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Abstract

Altered metabolism in cancer cells has been viewed as a passive response required for a malignant transformation.
However, this view has changed through the recently described metabolic oncogenic factors: mutated isocitrate
dehydrogenases (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH) that produce oncometabolites that
competitively inhibit epigenetic regulation. In this study, we demonstrate in silico predictions of oncometabolites that have
the potential to dysregulate epigenetic controls in nine types of cancer by incorporating massive scale genetic mutation
information (collected from more than 1,700 cancer genomes), expression profiling data, and deploying Recon 2 to
reconstruct context-specific genome-scale metabolic models. Our analysis predicted 15 compounds and 24 substructures of
potential oncometabolites that could result from the loss-of-function and gain-of-function mutations of metabolic enzymes,
respectively. These results suggest a substantial potential for discovering unidentified oncometabolites in various forms of
cancers.
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Introduction

Otto Warburg observed that cancer cells convert most of their

consumed glucose into lactate, despite the presence of sufficient

oxygen [1]. This metabolic state, called ‘‘aerobic glycolysis’’ of

cancer cells, has been viewed as a passive response required for a

malignant transformation [2], and was originally hypothesized to

be a necessary adaptation offsetting dysfunctional mitochondria.

In contrast to this initial hypothesis, later studies have found that

most tumor mitochondria are not defective in their ability to carry

out oxidative phosphorylation [3–5].

The notion of passive cancer metabolism is being challenged by

recent studies. It was shown that altered metabolism can by itself

be a driver for oncogenic [6–10]. Recently characterized isocitrate

dehydrogenase (IDH1, IDH2) mutations have established a new

paradigm in oncogenesis in that the heterozygous point mutations

confer a new metabolic enzymatic activity that produce an

oncometabolite (e.g. 2-hydroxyglutarate (2-HG), from a-ketoglu-

tarate) (Figure 1A; left). Surprisingly, 2-HG shows a 100-fold

increased concentration in glioma and acute myeloid leukemia’s

(AML) patients with IDH1 or IDH2 missense mutations. This

increased concentration of 2-HG competitively inhibits a-ketoglu-

tarate (a-KG) binding to histone demethylases, thus blocking

differentiation of cells [6,7]. In parallel to IDH, loss-of-function

mutations on succinate dehydrogenase (SDHA, SDHB, SDHC,

and SDHD) and fumarate hydratase (FH) cause the accumulation

of succinate and fumarate, respectively, which also acts a

competitive inhibitor of a-KG-dependent oxygenases that regulate

hypoxia-inducible factor (HIF) oncogenic pathway (Figure 1A;
middle, right) [9–12]. Curiously, although IDH1 and IDH2

mutations are clearly powerful drivers of low grade glioma and

AML, they seem to be rare or absent in other tumor types. This

observation highlights the importance of the specific cellular

context in understanding metabolic perturbations in cancer cells

[6,13].

Metabolism represents a complex network of biochemical

reactions and it may be hard to decipher phenotypic consequences

based on single reaction alterations. Annotated genomes and

biochemical legacy data, however, have enabled the construction

of genome-scale models (GEMs) of metabolism [14,15] that have

been successfully used to compute many observed metabolic states

and properties [16–19]. A GEM is a formal and mathematical

representation of reconstructed metabolism as a genome-scale

network [18,19], which consist of collections of metabolic

reactions, their stoichiometry, the enzymes and the genes that

encode them. GEMs offer a novel mechanistic link between

genetic parameters and computed metabolic states. Two versions

of the human metabolic reconstruction are available [14,20].
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With the rapid development of high-throughput experimental

methods, recent integrative studies using disparate omics data

types have deciphered characteristics of cancer metabolism using

in silico GEMs [21–23]. Shlomi et al. dissected underlying

principles of elevated glycolysis through the simulation of biomass

production rates using GEMs [21]. Folger et al. identified drug

targets for cancers based on synthetic lethal gene pair analysis

using a generic GEM of cancer [22]. Further, the GEM analysis

was applied to hereditary leiomyomatosis and renal cell cancer

(HLRCC) to unravel the survival mechanism that enables the

HLRCC cells to operate the mitochondrial electron transport

chain despite mutations on FH [23]. The GEM of human

metabolism has thus already shown its utility for the analysis and

understanding of cancer metabolism.

In this study, we predict putative oncometabolites by incorpo-

rating genetic mutation information on a massive scale collected

from more than 1,700 cancer genomes into context-specific GEMs

of metabolism for nine cancer types. We reconstructed context-

specific cancer and matching metabolic models from correspond-

ing normal tissue for nine cancer types using gene expression

profiles of primary cancer cells and site-matched normal cells. By

integrating the exome mutation data source with the reconstructed

GEM, we predict potential oncometabolites that could show

altered concentration in cancer cells due to the loss- or gain-of-

function mutations on enzymes (Figure 1B).

