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Despite substantial progress in oncology, lung cancer remains the number
one malignancy in terms of both incidence and mortality rates, and there thus
remains an urgent need for new therapeutic alternatives. MicroRNA
(miRNA) have an important role in cancer initiation and progression due to
their capacity to interfere with transcriptional signaling and regulate key cel-
lular processes. miR-181a and miR-181b (miR-181a/b), which are located on
chromosomes 1 and 9, are pathologically expressed in the tumor tissue and
plasma of patients diagnosed with lung cancer. The miR-181a/b regulatory
mechanisms are sophisticated and are directly related to different target
genes. In recent years, an ever-increasing number of studies have focused on
the biological relevance of miR-181a/b in key cellular processes. In this
paper, we aim to discuss the challenging experimental data related to miR-
181a/b and their potential use for the development of new therapeutic
approaches in lung cancer. We will further present the ongoing issues regard-
ing the regulation of their multiple target genes, and their potential use as
biomarkers and therapeutic targets in this deadly malignancy.

1. Introduction

Lung cancer is the most frequent cause of death for
patients diagnosed with cancer worldwide, and is
responsible for approximately 18.4% of the total can-
cer deaths in both sexes (Bray et «l., 2018; Didkowska

Abbreviations

et al., 2016). The mortality and incidence ratios in
both developed and developing countries (Bray et al.,
2018) are affected by the presence of various risk fac-
tors, the efficiency of the diagnostic methods, and/or
the treatment accessibility (Bray et al., 2018; Choi
et al., 2017). There are two histological subtypes of
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lung cancer: small cell lung cancer (SCLC, 15%) and
non-SCLC (NSCLC, 85%) (Herbst et al., 2018; Liu
et al., 2016). The most common NSCLC subtypes are
lung adenocarcinoma (ADC) and squamous cell carci-
noma (SCC; Herbst et al., 2018).

Lung cancer progression is dependent on the tumor
microenvironment and is caused by different factors
(tobacco smoke remains the most relevant, along with
asbestos, arsenic, inorganic arsenic compounds, and
ionizing radiation; Field and Withers, 2012) which
affect the clinical phenotype, the development of bone
and brain metastases, and the response to therapy
(Herbst et al., 2018; Popper, 2016). One major clinical
issue is the lack of early diagnostic and prognostic
markers, together with the absence of specific treat-
ment targets. Therefore, advanced forms of disease are
usually unresponsive to chemotherapy and only
10-15% of patients have a survival rate of over
5 years. The use of checkpoint inhibitors improved the
response rate and survival of some lung cancer
patients (Aguiar et al., 2017; Jain et al., 2018; Thun-
gappa et al., 2017). It is therefore of great interest at
the present time to explore new targeted therapeutic
alternatives or adjuvant systems.

Non-coding RNAs (ncRNAs) are classified based on
their size as small ncRNA (< 200 nucleotides) and long
ncRNA (IncRNA, > 200 nucleotides). The main repre-
sentatives of small ncRNA are microRNAs (miRNAs),
small interfering RNAs (siRNAs), Piwi-interacting
RNAs, and small nucleolar RNAs (snRNAs). There is
growing evidence that deregulated ncRNA have an
important function in the onset and progression of
lung cancer (Berindan-Neagoe et al., 2014; Catana
et al., 2015), contributing to disease prognosis as well,
and regulating the response to therapy (Braicu et al.,
2014; Pan et al., 2017; Volinia et al., 2000).

