00	0.154059
Agi Al+2	0.58	0.001079	0.02	0.560651	1.02	0.136367	0.40	0.020520	0.39	0.071831
Acn2	1.60	0.180273	1.15	0.303031	1.05	0.540001	1.06	0.559190	1.00	0.018020
Aqp2 Ccl5	2.06	0.177404	3 /1	0.287388	1.07	0.723032	1.00	0.393692	2.00	0.030200
Ccr2	2.00	0.130355	155	0.166872	0.98	0.976489	1.00	0.555150	1.41	0.205077
Cd28	1.03	0.145552	1.55	0.100072	1.05	0.780693	0.99	0.879266	0.88	0.655995
Ceacam1	0.70	0.054003	1.20	0 556547	0.93	0 355188	0.33	0.011859	0.83	0.058206
Cebna	0.52	0.057725	0.70	0.074138	0.69	0.208656	0.49	0.030348	0.57	0.199810
Ctla4	0.96	0.881290	1.34	0.342002	0.81	0.453545	1.84	0.033671	0.88	0.477402
Dpp4	0.95	0.757496	2.27	0.002681	1.36	0.167585	1.67	0.004910	1.39	0.057787
Dusp4	0.59	0.197469	1.38	0.316701	1.84	0.020897	0.94	0.715062	1.15	0.585580
Enpp1	0.82	0.120572	1.07	0.362132	0.96	0.408696	0.82	0.082091	0.91	0.532341
Fbp1	1.19	0.544938	3.13	0.028969	1.06	0.801672	0.87	0.640388	1.62	0.235060
Foxc2	1.41	0.287076	1.93	0.127156	1.44	0.212590	1.18	0.547068	1.66	0.248656
Foxg1	1.13	0.333362	1.21	0.047722	0.91	0.379301	0.98	0.884438	0.96	0.811652
Foxp3	0.76	0.349245	1.14	0.702804	1.13	0.731756	0.99	0.820356	1.03	0.988344
G6pc	1.09	0.720966	1.32	0.478108	1.49	0.354522	1.14	0.585436	1.29	0.453643
Gcg	0.87	0.683739	0.87	0.737765	1.19	0.432981	1.41	0.255120	1.45	0.016324
Gcgr	0.64	0.001088	0.96	0.649863	0.71	0.000149	0.55	0.000306	0.64	0.007554
Gck	0.69	0.099628	1.19	0.355280	0.73	0.022677	0.71	0.034491	0.68	0.097336
Glp1r	0.65	0.050496	1.03	0.746911	0.67	0.008319	0.69	0.018188	0.70	0.012411
Gpd1	0.41	0.011142	0.85	0.537167	0.82	0.169227	0.45	0.008268	0.54	0.047204
Gsk3b	0.75	0.010919	1.15	0.290661	0.92	0.372670	0.86	0.119423	0.88	0.121921
Hmox1	0.60	0.353025	1.00	0.927224	1.49	0.007334	0.82	0.188128	1.24	0.296712
Hnf1b	0.72	0.125941	1.03	0.797553	0.97	0.786766	0.77	0.142314	0.85	0.447554
Hnf4a	0.66	0.064131	1.03	0.855754	1.32	0.142394	1.03	0.895824	1.09	0.667833
Icam1	0.47	0.065303	0.67	0.114651	1.99	0.030221	0.59	0.084799	0.71	0.328419
Ide	0.90	0.048591	1.12	0.018722	1.03	0.559083	1.04	0.211721	1.05	0.097344
Ifng	1.21	0.408012	1.85	0.120916	1.11	0.622035	0.98	0.850364	1.70	0.059380
lgfbp5	0.46	0.007832	0.69	0.060393	0.53	0.009323	0.32	0.001818	0.25	0.001006
IKDKD	0.69	0.063061	1.02	0.859011	1.10	0.400231	0.79	0.08/519	0.85	0.388303
1110	1.76	0.086002	1.81	0.114208	1.24	0.260525	1.85	0.012202	1.25	0.304901
II I ZD	0.84	0.001/94	1.07	0.009517	1.39	0.009219	1.08	0.459828	1.38	0.125/41
114ru 116	0.00	0.230954	1.03	0.929777	1.14	0.4/3080	0.70	0.144839	1.05	0.337033
llo Inppl1	0.65	0.400021	1.30	0.346674	1.55	0.221030	1.50	0.290750	0.01	0.239274
Inppi I Inc 1	0.05	0.179018	1.21	0.357048	0.40	0.091200	0.95	0.382230	0.51	0.059004
Ins I Irc 1	0.58	0.003111	1.10	0.135505	0.45	0.0002-2	0.03	0.565200	1.05	0.155805
Irs7	0.72	0.156438	0.91	0.123343	0.55	0.126648	0.34	0.303200	0.74	0.193982
Mank14	0.05	0.052746	1.00	0.975839	0.70	0.609653	0.77	0.033741	0.74	0.085597
Mank8	0.65	0.052740	1.00	0.979035	0.55	0.003033	0.70	0.033741	1.73	0.360564
Neurod 1	0.74	0.059552	1.17	0.387047	0.64	0.006813	0.78	0.016862	0.77	0.036818
Nfkb1	0.59	0.047018	0.89	0.311464	0.93	0.492048	0.63	0.013998	0.63	0.082886
Nkx2-1	0.89	0.997843	1.57	0.016983	0.76	0.138025	0.69	0.223792	0.63	0.059658
Nos3	0.98	0.823836	1.38	0.060441	1.26	0.248340	1.07	0.603255	1.16	0.327359
Nrf1	0.77	0.178845	1.19	0.206341	0.81	0.252873	0.82	0.308709	0.90	0.599837
Nsf	0.83	0.191326	1.24	0.077846	0.91	0.208471	0.99	0.918093	0.92	0.331094
Parp1	0.93	0.078363	1.16	0.251165	0.81	0.008695	0.83	0.057211	0.81	0.074437
Pdx1	0.92	0.483720	1.40	0.157848	0.80	0.015305	0.87	0.160912	0.94	0.702784

