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Network-Wide Screen Identifies Variation of Novel
Precise On-Module Targets Using Conformational
Modudaoism

Bing Li1,2,3, Jun Liu1, Yanan Yu1, Pengqian Wang4, Yingying Zhang5, Xumin Ni6, Qiong Liu1, Xiaoxu Zhang1, Zhong Wang1 and
Yongyan Wang1*

Modular targeting is promising in drug research at the network level, but it is challenging to quantificationally identify the
precise on-modules. Based on a proposed Modudaoism (MD), we defined conserved MD (MDc) and varied MD (MDv) to
quantitatively evaluate the conformational and energy variations of modules, and thereby identify the conserved and
discrepant allosteric modules (AMs). Compared to the Zsummary, MDc/MDv got an optimized result of module preserved ratio
and modular structure. In the mice anti-ischemic networks, 3, 5, and 1 conserved AMs as well as 4, 1, and 3 on-modules of
baicalin (BA), jasminoidin (JA), and ursodeoxycholic acid (UA) were identified by MDc and MDv, 5 unique AMs and their
characteristic actions were revealed. Besides, co-immunoprecipitation (Co-IP) experiments validated the representative
modular structure. MDc/MDv method can quantitatively define the conformational variations of modules and screen the
precise on-modules network-wide, which may provide a promising strategy for drug discovery.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 16–25; doi:10.1002/psp4.12253; published online 20 November 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Modular targeting is promising in drug research at

the network level, but it is challenging to quantification-

ally identify the precise on-modules.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Based on a proposed MD, we defined MDc and MDv

to quantitatively evaluate the conformational and energy

variations of modules, and thereby identify the con-

served and discrepant AMs.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� The MDc/MDv methods can quantitatively screen the
precise on-modules, which outperform the existing
method. On-module screening revealed unique AMs of
BA, JA, and UA in ischemia treating.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The MD-based method may help to explore the ther-
apeutic target modules rather than independent gene
or protein in drug discovery. In addition, this module-
centric analysis may provide a promising strategy for
pharmacological research and disease therapy.

Modular targeting that goes beyond individual genes is criti-

cal to clarify the flexible mechanisms of drugs from a system-

atic point of view.1 Several studies have integrated biological

network and gene expression data to identify the module bio-

markers or targets in cancers and other complex diseases,2–6

but it is still challenging to quantificationally measure the

topological structural and energy variations of modules, so as

to identify the precise on-modules. In response to diverse

drug therapies, the network structure may alter, and modular

allosterism and rewiring may be triggered.7,8 The intramodu-

lar structure and energy transformation in a holistic network

system should have its inherent balancing and coordination

rule, which are analogous to the Yin and Yang activity in Chi-

nese philosophical law of “Daoism,” and quantitative indica-

tors for this modular level variation are needed. We defined

the degree of modular structural and energy variations under

different conditions as Modudaoism (MD), which may quanti-

tatively reflect the dynamic drug sensitivity and mechanisms

at the network module level.
Compared with various types of module detection algo-

rithms,9 there are few methods for module evaluation,10 such
as identification of target modules. Biological experiment-
based module evaluation methods are merely applicable for
small modules that consist of only a few nodes. Previous
methods viewed gene expression level as their features for
identifying drug-related modules, but neglected the topologi-
cal structural rewiring of modules.11,12 A Jaccard’s similarity
coefficient-based method of SimiNEF has been proposed to
determine the topological variations in different compound-
dependent protein-protein interaction (PPI) networks.13 The
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integrated Zsummary index can assess whether modules are
preserved under different conditions, but it is dependent on
module size and there is a lack of internal module quality
assessment.14 Methods for identifying conserved or charac-
teristic allosteric modules (AMs) based on topological varia-
tion are not yet available.

Our previous studies showed that baicalin (BA), jasminoi-
din (JA), and ursodeoxycholic acid (UA) had both similar
and differential pharmacological mechanisms in treating
cerebral ischemia at the pathway and network levels.15–17

A Zsummary-based method was selected to identify the con-
vergent or divergent modules, but the internal quality of
modules was not considered.18 In this paper, based on the
novel concept of MD, we proposed conserved MD (MDc)
and varied MD (MDv) values to quantitatively discriminate
the conserved and discrepant AMs of BA, JA, and UA in
mice anti-ischemic gene co-expression networks, so as to
further elucidate and compare their pharmacological
mechanisms.