MiRNA are short non-coding transcripts approxi-
mately 22 nucleotides in length (Braicu et al., 2014;
Calin and Croce, 2006; Redis et al., 2012; Strmsek and
Kunej, 2015). By directly binding RNA from the mes-
senger RNA and ncRNA categories, the function of a
wide range of genes can be regulated through degrada-
tion of the RNA or inhibition of the translational pro-
cesses (Braicu et al., 2015; Catana et al., 2015, 2017,
Cipolla et al., 2018; Irimie et al., 2017a). An essential
mechanistic feature of these transcripts relates to the
partial complementarity to their target genes (Cipolla
et al., 2018); therefore, a miRNA transcript can target
multiple RNAs and a specific RNA can be regulated
by several miRNAs (Berindan-Neagoe and Calin,
2014; Berindan-Neagoe et al., 2017, Braicu et al.,
2014; Calin and Croce, 2006; Pop-Bica et al., 2017,
Sonea et al., 2018). MiRNAs have significant roles in
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all fundamental biological processes (cell differentia-
tion or proliferation, apoptosis, cell cycle progression,
invasion/distant metastasis and immune responses)
(Eastlack and Alahari, 2015; Munker and Calin,
2011).

Alterations in miRNA expression levels are related
to cancer pathogenesis (Chira ez al., 2018; Sevignani
et al., 2007). Generally, the transcripts with a reduced
expression level have a tumor role, whereas overex-
pressed transcripts support oncogenesis (Berindan-
Neagoe et al., 2014; Catana et al., 2015; Irimie et al.,
2017a; Munker and Calin, 2011). Moreover, due to
their high stability, miRNAs can be found in different
biological fluids either as free circulating molecules or
incorporated in extracellular vesicles (e.g. exosomes).
Variations of miRNAs levels in liquid biopsies are
important minimally invasive diagnostic/prognostic
tools and also therapeutic targets (e.g. exosome deple-
tion; Gulei et al., 2018b; Pop-Bica et al., 2018).

Currently, an increasing number of studies focus on
experimental modulation of some miRNAs that are
altered in different tumors to restore their normal
expression level (miRNA inhibition or replacement;
Berindan-Neagoe et al., 2014; Braicu et al., 2014,
Munker and Calin, 2011; Redis et al., 2012; Shah
et al., 2016). In this review, we present an outline of
recent studies on common and specific functions of
miR-181a and miR-181b in lung cancers. A particular
focus is on understanding the role of miR-181a/b in
lung cancer biology in order to facilitate the develop-
ment of novel therapies based on miRNA modulation.

The miR-181 family is highly conserved in different
species (Yang et al., 2014). This family contains four
mature members, of which miR-181a and miR-181b
are located on chromosomes 1 and 9, and miR-181¢c
and miR-181d are clustered on chromosome 19 (Yang
et al., 2017). As a consequence of genome duplication,
miRNA-181a as well as miR-181b, have duplicate
copies in the human genome, and can for this reason
be derived from different precursors (Fig. 1).

miR-181a and miR-181b play diverse roles in regu-
lating key aspects of cellular growth, development,
angiogenesis, invasion, and metastasis in a wide range
of solid tumors, including lung cancers (Xu et al.,
2015). In this malignancy, the expression levels of
miR-181a and miR-181b are decreased, indicating that
depletion of these transcripts may facilitate lung
tumorigenesis or disease progression, and activate drug
resistance mechanisms (Cao et al., 2017; Cipolla et al.,
2018; Liu et al., 2016; Shukla, 2018; Yang et al.,
2013a). The downregulated profile of miR-181a/b in
cancer can be related to the methylation status, as pro-
ven in colorectal cancer (Shi et al., 2018), but no
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B mir-181a-1-chr1:197094796-197094905
d mir-181b-1- chr1:197094625-197094734
s mir-181a-2- chr9:126494542-126494651
fd Mir-181b-2- chr9:126495810-126495898
s mir-181c - chr19:13846513-13846622
jsd Mir-181d - chr19:13846689-13846825

miR-181a-5p AACAUUCAACGCUGUCGGUGAGU
miR-181b-5p AACAUUCAUUGCUGUCGGUGGGU
miR-181c-5p AACAUUCAAC - CUGUCGGUGAGU
GGUGGGU

miR-181d-5p AACAUUCAUUGUUGUC
Cc

hsa-miR-181b-5p

Fig. 1. Localization, sequence and targets of the miR-181 family
family and their sequence; genomic localization of miR-181 family

hsa-miR-181a-5p

members. (A) Chromosomal location of the members of the miR-181
members was done using UCSC genome browser (https://genome.uc

sc.edu). (B) Mir-181 sequences containing the seed region (yellow) that is common for all transcripts. (C) MiR-181a and miR-181b common
validated target genes according to miRtargetLink human database (https://ccb-web.cs.uni-saarland.de/mirtargetlink/).