Gene Symbol	C66 vs. C	Control	B2BrBC v	rs. Control	STZ vs. C	ontrol	C66+STZ	vs. Control	B2BrBC+ Control	-STZ vs.
	Fold Change	p-value	Fold Change	p-value	Fold Change	p-value	Fold Change	p-value	Fold Change	p-value
Pik3cd	0.62	0.243153	1.68	0.115791	1.24	0.402723	0.94	0.841720	1.00	0.975893
Pik3r1	0.94	0.742685	1.40	0.043085	1.01	0.977925	1.14	0.272004	1.23	0.096017
Ppara	0.87	0.057084	1.25	0.098647	0.82	0.047848	0.89	0.009824	0.91	0.184816
Pparg	0.87	0.726373	1.26	0.092874	0.87	0.408909	0.85	0.460622	1.08	0.660362
Ppargc1a	1.06	0.509539	1.30	0.031855	0.84	0.008754	1.18	0.030581	1.37	0.006090
Ptpn1	0.77	0.007293	1.00	0.985874	0.95	0.394977	0.88	0.070411	0.81	0.040062
Pygl	0.88	0.258615	0.91	0.332646	0.73	0.013445	0.75	0.013689	0.76	0.136160
Rab4a	1.09	0.514078	1.21	0.142778	0.79	0.068140	1.03	0.814686	1.01	0.928856
Retn	2.01	0.003905	2.16	0.045615	1.60	0.057052	1.65	0.069623	2.48	0.050720
Sell	1.35	0.436817	1.69	0.138067	1.05	0.780693	1.91	0.219637	1.90	0.129263
Serpine1	0.41	0.214996	0.48	0.072792	1.24	0.461237	0.23	0.030061	0.43	0.069495
Slc14a2	1.22	0.489476	1.48	0.137891	0.76	0.787523	1.38	0.170504	1.47	0.087868
Slc2a4	0.45	0.012590	0.75	0.220971	0.93	0.661803	0.55	0.024100	0.52	0.072572
Snap23	1.18	0.144446	1.25	0.007938	0.93	0.356643	1.12	0.257316	1.17	0.085628
Snap25	1.12	0.206643	1.82	0.029822	0.87	0.116280	1.16	0.166500	1.39	0.036873
Sod2	1.00	0.959722	1.18	0.022647	0.90	0.179794	1.05	0.326960	1.01	0.843811
Srebf1	0.46	0.009925	0.71	0.116093	0.69	0.125908	0.50	0.016544	0.39	0.008837
Stx4	0.83	0.015986	1.16	0.092330	0.99	0.747363	0.88	0.027464	0.99	0.795585
Stxbp1	0.64	0.016286	1.11	0.454667	0.80	0.089751	0.70	0.013669	0.71	0.030191
Stxbp2	0.91	0.248381	1.18	0.067470	0.95	0.312381	0.98	0.809537	0.94	0.665842
Stxbp4	0.86	0.269574	1.31	0.082042	0.74	0.097190	0.80	0.227806	1.00	0.932379
Tgfb1	0.62	0.194598	0.64	0.022367	0.98	0.795431	0.58	0.035384	0.52	0.053447
Tnf	1.11	0.942151	2.34	0.221168	2.25	0.266468	1.36	0.764550	1.62	0.488268
Tnfrsf1a	0.69	0.287684	0.97	0.710123	0.95	0.577966	0.71	0.112078	0.67	0.309384
Tnfrsf1b	0.41	0.075302	0.71	0.141067	1.12	0.647023	0.63	0.116084	0.62	0.254798
Trib3	0.66	0.301035	0.87	0.326694	1.08	0.361411	0.75	0.019842	0.79	0.219030
Ucp2	0.61	0.013221	1.10	0.509814	1.07	0.362418	0.73	0.010536	0.67	0.026954
Vamp2	0.98	0.960239	1.35	0.088734	0.85	0.006724	1.02	0.673251	0.96	0.903868
Vamp3	0.99	0.979856	1.21	0.035102	0.79	0.029184	0.89	0.347198	1.05	0.625692
Vapa	1.08	0.487961	1.28	0.006550	0.87	0.097195	1.05	0.622438	1.21	0.280580
Vegfa	0.78	0.378512	0.93	0.416924	0.59	0.002975	0.65	0.014474	0.70	0.023679