MATERIALS AND METHODS
MDc and MDv module discrimination methods
In order to quantitatively define the conformational and
energy variations of modules in networks, based on the
MD concept, we proposed the optimized MDc value and
MDv values by integrating the statistic Zsummary

14 and topo-
logical entropy e(G)19 (Supplementary Text S1). The
Zsummary is an external module screening index composed
of four statistics related to density and three statistics
related to connectivity, which can quantitatively assess
whether modules defined in a reference data set are pre-
served in a test dataset. However, Zsummary is more or less
dependent on module size (Figure 1a), which means that
larger modules are more likely to be supposed as pre-
served. In addition, e(G) is an information-theoretic index
to assess the modularity of a graph, and lower entropy
indicates that the module has more inner links and less
outer links, so it can measure the cluster quality effectively.
As no test data are needed, e(G) is an internal module

Figure 1 (a,b) Correlation between Zsummary/e(G) (y-axis) and module size (x-axis) using GSE4882 as an example. (c) The slope fit
value (y-axis) between Zsummary/e(G) and module size in 20 datasets. The red line represents their mean value. (d,e) The conserved
Modudaoism (MDc)/varied Modudaoism (MDv) values of the predefined preserved modules (in red circle) or discrepant modules (in
blue triangle) in simulation scenario 1.
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evaluation index and it also has positive correlation with
module size (Figure 1b).14

Zsummary
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In view of the characteristics of Zsummary and e(G)
(Eqs. 1 and 2), a combination of these two complementary
methods would be optimal. Therefore, we proposed the
MDc value to identify preserved modules and the MDv
value to define discrepant AMs. By computing the correla-
tion slopes of Zsummary and e(G) to module size in multiple
datasets to estimate their respective weights, the extent of
module size contributing to Zsummary and e(G) can be
determined.

In 20 gene expression datasets (Supplementary Table S1),
the average correlation slopes of Zsummary and e(G) to mod-
ule size were 0.18 and 0.56, respectively, at a ratio of �1:3
(Figure 1c). Based on this contribution ratio, the weights of
Zsummary and e(G) were set at 3 and 1, respectively. In order
to screen the significantly preserved modules, a larger posi-
tive Zsummary and a smaller e(G) were expected, so the MDc
value was defined as Eq. 3:

MDc5
3
4

Zsummary2
1
4

eðGÞ (3)

On the other hand, in order to identify the significantly var-
ied modules (AMs) under different conditions, such as pre-
treatment and post-treatment modules, a smaller negative
Zsummary and a smaller e(G) were expected, so the MDv
value was defined as Eq. 4:

MDv5
3
4

Zsummary1
1
4

eðGÞ (4)

Cutoff value of MDc and MDv
To quantitatively discriminate between preserved and dis-
crepant AMs, we designed different simulation scenarios to
determine the thresholds of MDc and MDv values. Three
scenarios with different numbers of genes, modules, and
sizes were designed: (1) 100 samples, 2,000 genes with 20
homogeneous size modules in the reference network;
(2) 100 samples, 10 modules with varied sizes in the refer-
ence network, randomly generating 1,680 genes; and (3) 100
samples, 20 modules with varied sizes in the reference net-
work, randomly generating 2,964 genes. For each scenario,
one-half of the modules were simulated to be preserved in
the test network, whereas the other half was not preserved.
The simulated datasets were generated by the functions in
the weighted gene co-expression network analysis (WGCNA)
R software package20 (Supplementary Text S1). Each
module is simulated around a randomly chosen “seed
eigenmode,” in-module nodes are set to varied intramodular
correlation levels. An empirical higher intramodular correlations

(tightly coexpressed) are assigned to the preserved modules,

as for the nonpreserved modules, they are expected to be

zero.
In all of the three simulation scenarios, MDc/MDv per-

formed well in distinguishing preserved from nonpreserved

modules. The level of MDc/MDv that can differentiate

between the predefined preserved and discrepant AMs was

selected as the cutoff value. In scenario 1, the lowest MDc

value of preserved module was 2.01, the highest MDc

value of unpreserved module was 20.15 (Figure 1d), and

the lowest MDv value of unpreserved module was 0.29

(Figure 1e). The results of scenarios two and three are

shown in Supplementary Figure S1. Considering all these

values, the following thresholds were defined: modules with

an MDc value >0 were viewed as preserved modules, with

an MDc >2 indicating strong preservation; modules with an

MDv value <0 were considered as discrepant AMs.