information regarding possible epigenetic regulation of
the other two transcripts (miR-181c/d) exists at this
moment. Most of the research on lung cancer has cen-
tered on miR-181a/b, probably with the expectation
that the other members (miR-181c and miR-181d)
have similar functions due to their identical seed
sequences.

2. miR-181a/b expression levels in
lung cancer

miR-181a/b are associated with a wide range of tumor
and non-tumor pathologies (metabolic disorders, neu-
rodegenerative or infectious diseases, cardiovascular
pathologies) (An et al., 2017; Sun et al., 2014a). These
two transcripts can have dual roles, depending on dif-
ferent target genes or their mutational status (Seoudi
et al., 2012). Overexpression was observed in breast
(Bisso et al., 2013; Liu et al., 2017), ovarian (Lee
et al., 2012; Li et al., 2016b; Parikh et al., 2014; Xia
and Gao, 2014) and cervical cancer (Chen et al., 2014;
Ke et al., 2013; Xu et al., 2016), whereas miR-181a/b
are generally downregulated in lung cancer (Cao et al.,
2017; Cinegaglia et al., 2016; Huang et al., 2015; Liu
et al., 2016; Ma et al., 2015; Tian et al., 2016; Wang
et al., 2015a; Yang et al., 2013a) and glioblastoma

(Ayala-Ortega et al., 2016; He et al., 2016; Lakomy
et al., 2011; Shi et al., 2008; Slaby et al., 2010; Sun
et al., 2014b; Zhang et al., 2012; Zhi et al., 2014).
Moreover, the expression levels of these transcripts are
often cell type-specific and, in some cases, transitory
or consistent with the degree of cell differentiation
(Chu et al., 2015; Zhang et al., 2017D).

The expression levels of these two transcripts in lung
cancer are related to clinico-pathological characteris-
tics (Table 1) (Gao et al., 2010; Ma et al., 2015).
Decreased expression levels were confirmed in a meta-
analysis study on NSCLC, further correlated with
patient survival rate (Pop-Bica et al., 2018). miR-181a/b
are associated not only with an unfavorable survival
but also with TNM staging (Gao et al., 2010; Liu
et al., 2016; Wang et al., 2015a; Yang et al., 2013a).
MiR-181b expression alone is related to overall sur-
vival (OS) and disease-free survival (DFS) for NSCLC
(Wang et al., 2015a; Yang et al., 2013a). Distant
metastases are important factors in patient prognoses
and are one of the main reasons for the failure of
NSCLC treatment. MiR-181a/b can be used as prog-
nostic markers or as therapeutic targets for limitation
of the spread of lung cancer, based on their direct reg-
ulation of metastasis (Wang et al., 2015a; Yang et al.,
2013a).
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Despite a general downregulated profile for MiR-
181a/b, some studies report a different trend. MiR-
181a was found upregulated in an NSCLC model of
Gefitinib-resistant cells when compared with the sensi-
tive counterparts. The same pattern was observed in
the plasma samples of patients with acquired Gefitinib
resistance compared with the levels measured before
Gefitinib treatment from the same patients. A negative
correlation between miR-181a and GAS7 was identi-
fied in NSCLC tumors; moreover, increased GAS7
expression is associated with improved patient sur-
vival. These data sustain the role of miR-181a/GAS7
axis in controlling Gefitinib resistance, an axis that
could become a therapeutic target in these patients
(Ping et al., 2018).