Tabl	e 3	(continued)
------	-----	------------	---

Table 4

Modulation of diabetes-associated genes in RIN-m cells. Data are calculated as fold-change of treatment (C66+STZ, or B2BrBC+STZ) compared to the STZ group. Fold-change values > 2 or < 0.5 and p values < 0.5 are presented in bold.

Gene symbol	C66+STZ vs. STZ		B2BrBC+STZ vs. STZ	
	Fold change	p-Value	Fold change	p-value
Ace	0.98	0.782438	0.70	0.056778
Acly	0.88	0.067158	0.96	0.759243
Adra1a	0.80	0.429704	1.37	0.472744
Adrb3	0.99	0.989412	0.88	0.410985
Agt	0.51	0.040259	0.50	0.191418
Akt2	0.81	0.115918	0.83	0.351331
Aqp2	0.99	0.842351	1.75	0.196464
Ccl5	1.16	0.674455	1.33	0.464351
Ccr2	1.28	0.519685	1.44	0.334970
Cd28	0.94	0.951886	0.84	0.546277
Ceacam1	0.78	0.012352	0.89	0.116948
Cebpa	0.71	0.308948	0.82	0.764824
Ctla4	2.26	0.014371	1.09	0.782794
Dpp4	1.22	0.360294	1.02	0.995298
Dusp4	0.51	0.007186	0.63	0.078481

Table 4 (continued)