Datasets. Twenty spotted DNA/complementary DNA

expression datasets used to calculate the weights of Zsum-

mary and e(G) as well as the preservation ratio of MDc were

obtained from GEO (http://www.ncbi.nlm.nih.gov/geo/) and

ArrayExpress databases (http://www.ebi.ac.uk/arrayex-

press/). The raw gene expression datasets from different

organisms and information about experiment platforms are

shown in Supplementary Table S1. In these datasets, the

sample size ranged from 12–597, and the number of genes

ranged from 374–3,040. As a test dataset was needed for

Zsummary calculation, one half of the samples in each data-

set were selected as reference and the other half as test.
The gene expression data of multicompounds in anti-

ischemia models were derived from our previous studies,21

which was obtained from the ArrayExpress database

(http://www.ebi.ac.uk/arrayexpress/, E-TABM-612). The

datasets of five groups were included in this study: (1) the

sham group; (2) the vehicle group (0.9% NaCl); (3) the BA-

treated group (5 mg/mL); (4) the JA-treated group (25 mg/

mL); and (5) the UA-treated group (7 mg/mL). The proce-

dures of MCAO model preparation, RNA isolation, micro-

array preparation, and gene collections were described

previously.21 Each dataset consisted of 374 cerebral

ischemia-related complementary DNA expression profile

data.

Co-expression module detection and discrimination
The gene co-expression network construction and module

detection were implemented by WGCNA R package.20 The

topological overlap measure and Dynamic Hybrid Tree Cut

algorithm were used to perform average linkage hierarchi-

cal clustering and partition the branches of dendrogram as

modules.22 Proper soft-thresholds were selected for each

dataset when the network met the best scale-free topology

criterion, and the minimum module size was set at three.
For each detected module in the reference datasets, the

MDc and MDv values were calculated. Compared with the

test datasets, modules with an MDc value >0 were defined

as preserved or conserved AMs, with an MDc �2 indicating

strong preservation; and modules with an MDv <0 were

defined as discrepant AMs.
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Conserved and on-module discrimination
For the gene expression datasets of multicompounds in
anti-ischemia models, modules with an MDc value >0 were
considered to be conserved allosteric modules (CAMs)
compared with other groups. Compared with the vehicle
group, modules in the drug groups with an MDv <0 were
considered to be on-modules, representing structural dis-
ruption activated by the drug. If an on-module also had a
negative MDv value compared with any other groups, this
module was defined as a unique allosteric module (UAM)
of this drug, which might reflect its specific mechanisms.

Functional analysis of modules
To characterize the functions of modules, GO and KEGG
pathway enrichment analysis were performed by the Data-
base for Annotation, Visualization, and Integrated Discovery
(DAVID) platform.23 For each module, an over-representation
of a functionally relevant annotation was defined by a modi-
fied Fisher’s exact P value with an adjustment for multiple
tests using the Benjamini method, and GO terms and path-
ways with a P< 0.05 were considered as significant
functions.

Co-immunoprecipitation experimental validation
A representative preserved module in the BA group
(MDc 5 0.97) consisting of JunD, FMO2, and FRAT1
was selected for experimental validation by co-
immunoprecipitation (Co-IP). The edge between JunD and
FMO2 was also observed in BA_9 UAM (MDv 5 20.05).
The Co-IP method can directly test whether two target pro-
teins are combined or not, so as to prove the interaction
relationship of proteins within a module. Standard Co-IP
analyses were performed as described previously.24 In
brief, protein extracts were incubated with the agarose-
conjugated antibodies in Lysis buffer at 48C for 3 hours and
precipitated by centrifugation. The precipitant was washed
4 times and then boiled for 5 minutes in 1 3 SD Sample
buffer. After centrifugation, the supernatant was run on an
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
gel, followed by Western blotting. The antibodies, including
anti-JunD (rabbit, sc-74; SantaCruz), anti-FMO2 (goat, sc-
83827; SantaCruz), and anti-FRAT1 (rabbit, ab108405;
Abcam) were used in the Co-IP experiment.