Results

Mutation information and gene expression data sets
We collected sets of exome mutation and gene expression data

from The Cancer Genome Atlas (TCGA, http://cancergenome.

nih.gov/), Cancer Cell Line Encyclopedia (CCLE) [24], and

NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/) (Table 1). We selected three cancer types (breast, kidney,

and squamous cell carcinoma lung cancer) from the TCGA

project with accompanying publically available genetic mutation

and gene expression data sets. In addition, we collected mutation

information for six types of cancers studied in the CCLE project

(gastric, leukemia, liver, adenocarcinoma lung, ovarian, and

pancreas). As the CCLE project does not provide gene expression

for matched normal samples, we separately collected expression

data of cancer and site-matching normal tissues from the NCBI

GEO database by matching cancer histological types to the CCLE

mutational data. Finally, nine unique histology types of cancer

with mutation and gene expression data measured in cancer and

site-matching normal were used in the present study (Table 1).

Large number of metabolic genes are mutated across
different cancer types

To identify potential oncometabolites that originated from

genomic variations in metabolic enzymes, we determined the total

number of mutations in enzymatic genes across nine cancer types.

The metabolic genes were identified from the global human

metabolic network Recon 2 [14]. For every gene in Recon 2, the

number of coding region genetic variants including classes of

missense, nonsense, frame shift, in frame indel, silent, and splice

site mutations were counted. Between 5 to 20 metabolic genes per

sample were mutated in cancer cells (Figure 2A). Also, when we

tallied the total mutation count per cancer type, the mutational

frequency became more pronounced in each type of cancer

(Figure 2B). In the CCLE data sets (gastric, leukemia, liver,

ovarian, and pancreas), the initial mutation calling was made

within a set of targeted metabolic genes. Thus we expect that the

real number of mutated metabolic genes would be higher than the

current numbers. Second, we confirmed that the missense

mutation, which is the consensus type of mutation observed in

IDH, was the most dominant mutation class in metabolic genes

(Figure 2C). This analysis was also conducted on additional

TCGA mutation data sets, which showed qualitatively similar

results (Table S1 in Text S1, Figure S1 in Text S1).

20 enzymatic genes were selected for oncometabolite
prediction

In order to predict oncometabolites that could originate from

mutations, we selected metabolic genes that are recurrently found

to be mutated in more than 5% of samples. Transporters were

removed from our analysis, as they usually do not represent

canonical metabolic transformations. As shown in the examples of

IDH and FH, mutations could change the enzyme activity such

that it gains a new function (gain-of-function) or loses its original

function (loss-of-function). In this study, we divided the potential

oncometabolites into two categories: (i) native oncometabolites

that could change concentration due to the loss-of-function (LoF)

mutations, and (ii) promiscuous oncometabolites that could change

concentration due to the gain-of-function (GoF) mutations.

Therefore, for this oncometabolites analysis, we classified muta-

tions into two classes. First, we adopted a definition for LoF

mutations to be correlated with loss of function: nonsense (stop

codon introducing), splice site indels&SNP (splice site disrupting

mutations), and frame shift indels (disrupting reading frame) [25]

[26]. Second, we focused on the possibility of missense mutations

as GoF mutations, which is the consensus type of mutation that is

observed in IDH oncometabolite studies. Finally, the recurrently

mutated genes are categorized into three classes: (i) recurrently

mutated genes from a type of GoF mutation, (ii) recurrently

mutated genes from types of LoF mutations (nonsense, frame shift

indels, splite site indels&SNP) [26], and (iii) recurrently mutated

genes from both of GoF and LoF mutations. As a result, we found

96 enzyme encoding metabolic genes that were recurrently

mutated in the nine types of cancer (Figure 3A, File S1).

From the 96 recurrently mutated metabolic genes, we next

selected genes that could have significant functional impacts on

their catalytic activities due to the mutations. First, isoenzymes

were filtered out because an unexpected mutational malfunction of

one isoenzyme could be substituted by functions of other

Author Summary

Cancer and metabolism have been considered to be
associated for a long period since Otto Warburg observed
that tumor cells consume glucose and convert most of it
to lactate, despite the presence of oxygen. However, the
role of the Warburg effect in oncogenesis had been under
doubt because no solid links between genetic variations in
metabolic genes and cancer had been observed until
recent days. When with the development of sequencing
technologies, researchers found mutations in IDH1, IDH2
(isocitrate dehydrogenase) in medium-grade glioma and
acute leukemia. As these mutated metabolic genes initiate
unexpected enzymatic reactions, cancer cells show altered
concentration of particular metabolites, here called ‘‘on-
cometabolites’’. The oncometabolites regulate the epige-
netic controls of cell differentiations. In this study, we
predict potential oncometabolites that might originate
from loss or gain-of-function mutations in nine types of
cancer from massive scale cancer mutation data with a
systems biology approach.

Prediction of Oncometabolites In Silico
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isoenzymes having duplicated catalytic activities. Second, mutated

genes having smaller functional impact were removed. The impact

of a mutation in the recurrently mutated genes was assessed by

using the functional impact score (FIS) [27] which demonstrated a

consistent higher accuracy in a recent systematic assessment [28].