Gene symbol	C66+STZ vs. STZ		B2BrBC+STZ vs. S	στz
	Fold change	p-Value	Fold change	<i>p</i> -value
Enpp1	0.86	0.128236	0.95	0.769316
Fbp1	0.83	0.509380	1.54	0.268827
Foxc2	0.82	0.797415	1.15	0.648132
Foxg1	1.08	0.669006	1.05	0.697111
<i>Foxp3</i>	0.87	0.127724	0.91	0.668050
G6pc	0.77	0.457808	0.87	0.867046
Gcg	1.18	0.615479	1.21	0.495689
Gcgr	0.77	0.008918	0.89	0.364340
Gck	0.97	0.783192	0.92	0.789639
Glp1r	1.04	0.649724	1.05	0.485572
Gpd1	0.55	0.006428	0.66	0.119709
Gsk3b	0.94	0.471547	0.95	0.523059
Hmox1	0.55	0.002303	0.83	0.361476
Hnf1b	0.79	0.129962	0.88	0.509003
Hnf4a	0.78	0.087534	0.82	0.392577
Icam1	0.30	0.004890	0.36	0.013435
Ide	1.01	0.918710	1.02	0.701508
lfng	0.89	0.905658	1.54	0.129612
Igfbp5	0.60	0.048454	0.48	0.015412
IKDKD	0.72	0.008403	0.//	0.141287
II IU 1125	1.50	0.078304	1.01	0.929047
ll 12D Il 4ra	0.78	0.096056	1.00	0.904880
1141 u 116	0.02	0.003002	1.27	0.076230
lio Innnl1	0.98	0.907015	1.27	0.300440
Inppi I Inc1	122	0.208855	1.57	0.304/43
IIISI Irc1	0.00	0.002043	1.57	0.200811
Irs?	0.99	0.846850	0.96	0.884641
Mank14	0.84	0.165783	0.80	0.216964
Mapk1 Mapk8	158	0 297950	2.27	0.059805
Neurod1	1.22	0.038389	1.21	0.115533
Nfkb1	0.68	0.032327	0.68	0.147947
Nkx2–1	0.90	0.801834	0.82	0.309017
Nos3	0.85	0.327970	0.92	0.592540
Nrf1	1.01	0.950017	1.11	0.592199
Nsf	1.09	0.313035	1.00	0.970572
Parp1	1.02	0.756985	1.00	0.980363
Pdx1	1.09	0.317388	1.17	0.253820
Pik3cd	0.76	0.277712	0.81	0.473043
Pik3r1	1.12	0.099242	1.22	0.024235
Ppara	1.09	0.312078	1.11	0.310441
Pparg	0.98	0.964359	1.24	0.313684
Ppargc1a	1.40	0.002691	1.63	0.001441
Ptpn1	0.93	0.321868	0.86	0.133497
Pygi	1.02	0.766786	1.04	0.757399
Rab4a Data	1.31	0.070675	1.27	0.146886
Reth	1.03	0.856782	1.55	0.184355
Sell Somino1	1.82	0.249638	1.81	0.162207
Serpiner Sici/a2	1.81	0.255000	1.02	0.186128
Slc2a4	0.59	0.233333	0.56	0.00120
Snan23	120	0 160331	125	0.065766
Snap25 Snap25	133	0.046461	1.20	0.016673
Sod2	1.55	0.077522	112	0133450
Srehf1	0.73	0 178899	0.57	0.067244
Stx4	0.89	0.036290	1.00	0.950339
Stxbp1	0.88	0.170383	0.88	0.302448
Stxbp2	1.03	0.630033	0.99	0.969908
Stxbp4	1.08	0.607812	1.35	0.187497

Table 4 (continued)

Gene symbol	C66+STZ vs. STZ		B2BrBC+STZ vs. S	TZ
	Fold change	p-Value	Fold change	<i>p</i> -value
Tgfb1	0.60	0.017564	0.53	0.040951
Tnf	0.60	0.264906	0.72	0.459048
Tnfrsf1a	0.75	0.191680	0.71	0.406916
Tnfrsf1b	0.57	0.111778	0.56	0.192562
Trib3	0.70	0.001330	0.73	0.095757
Ucp2	0.68	0.004035	0.63	0.013637
Vamp2	1.20	0.033369	1.13	0.396985
Vamp3	1.13	0.247775	1.33	0.030829
Vapa	1.20	0.119955	1.39	0.121049
Vegfa	1.10	0.329474	1.17	0.145781

Limitations

This study is limited by its use of an *in vitro* model of rat pancreatic RIN-m cells, which may not fully replicate the gene expression patterns found in diabetic patients or animal models. Furthermore, while the data provide insights into gene modulation by MACs, C66 and B2BrBC, the translation of these findings to clinical applications requires further validation through *in vivo* studies.