In an integrative analysis focused on the altered
miRNA pattern in lung cancer, the authors found that
miR-181a/b/c were all downregulated in ADC samples
(Cinegaglia et al., 2016). An unpaired analysis of 17
lung ADC tumors and seven normal tissue samples
identified 11 statistically significant, differentially
expressed miRNA transcripts, including underex-
pressed miR-181b-1 and miR-181b-2. Meanwhile,
paired sample analysis demonstrated 22 statistically
significant miRNAs, eight transcripts with a reduced
expression level (including miR-181a-1 and miR-181a-
2), and 14 transcripts with an increased level (including
miR-181c). In a database comprising 1491 lung ADC
and 441 normal tissues, 13 overexpressed transcripts
were identified, including miR-181b, miR-181c, and
three downregulated transcripts (miR-181a, miR-574,
and miR-1247; Cinegaglia et al., 2016).

Lung squamous cell carcinoma (LSCC) displays a dif-
ferential expression level of miR-181a between plasma
and tissue; a miRNA pattern for male LSCC patients
from the TCGA dataset revealed a downregulation of
this transcript which was further validated in another
patient cohort of 23 paired samples of LSCC. The same
study showed an overexpression of miR-181a in plasma,
but when independently analyzing only the exosomal
fraction, the results were not statistically significant
(Shan et al., 2018). Contradictory data showed that
miR-181b is overexpressed in tumor tissue and plasma
in LSCC patients in a profiling study on nine LSCC
(paired samples) and nine ADC (paired samples), fol-
lowed by a validation on 18 LSCC paired tissue and
plasma samples (Tian et al., 2016). Such data can also
be explained by the limited number of samples analyzed,
indicating that larger studies are essential.

All in all, the expression/function of miR-181a/b in
lung cancer is not always consistent between studies,
prompting the dual or context-dependent role of these
transcripts. In addition, there is growing evidence from
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clinical studies that these miRNAs can act as biomark-
ers, but it might be more relevant to consider not only
their absolute expression levels but also the balance
between the expression of miRNA and targeted genes.

3. miR-181a and miR-181b mediate
lung cancer hallmarks

Recent studies demonstrate that MiR-181a/b are
involved in the regulation of lung cancer hallmarks
(Hanahan and Weinberg, 2011). MiR-181a/b are down-
regulated in most of the studies and target important
genes involved in the regulation of cell proliferation,
evasion of growth suppression or resistance to cell
death, as well as replicative immortality. These miRNAs
also interfere with pathways involved in tumor angio-
genesis, invasion, metastasis, and drug sensitivity/resis-
tance in lung cancer (Fig. 2). Another less studied
aspect is the connection with energy metabolism in lung
cancer (Chu et al., 2015; Li et al., 2013).

3.1. miR-181a/b inhibit proliferative signaling in
lung cancer

miR-181a/b are involved in mechanisms related to pro-
liferation and growth signals (Shi et al., 2017). A549
cells transfected with miR-181a-5p mimic have a
decreased cell proliferation and migration rate com-
pared with the control counterparts, the effect being
mediated in part by targeting of K-RAS (Ma et al.,
2015) and MAPK activity (He et al., 2015). Exposure
of lung cancer cells (H226 and H460 cells) to inter-
leukin (IL)-17 decreases miR-181a levels and upregu-
lates VCAM-1  expression, a direct target.
Administration of miR-181a attenuates cell prolifera-
tion and migration rates, demonstrating the therapeu-
tic potential of the IL-17/miR-181a/VCAM-1 axis
(Wang et al., 2015a). Contradictory data were shown
in a study where treatment of A549 cells with anti-
miR-181a oligonucleotides (AMO-miR-181a) increased
the apoptosis rate and lead to S-phase cell (Fei et al.,
2008).