RESULTS
Preserved module screening by MDc and Zsummary in
20 datasets
To demonstrate the effectiveness of MDc for module
screening, we used MDc to define the preserved modules
in 20 gene expression datasets. All modules were identified
by WGCNA with the same parameter settings as described
in the Methods section. Based on the MDc cutoff value, the
preserved modules were identified from all the datasets,
including that of the BA group in E-TABM-612, which was
originated from our previous studies.20 A preserved module
of BA was selected for Co-IP experimental validation.
The proportions of strong preserved modules (MDc �2;
Zsummary �10) and weak preserved modules (MDc >0;
Zsummary �2) are shown in Figure 2a,b. Compared with
Zsummary, the MDc method resulted in a higher proportion of

strong preserved modules (MDc 5 25.85%; Zsummary 5

17.95%) and a similar proportion of weak preserved mod-

ules (MDc 5 62.50%; Zsummary 5 63.25%; Figure 2c). This

indicated that the MDc method might identify more pre-

served modules than Zsummary.

MDc was less affected by module size than Zsummary

As module size is positively correlated with Zsummary, larger

modules are more likely to be judged as preserved by

Zsummary, but e(G) may adjust this bias, using GSE4882

as an example (Figure 1a,b). In the 20 datasets, the

average linear correlation coefficient R2 between MDc and

module size was 0.51, whereas that between Zsummary

and module size was 0.55 (Figure 2d). This illustrated

that MDc was less affected by module size than Zsummary.

Co-expression modules of BA, JA, and UA
Detection of gene co-expression modules in the BA, JA,

and UA groups were performed by WGCNA, as described

in the Methods section. The network hotmaps of all genes

in the three groups are shown in Supplementary

Figure S2. With the appropriate soft-thresholding for each

group (b 5 4 for BA, 12 for JA, and 8 for UA), hierarchical

clustering procedure obtained 23, 42, and 15 modules in

the BA, JA, and UA groups, respectively. Detailed informa-

tion about the gene members of modules in each group

labeled by colors and numbers can be found in Supple-

mentary Table S2.

MDc-based CAMs of BA, JA, and UA
In order to test the MDc method in common module dis-

crimination for multi-drugs, we used MDc to identity the

CAMs of BA, JA, and UA in anti-ischemia models, which

were originated from our previous study.20 Modules with an

MDc >0 were judged as conserved. Compared with the

vehicle group, the BA group had 3 CAMs (i.e., BA_7,

BA_10, and BA_14), the JA group had 5 CAMs (i.e., JA_7,

JA_16, JA_17, JA_25, and JA_33), and the UA group had 1

CAM (i.e., UA_6). When pairwise comparisons were per-

formed among the 3 drug groups, BA had 6 CAMs as com-

pared with JA and UA, of which BA_6, BA_8, BA_10, and

BA_12 were conserved in all the 3 groups; JA had 3 and 5

CAMs when compared with BA and UA, respectively, of

which JA_16 was conserved in all the 3 groups; UA had 3

CAMs compared with BA, and no CAM was found when

compared with JA. Detailed MDc values of modules in one

drug group when compared with the vehicle and other drug

groups are listed in Supplementary Table S3.
Next, we compared the proportion of CAMs in each

group identified by MDc (>0) and Zsummary (�2). Details

on the proportion of CAMs in each group are shown in

Figure 3a. Except the UA-JA module comparison, MDc

found more CAMs than Zsummary. Among the vehicle and 3

drug groups, the average proportions of CAMs identified by

MDc and Zsummary were 13.6% and 3.5%, respectively

(Figure 3b). Four modules were defined as conserved by

both MDc and Zsummary, and their detailed values and com-

positions are shown in Figure 3c.
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Biological functions of CAMs of each group
GO term and KEGG pathway enrichment analysis were
performed to characterize the biological functions of the
identified CAMs. The number of CAMs and their functions
among in each group are shown in Figure 4. Two modules

(BA_10 and JA_16) were conserved in all the four groups,

but no annotation of function was enriched in both modules.