Ethics Statement

The authors have read and followed the ethical requirements for publication in Data in Brief and confirmed that the current work does not involve human subjects, animal experiments, or any data collected from social media platforms.

Credit Author Statement

Conceptualization: R.S., N.H.-P., J.B., M.M., D.A.; Data curation: R.S., S.V.; Formal analysis: R.S., D.A.; Resources: D.A., L.P.; Writing - original draft, R.S., D.A., N.H.-P.; Writing - review & editing, R.S., D.A., N.H.-P., L.P.

Data Availability

Expression of diabetes-related genes in rodent β -cell line (RIN-m) treated with monocar bonyl curcumin analogues (C66 and B2BrBC) in presence or absence of streptozotocin – PCR array data (Original data) (Mendeley Data).

Acknowledgments

Funding was provided by Gerald J. and Dorothy R. Friedman New York Foundation for Medical Research, and Donald and Barbara Zucker LHH/MEETH Grant.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- F.F. Cox, et al., Protective effects of curcumin in cardiovascular diseases-impact on oxidative stress and mitochondria, Cells 11 (3) (2022), doi:10.3390/cells11030342.
- [2] P. Dulbecco, V. Savarino, Therapeutic potential of curcumin in digestive diseases, World J. Gastroenterol. 19 (48) (2013) 9256–9270, doi:10.3748/wjg.v19.i48.9256.
- [3] P. Joshi, et al., Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: a review of molecular pathways, Phytother. Res. 36 (8) (2022) 3143–3180, doi:10.1002/ptr.7522.
- [4] M.A. Tomeh, R. Hadianamrei, X. Zhao, A review of curcumin and its derivatives as anticancer agents, Int. J. Mol. Sci. 20 (5) (2019), doi:10.3390/ijms20051033.
- [5] D.-W. Zhang, M. Fu, S.-H. Gao, J.-L. Liu, Curcumin and diabetes: a systematic review, Evid. Complement. Alternat. Med. 2013 (2013) 636053, doi:10.1155/2013/636053.
- [6] S.C. Gupta, S. Patchva, B.B. Aggarwal, Therapeutic roles of curcumin: lessons learned from clinical trials, AAPS J. 15 (1) (2013) 195-218, doi:10.1208/s12248-012-9432-8.
- [7] Z. Liu, et al., Synthesis and biological evaluation of allylated and prenylated mono-carbonyl analogs of curcumin as anti-inflammatory agents, Eur. J. Med. Chem. 74 (2014) 671–682, doi:10.1016/j.ejmech.2013.10.061.
- [8] R. Stojchevski, et al., Expression of diabetes-related genes in rodent β-cell line (RIN-m) treated with monocarbonyl curcumin analogues (C66 and B2BrBC) in presence or absence of streptozotocin PCR array data, Mendeley Data 1 (2022), doi:10.17632/vdgz7pk6vh.1.
- [9] V. Poitout, D. Hagman, R. Stein, I. Artner, R.P. Robertson, J.S. Harmon, Regulation of the insulin gene by glucose and fatty acids, J. Nutr. 136 (4) (2006) 873–876, doi:10.1093/jn/136.4.873.
- [10] G. Solinas, B. Becattini, JNK at the crossroad of obesity, insulin resistance, and cell stress response, Mol. Metab. 6 (2) (2017) 174–184, doi:10.1016/j.molmet.2016.12.001.
- [11] J.H.M. Yung, A. Giacca, Role of c-Jun N-terminal Kinase (JNK) in obesity and Type 2 diabetes, Cells 9 (3) (2020) 706, doi:10.3390/cells9030706.
- [12] G. Liang, et al., Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin, Chem. Pharm. Bull. (Tokyo). 56 (2) (2008) 162–167, doi:10.1248/cpb.56.162.
- [13] Y. Zhang, K.-L. Pan, F. He, L.-F. Chen, Z.-G. Liu, G. Liang, Crystal structure of (2E,6E)-2,6-bis[2-(trifluoromethyl)benzylidene]cyclohexanone, C22H16F6O, Z. Krist. - New Cryst. Struct. 230 (3) (2015) 271–272, doi:10.1515/ncrs-2015-0009.