3.2. miR-181a/b target key genes involved in
evasion of growth suppression or resistance to
cell death, and replicative immortality

miR-181b is downregulated in A549/cis (cisplatin resi-
tant) compared with A549 cells, suppression that medi-
ates drug-resistant mechanisms and migratory features.
Replacement strategies decreased cell proliferation,
enhanced the sensitivity of the cells to cisplatin, and
impaired the migratory phenotype in both in vitro and

Molecular Oncology 13 (2019) 9-25 © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. 13
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Fig. 2. Relevant mechanistic insights connected with miR-181a/b in lung cancer. (1) MiR-181a/b target key genes involved in the regulation
(1) of cell proliferation; (2) intra-tumor hypoxia; (3) EMT, tumor angiogenesis, invasion, and distant metastasis.

in vivo models. Transforming growth factor receptor 1
(TGFBRI) is a direct target of miR-181b; moreover
miR-181b mimic administration decreased c¢-Myc and
Cyclin D1 and upregulated p27, results that overlap
with those obtained by siRNA-TGFSRI transfection
(Wang et al., 2015a). MiR-181a contributes to cell
cycle arrest by the upregulation of the cell cycle inhibi-
tor p2757! (Galluzzi et al., 2010).

Restoration of miR-181a expression is connected with
inhibition of cyclin Bl and D1 expression in NSCLC
cells and direct targeting of CDKI (Shi et al., 2017).
MiR-181a targets apoptotic genes such as Bc/-2 in acute
lung injury (Li et al., 2016a) and also in lung cancer
(Huang et al., 2015). MiR-181a activates the apoptotic
signaling cascade by a p53 tumor-suppressor indepen-
dent mechanism (Galluzzi et al., 2010).

3.3. miR-181a/b are important regulators of
angiogenesis, invasion, and metastasis

Hypoxia is a frequent event in malignant solid tumors
and is further connected to the activation of angiogenesis
(Choudhry and Harris, 2018). A hypoxic environment in
lung cancer promotes invasion and metastasis through
activation of MAPK signaling and macrophage polariza-
tion (Zhang et al., 2014), two mechanisms that are con-
nected with miR-181a/b expression (Bi ef al., 2016;
Wang et al.,, 2017a; Yang et al., 2013b; Zhang et al.,
2013). An important aspect of metastasis consists in acti-
vation of epithelial-to-mesenchymal transition (EMT),
which enables cells to migrate and populate secondary
sites (Expdsito-Villén et al., 2018; Gulei et al., 2017,
2018a; Tudoran et al., 2012). In solid tumors, including

lung cancer, transformed cells that undergo EMT lose
epithelial features and acquire mesenchymal features
(Expdsito-Villén et al., 2018; Zhang et al., 2017a). This
phenotype undergoes self-renewal and presents an
increased capacity for adaptation to diverse environ-
ments, while favoring invasion and migration. TGFf and
its receptors (TGFBR1 and TGFBR2) have an important
role not only in the regulation of cell fate (cell prolifera-
tion and apoptosis; Zhang et al., 2017a) but, more
importantly, in the regulation of EMT, being concomi-
tantly modulated by miR-181a/b. MiR-181a is present in
breast cancer as a TGFB-regulated ‘metastamir’ (Taylor
et al., 2013) that activates and promotes invasive and
metastatic processes (Ionescu et al., 2014; Parikh et al.,
2014). MiR-181a is a promoter of TGFB-mediated EMT
in ovarian cancer.

Studies showed a connection between miR-181b
with TGFp signaling and PI3K/AKT signaling (Wang
et al., 2015a). The miR-181b/PI3K/AKT signaling
pathway is a fundamental axis not only for the regula-
tion of cell proliferation but also for the EMT and
metastasis in lung cancer (Fumarola et al., 2014; Zhao
et al., 2018).