We listed all of the significantly enriched GO terms and

pathways (P<0.05) in Supplementary Table S4. In the

vehicle group, the enriched GO terms of CAMs included

cytoskeleton organization, protein amino acid phosphoryla-

tion, and regulation of mitochondrial membrane permeabil-

ity; and the enriched KEGG pathways included regulation

of actin cytoskeleton, mitogen-activated protein kinase

(MAPK) signaling pathway, neurotrophin signaling pathway,

amyotrophic lateral sclerosis, and RIG-I-like receptor signal-

ing pathway.

Among the 3 drug groups, 3 modules (BA_6, BA_8, and
BA_12) were commonly conserved, and their enriched GO

functions included phosphorylation, phosphate metabolic
process, and phosphorus metabolic process. The CAMs

between BA and JA (BA_4, BA_11, JA_5, and JA_40) were
most significantly enriched in the GO function of intracellu-
lar signaling cascade and the pancreatic cancer pathway.
The CAMs between BA and UA (BA_13, UA_8, and UA_13)
were most significantly enriched in the GO function of pro-
tein kinase cascade and the KEGG pathways of colorectal
cancer and viral myocarditis. The CAMs between JA and
UA (JA_6, JA_8, JA_31, and JA_42) were most significantly
enriched in the GO function of ATP binding and the long-
term potentiation pathway.

MDv-based discrepant modules of BA, JA, and UA
The co-expression pattern variation of modules might be
reflected by structural rewiring. A negative Zsummary value

Figure 2 (a,b) Comparison of the proportions of strong preserved modules (Zsummary �10, conserved Modudaoism (MDc) �2) and
weak preserved modules (Zsummary �2, MDc >0) in 20 datasets. (c) The average proportions of strong and weak preserved modules
identified by Zsummary and MDc in 20 datasets. (d) The correlation coefficient R2 between Zsummary/MDc and module size in 20
datasets.
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may indicate module disruption,25 but the topological quality
of modules in the network has not been taken into consid-
eration. Thus, we used the MDv value to quantitatively
define modules whose co-expression pattern was signifi-
cantly changed as discrepant modules (significantly
changed modules). With the addition of e(G), the MDv
value was a more stringent criterion than Zsummary.

We compared the proportion of discrepant modules in
each group identified by MDv (<0) and Zsummary (<0).
Details on the number and proportion of discrepant mod-
ules in each group are shown in Figure 5a. Among the
vehicle and 3 drug groups, the average proportion of dis-
crepant modules identified by MDv and Zsummary were
47.9% and 9.9%, respectively (Figure 5b). The discrepant
modules defined by MDv had better topological structural
quality than those defined by Zsummary, and their average
e(G)s were 8.18 and 1.15, respectively (Figure 5c).

MDv-based on-modules and UAMs of BA, JA, and UA
The co-expression pattern variation of modules indepen-
dent of the vehicle group might reflect the pharmacological
actions of the three drugs, so the discrepant modules
between drug and vehicle were responsive. Compared with
the vehicle group, we found 4 (BA_4, BA_6, BA_9, and
BA_19), 1 (JA_35), and 3 (UA_4, UA_8, and UA_12) on-
modules (MDv <0) in the BA, JA, and UA groups,

respectively. Using BA_6 and UA_12 as examples, their
MDv values were 20.46 and 20.39, and their e(G)s were
also small (i.e., 0.37 and 1.51, respectively; Figure 5d).
Modules with a negative Zsummary but a large e(G) were
not judged as on-modules, such as JA_28 and UA_5
(Figure 5e).

Next, we pairwise compared the on-modules among the
three drug groups to screen out the characteristic modules
(UAMs) of each drug, and these unique target modules
may reflect the distinct actions of different drugs in treating
a same disease. The detailed MDv values of modules in
each group are listed in Supplementary Table S3. Among
these on-modules, 2 modules of BA (BA_9 and BA_19), 1
module of JA (JA_35), and 2 modules of UA (UA_4 and
UA_12) were discrepant when compared with the other 2
groups, which were considered the UAMs (Figure 6a).
Among the member genes in the UAMs, Gpx2 and JunD in
BA_9, Htr2c in BA_19, B230120H23Rik in JA_35, and
Dusp10 in UA_12 were significantly differentially expressed
compared with vehicle based on one-way analysis of
variance.