3.4. miR-181a/b has the capacity to avoid
immune destruction

The tumor microenvironment (TME), consisting of
stroma and extracellular matrix elements as well as
immune cells, has an important role in lung cancer
progression and invasion, migration, and metastasis
(Quail and Joyce, 2013; Wang et al., 2017b). The pres-
ence of tumor-associated macrophages under the

14 Molecular Oncology 13 (2019) 9-25 © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
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immunosuppressive M2 phenotype disturbs the tumor
microenvironment and sustains disease advancement
(Guo et al., 2016; Zhang et al., 2013). MiR-181a was
observed to have a higher level in M2 than in M1 phe-
notype (Bi et al., 2016). MiR-181a regulates the M2
macrophage-mediated migration and invasion capacity
of tumor cells (Bi et al., 2016). M2 macrophages infil-
trate the tumor tissue, sustained by the release of
cytokines/chemokines (Zhang et al., 2017a), with a
possible localization in lung tumor hypoxic regions,
where miR-181la can play important roles (Zhang
et al., 2014). MiR-181a has the capacity to regulate
the activity of CD8" T cell influx, and the downregu-
lation of multiple phosphatases by miR-181a leads to
a reduction in T cell receptor signaling. Therefore,
miR-181a is actively involved in the pro-tumorigenic
symbiotic role between tumor cells and tumor
microenvironment effectors (Rupaimoole et al., 2016).

3.5. miR-181a/b-related therapeutic strategy in
lung cancer

The main issue regarding miRNA therapy consists of
the development of efficient delivery systems. The prin-
cipal pharmaceutical formulations for miRNA delivery
are liposomes, polymeric nanoparticles, and viral sys-
tems (Irimie et al., 2017b; Jurj et al., 2017; Tomuleasa
et al., 2014). There are clinical safety concerns regard-
ing viral delivery systems; among the non-viral sys-
tems, the most promising are represented by liposomes
(Chen et al., 2016; Yang, 2015).

Oncogenic miRNA are generally restored to their
homeostatic level through different types of molecules:
AMO (anti-miRNA oligonucleotide) or antagomiR
(Simonson and Das, 2015), locked nucleic acid (LNA)
(Stein er al., 2010), miRNA sponges (Ebert and Sharp,
2010), and miRNA masks and circRNA (circular
RNA) (Greene et al., 2017) (Table 2).

Regulation of lung cancer TME can be considered
the ‘Achilles heel’ of therapy success (Mittal et al.,
2016), where miR-181a/b can be an important player.
MiR-181a can be involved in limitation of lung cancer
spread, as it was demonstrated to have critical EMT
regulatory targets (He et al., 2015). Therefore,
miR-181 might be used as a direct or indirect thera-
peutic target, not only for the effects on the tumor,
but also to regulate the immune response effectors that
favor EMT or interact with TME, thus affecting the
response to therapy (Parikh et al., 2014; Ye et al.,
2018).

MiR-181a/b therapy in lung cancer generally implies
replacement strategies (miR-181a/b mimics or miR-
181a/b vectors) for restoring the normal expression

miR-181a/b in lung cancer

level. An important number of studies use miR-181a/b
inhibitors for mechanistic studies or because of differ-
ent expression signatures in cell-specific contexts. Most
of the studies investigating the biological significance
of miR-181a/b transcripts use commercial miR-181a/b
mimics, and, as delivery systems, the commercially
available liposomes (e.g. Lipofectamine 2000) (Cao
et al., 2017; Fei et al., 2008; Huang et al., 2015; Ma
et al., 2015; Wang et al., 2015a).

Recently, there has been important progress in the
development of nanoparticle-based therapies which
represent a promising approach (Anselmo and Mitra-
gotri, 2016), as can be observed by the high number of
recently preclinical studies using liposomal delivery for
miR-181a/b (Table 3). This remains to be validated in
clinical trials.

4. Implication of miR-181a/b in lung
cancer drug resistance

Chemoresistance is frequently observed in most lung
cancer subtypes (Li et al., 2015; Shanker et al., 2010).
Deciphering the molecular basis of drug resistance will
lead to more effective treatments (Shanker ez al.,
2010). Knowledge-based improvements in the field of
predictive biomarkers for personalized treatment that
rely on combining novel agents focused on resistance
pathways with standard chemotherapy, might lead to
the development of therapeutic designs capable of
overcoming chemoresistance. The restoration of the
miR-181a/b expression level can be considered an
important adjuvant strategy in lung cancer therapy for
the prevention of drug resistance, as demonstrated by
the large number of translational studies (Li ez al.,
2015, 2016a; Niu et al., 2016; Wang et al., 2017a).
Nevertheless, we should not underestimate the impor-
tant role of the immune system effectors and other
host cells within the organism microenvironment.
Despite the increased interest in non-cytotoxic tar-
geted agents, systemic chemotherapy (Docetaxel, Gem-
citabine, Irinotecan, Paclitaxel, Pemetrexed, and
Vinorelbine) along with some targeted agents (Beva-
cizumab, Erlotinib, and Gefitinib) remain the pillar of
therapy for lung cancer (Kim, 2016). Recent studies
showed an increased use and clinical activity for the
immune checkpoint inhibitors in lung cancer therapy.
Understanding the regulatory mechanisms of PD-LI
has become one of the biggest challenges for further
improving therapeutic efficacy (Smolle er al., 2017).
MiR-181a targets the ubiquitin ligases Chl-b and
¢-Chl; these two factors are negatively correlated with
PD-L1 expression in tissue samples from NSCLC
patients and are proved to inhibit PD-L1 in vitro

Molecular Oncology 13 (2019) 9-25 © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. 15
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through inactivation of ERK, STAT, and AKT
signaling (Wang et al., 2018). Restoration of miR-181a
along with anti-PD-1/PD-L1 might potentiate the
therapeutic efficacy in lung cancer (Smolle et al.,
2017), this being a research direction for future
investigations.

miR-181b overexpression inhibits cell proliferation
and increases the sensitivity of lung cancer cells to
DDP, attenuating at the same time the metastatic
characteristics of the NSCLC cells (Wang et al.,
2015a). The activity of miR-181a/b is complex and is
regulated at diverse levels (Lang et al., 2017; Wang
et al., 2017a). MiR-181a is sponged by small nucleolar
RNA host gene 12 (SNHG12), a IncRNA that is over-
expressed in lung cancer and inversely correlated with
miR-181a levels. Silencing of the IncRNA resulted in
increased expression of the miRNA together with sup-
pression of MAPKI and MAP2KI mediated by the
high levels of miR-181a achieved. The experimentally
modified regulatory axis has further effects upon
increased drug-induced apoptosis in lung cancer cells
(Fu et al., 2018; Wang et al., 2017a).

MicroRNA are involved in signal transduction, con-
nected with drug metabolism and resistance, with
potential use in personalized therapy (Gong et al.,
2014). MiR-181a and miR-181b can also be used to
increase the sensitivity to chemotherapeutic agents in
lung cancer. MiR-181a/PTEN is a novel regulatory cir-
cuit that mediates EMT in drug-resistant lung ADC
cells (Li et al., 2015). Lung cancer cells with acquired
resistance to paclitaxel and cisplatin present a differen-
tial profile for miR-181a with respect to their sensitive
counterparts. Concomitantly, PTEN is reduced in
these drug-resistant models and is validated as a direct
target of miR-181a. Modulation of miR-18la may
become a promising strategy to prevent resistance to
the main chemotherapeutics, in spite of the fact that
some studies show minimal effects of miR-181a/b on
cisplatin-resistant cells (Li ez al., 2015; Pouliot et al.,
2013). It is important to underline the necessity for
further studies to show whether miR-181 family mem-
bers are capable of preventing the activation of
chemoresistance mechanisms. The importance of the
TME in chemotherapy efficiency is limited to in vitro
studies or to immunocompromised mice models,
decreasing the true translational value of miR-181a
modulation.