Characteristic functions of BA, JA, and UA in treating
cerebral ischemia
To characterize the divergent biological functions of differ-
ent drugs, we compared the GO functions and pathways of

Figure 3 (a) Comparison of the proportions of conserved allosteric modules (CAMs; Zsummary �2 or conserved Modudaoism
(MDc) >0) among baicalin (BA), jasminoidin (JA), ursodeoxycholic acid (UA), and vehicle (VE) groups. (b) The average proportions of
CAMs identified by Zsummary and MDc in BA, JA, UA, and vehicle groups. (c) The CAMs identified by both Zsummary and MDc.
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the on-modules among the three drug groups. The signifi-
cantly enriched GO terms and pathways of on-modules are
listed in Supplementary Table S4. The BA_4 module was

preserved in the JA group, in which several GO terms, such
as intracellular signaling cascade, regulation of apoptosis,
and regulation of cell death as well as KEGG pathways, such
as phosphatidylinositol signaling system, neurotrophin sig-

naling pathway, and vascular endothelial growth factor sig-
naling pathway were significantly enriched. The UA_8
module was conserved in the BA group, in which protein
kinase cascade was significantly enriched.

As for the UAMs (Figure 6a), Wnt receptor signaling

pathway, negative regulation of nitrogen compound meta-
bolic process, and anterior/posterior pattern formation were
significantly enriched in the BA_9 and BA_19 modules. The
GO term of magnesium ion binding and the pathway of

progesterone-mediated oocyte maturation were significantly
enriched in the JA_35 module. Negative regulation of cellu-
lar component organization, regulation of organelle organi-
zation and regulation of cell cycle were significantly enriched
in the UA_4 and UA_12 modules. These characteristic func-

tions may reveal the specific mechanisms of BA, JA, and UA
in the treatment of cerebral ischemia.

Co-IP experimental validation
First, goat anti-FMO2 was used to assess whether the
FMO2 protein had any interactions with JunD and FRAT1

by Co-IP. Results showed that a heavy chain of antibodies
was found in the negative group and experimental group
(Co-IP), and the JunD and FRAT1 proteins were also found
in the two positive controls (Figure 6b). We then used rab-
bit anti-FRAT1 as the input protein to observe its interaction
with JunD, and the JunD expression was determined by
Western blotting (Figure 6c). Our findings revealed that
FMO2, JunD, and FRAT1 interacted with one another, and,
thus, the modular structural relationship was demonstrated.

DISCUSSION

Considering the modular basis of diseases or drug interven-
tion networks, changes in modular topology or network rewir-
ing could better reflect the actions of drugs.26–28 In the
modular pharmacological paradigm, module evaluation or
target module identification according to modular topological
variation is regarded as a critical step. Structural variation
necessarily causes energy fluctuation in a biomolecular sys-
tem, such as human chromosomes, proteins, or PPIs,29–31

and, thus, energy variation of a module is another factor to
be considered. This study proposed an optimized MD-based
method to quantitatively evaluate the topological structural
and energy variations under different conditions. Compared
with Zsummary, the MDc/MDv value was less affected by mod-
ule size with a better topological quality of modules. When

Figure 4 The number of conserved allosteric modules in baicalin (BA), jasminoidin (JA), ursodeoxycholic acid (UA), and vehicle (VE)
groups and their significant biological functions. The top five significantly enriched GO terms and KEGG pathways of the unique allo-
steric modules (UAMs) are listed. The venn diagram in the middle indicates the group that the UAM belongs to. MAPK, mitogen-
activated protein kinase; VEGF, vascular endothelial growth factor.
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used for comparison of multiple compounds, MDc/MDv can

effectively discriminate between CAMs and UAMs of BA, JA,

and UA, so as to reveal the diverse drug-induced co-expres-

sion patterns and elucidate the pharmacological effects of

drugs from the modular perspective.
As a module is generally considered as a closely linked

unit to perform biological functions at the network level,

drug-induced network rewiring may lead to changes in

modular structure.7 The equilibrium in a biomolecular sys-

tem results from a balance between energy and

entropy,32–34 and entropy-driven structural and energy var-

iations may be a critical factor to identify the active modules

in biological networks. Many previous studies have dis-

cussed the conserved gene expressions35 or modules,36–39

but few methods have been exploited to measure the struc-

tural and energy variations of modules. Methods based on

overlapping nodes or edges may not reflect the modular

topological properties globally,40,41 and optimized models

are required to quantitatively evaluate module variation

from a topological structure and energy perspective. In this

case, the MDc/MDv method may provide a novel framework

to explore drug’s modular targets and compare the actions

of multiple drugs in disease treatment.
Based on the MDc value, more CAMs in BA, JA, and UA