One major mechanism related to drug resistance is
the malfunctioning of apoptosis pathways and the
activation of complex compensatory pathways (Braicu
et al., 2013, 2014; Pileczki et al., 2012). Studies link
the overexpression of the proapoptotic gene Bcl-2 with
the downregulated profile of miR-181b in multi-drug-

miR-181a/b in lung cancer

resistant lung cancer cells; after validation of direct
inhibition of miR-181b on Bcl-2, replacement thera-
pies showed significant improvement in terms of cell
sensitivity to chemotherapeutic agents (Zhu et al.,
2010). The transfection with mimic sequences showed
a significant reduction in cell proliferation in A549/cis
cells treated with vincristine, S-fluorouracil, cisplatin,
and etoposide, but not mitomycin C (Zhu et al.,
2010). Another study focused on assessing the impact
of miR-181b in modulating chemoresistance, evaluated
the expression of the transcript in HBE cells (normal
lung epithelial cell line), as well as in A549, H1650,
and A549/DDP lung cancer cell lines (Wang et al.,
2015a). qRT-PCR showed that miR-181b is downreg-
ulated in AS549/DDP cells compared with sensitive
cancer cells and significantly increased in HBE normal
cell lines compared with all three malignant models
(Wang et al., 2015a). Functional studies of miR-181b
upregulation showed that the proliferation and migra-
tion rates was significantly decreased and sensitivity to
the treatment was restored. Moreover, TGFSRI was
validated as a direct target of miR-181b, where
siRNA inhibition of the receptor gene showed similar
results as miR-181b overexpression (Wang et al.,
2015a).

miR-181a is related to Gefitinib resistance in lung
cancer through an increased expression profile com-
pared with the sensitive models and direct targeting of
GAS7; GAS7 is involved in the regulation of AKT/
ERK pathways and EMT markers and is downregu-
lated in plasma from Gefitinib-resistant patients (Ping
et al., 2018). These findings indicate that restoring the
expression of miR-181a/b in lung cancer may play a
critical role in fighting chemoresistance.

miR-181a/b have the capacity to modulate drug
resistance mechanisms in cancer cell lines, but the data
remain inconsistent and need to be validated further in
animal models. Taken together, all preclinical studies
underline the therapeutic potential of these transcripts
in the regulation of drug resistance. To be able to
exploit these findings fully, it is mandatory to study
this mechanism in the context of the complex TME.

5. Conclusions

Research performed in recent years demonstrates a
wide range of novel functions for miR-181a and miR-
181b in lung cancer. These studies reveal an important
number of mechanisms that have clinical relevance
but, at the same time, there are many issues related to
the utility of miR-181a/b in lung cancer management.
One aim would be to build a global network that
would integrate and interconnect the effects of all
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types of cells that constitute the TME with the muta-
tional status of the genes that take part in the altered
mechanisms. Deciphering this will lead to new and
unexpected insights that will contribute to the develop-
ment of novel and more efficient therapies for lung
cancer.

miR-181b is generally downregulated in lung can-
cer, and the reduced expression leads to an unfavor-
able prognosis in most of the cases. Therapeutic
targeting of miR-181a/b may be achieved at multiple
levels, as shown by the preclinical studies, but at this
moment there are no clinical trials of this. Addi-
tional studies are required to confirm the role of
these two transcripts as biomarkers or therapeutic
targets able to promote a less aggressive disease.
MiR-181a/b regulate structural and cellular elements
involved in cell proliferation, as well as cell plasticity
and adaptive programs that favor lung cancer inva-
sion and migration.

The recently described role of miR-181a/b in pre-
vention of drug resistance by restoring the physiologi-
cal expression levels, is an example of a sophisticated
mechanism of action, which further underlines the fact
that the expression level of a miRNA is not enough to
propose it as a biomarker or therapeutic target. Con-
sequently, this needs to be supported by additional
functional studies of a specific phenotype able to pre-
vent resistance to therapy or limit the spread of lung
cancer. The biological role of miR-181a/b needs to be
studied in more detail, and the studies should not be
limited to a simple exploration of the expression
level but should be associated with complex character-

ization of genomic, transcriptomic, or epigenetic
portraits.
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