were identified than the Zsummary-based method.18 Some

modules were consistently defined as CAMs by both meth-

ods, such as the BA_8, JA_5, and UA_6 modules. Among

them, the BA_8 module was conserved in all the 3

compound groups, and its functions involved regulation of

apoptosis and cell death, transcription activator activity,

MAPK, neurotrophin signaling pathway, etc. These functions

were shown to be closely related to cerebral ischemia and

also consistent with the findings from our previous stud-

ies.18,42 As for other CAMs in the three compound groups,

the phosphorylation process was significantly enriched,

which was a basically pathologic process in cerebral ische-

mia.42 These CAMs between different drugs reflect their

common or synergetic pharmacological actions in treating a

disease.
With the integration of network entropy index, the MDv

value used for on-module identification was considered a

more stringent criterion, so fewer on-modules were identi-

fied by MDv, but the reduced entropy represented better

modular structure.19 According to the MDv value, the on-

modules and characteristic UAMs of different drugs may

help to elucidate their specific or unique actions. In the on-

module of BA_4, anti-apoptosis and regulation of apoptosis

functions were enriched, consistent with our previous find-

ings that BA had anti-oxidative and anti-apoptotic actions to

exert neuroprotective effects.43 Among the UAMs of BA,

JA, and UA, no overlap of enriched GO terms and path-

ways was found, indicating the characteristic role of UAMs.

In the UAMs of all three drugs, cerebral ischemia-related

functions were consistently enriched, such as Wnt signaling

pathway in BA,44,45 magnesium ion binding in JA,46 and

negative regulation of apoptosis in UA.47,48 Besides, other

Figure 5 (a) Comparison of the proportions of differential modules (Zsummary <0 or varied Modudaoism (MDv) <0) among baicalin
(BA), jasminoidin (JA), ursodeoxycholic acid (UA) and vehicle (VE) groups. (b) The average proportions of differential modules identi-
fied by Zsummary and MDv in the four groups. (c) The average e(G) of differential modules in the four groups. (d) The sample on-
modules with negative MDv and Zsummary values as well as a small e(G). (e) The sample modules with a negative Zsummary value but a
large e(G), which were not identified as on-modules.
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functions that were also found related to the three compounds
need to be confirmed by further studies, such as negative
regulation of nitrogen compound metabolic process in BA,

progesterone-mediated oocyte maturation in JA, and regula-

tion of cellular component organization in UA.
Although several attempts have been made to optimize the

identification of target on-modules, this study still has some

limitations. As the samples and gene numbers in microarray

were relatively small, the modular connectivity might be inad-

equate. In addition, regulation of biological networks should

be a dynamic process,49,50 and, thus, the dynamic factor

should also be considered when characterizing modular

topological transformation, such as environmental changes,

different time series, or evolutionary processes.
In summary, the MD-based method is effective in quanti-

tatively discriminating between the CAMs and UAMs in mul-
tiple network comparison. The UAMs of BA, JA, and UA

identified by MDc/MDv values revealed their divergent and

characteristic actions in treating cerebral ischemia, such as

negative regulation of nitrogen metabolism and Wnt signal-

ing pathways of BA, magnesium ions binding and the

progesterone-mediated oocyte maturation pathway of JA,

and regulation of cell organization, organ organization, and

cell cycle of UA. This MD-based modular analysis may pro-

vide a unique and promising strategy for pharmacological

research and development.
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Figure 6 (a) The unique allosteric modules of baicalin (BA), jasminoidin (JA), ursodeoxycholic acid (UA), and their significant biological
functions. The top five significantly enriched GO terms and KEGG pathways are listed. (b,c) The interactions among JunD, FMO2, and
FRAT1 as determined by co-immunoprecipitation. 1 and 2 5 input the samples; 3 5 loading buffer; 4 and 5 5 input the negative immu-
noglobulin G (IgG); 6 5 loading buffer; 7 and 8 5 input the positive antibody.
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