A FIS is derived from multiple sequence alignments of amino acid

Figure 1. The origin of oncometabolites and an overview of the analysis workflow used. (A) (left) Mutant isocitrate dehydrogenases (IDH)
enzymes show a neomorphic enzymatic activity to convert a-KG (a-ketoglutarate) into 2-HG (2-hydroxyglutarate), a small oncometabolite. The
presence of mutant IDH1 or IDH2 proteins results in increased amounts of 2-HG, which then alters a number of downstream cellular activities. 2-HG
competitively inhibits a-KG binding to several histone demethylases. (Middle, Right) Loss of succinate dehydrogenase (SDH) and fumarate hydratase
(FH) enzymatic activity due to the mutation results in accumulated concentration of intracellular succinate and fumarate, respectively. (B) Overview of
the work presented here. First, recurrently mutated enzymes which could produce potential oncometabolites are identified across the nine cancer
types. Once the recurrently mutated enzymes were identified, oncometabolites were predicted by simulating flux changes between LoF cancer vs.
normal in silico GEM (LoF analysis), and applying the chemoinformatics approach to predict promiscuous catalytic activities of enzymes resulting from
their GoF mutations (GoF analysis).
doi:10.1371/journal.pcbi.1003837.g001

Prediction of Oncometabolites In Silico
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sequence homologs, thus, the score is based on the evolutionary

conservation of a mutated residue in a protein family. By applying

the aforementioned two criteria, 20 metabolic genes were selected

for detailed analysis. These 20 genes are recurrently mutated in

samples ($ 5%), and are expected to have significant functional

impact from their genomic sequence mutations (Figure 3B,
Figure S2 in Text S1, File S1). Notably, we observed mutation

recurrence in LoF SDHB that is one of the previously identified

oncometabolite-producing enzymatic genes (Table S2, S3 in

Text S1).

Reconstructed cancer and normal metabolic GEMs
correctly characterize in vivo cellular metabolic activity

In order to predict oncometabolites originating from LoF

mutations on enzymes, we simulated flux changes of reactions in

a cancer cell using GEMs. For the reconstruction of cancer

specific and matched normal metabolic networks, gene expres-

sion data sets of cancer and matched normal were used. Here, the

specific characteristics of cancer and normal metabolic models

were represented by the rerouted network structure based upon

the presence or absence of an enzymatic reaction in the

intracellular environment of cancer and normal cells. This

presence or absence of reactions was determined by the

present/absent (P/A) calls of enzymatic genes (see Materials
and Methods for details).

With the result of P/A calls of enzyme-encoding genes in nine

cancer and normal gene expression data sets, we evaluated the

relevance of P/A call results to the cancer specific metabolism.

Here, we first assessed gene-wise P/A alterations in cancer vs.

normal across nine cancer types. In this analysis, we confirmed

that the P/A alterations in cancer vs. normal of enzymatic genes

were not consistent across different cancer types (Figure S3A in

Text S1). This inconsistency is in accordance with previous

finding that the expression differences of individual genes vary

from cancer to cancer [29]. However, when the alterations were

evaluated at the level of functional pathways, several pathways

related to common malignancy features showed significant P/A

alterations (Figure S3B in Text S1). A pathway is considered to

be significantly altered if the pathway is found to have a

significantly higher number of genes with P/A alterations than

the corresponding number found in a random set of genes (see

Text S1 for details). Specifically, reactions transporting (export-

ing, secreting) substances inside and outside of the cell were

frequently altered across nine types of cancer. Furthermore, we

confirmed that these altered pathways had significant over

representation of mutations (Figures S3C-S3E in Text S1).

We reconstructed nine cancer and normal matching models using

P/A gene expression calls the Gene Inactivity Moderated by

Metabolism and Expression (GIMME) algorithm (see Materials
and Methods for details, Table 2, Figures S4-S6 and Tables
S4-S6 in Text S1).

The accuracy of the cancer and normal matched metabolic

models were evaluated based on: (i) how well the structure of the

reconstructed network represents gene expression data, and (ii)

how well the simulated fluxes predict metabolic states of cancer

and normal cells.

Since the characteristics of the reconstructed model are mainly

determined by the result of gene expression P/A calls, we first

evaluated how well the network structure of the model represents

the gene expression P/A calls. Since a gene can be associated with

multiple reactions, or vice versa, the correlation between P/A calls

and the network structure was calculated in two steps. The final

correlation was determined by correlations of two vectors of

Pearson’s correlation coefficient (PCC) calculated from pairwise

correlations of presence/absence of gene expression and pairwise

correlations of presence/absence of reactions between cancer

types (Figure 4A). Correlation coefficients varied from 0.90 to

0.98, and the PCC values were significantly higher than random

Table 1. Types of cancer and mutation and gene expression data sets used.

Cancer type Mutation source Expression source/ platform

(Histological sub type) (No. samples) (No. cancer/ No. normal), [reference]

Breast TCGA TCGA/ Illumina Hiseq RNAseqV2

(Invasive carcinoma) (919) (99/ 99)

Kidney TCGA TCGA/ Illumina Hiseq RNAseqV2

(Renal clear cell carcinoma) (502) (65/ 65)

Lung TCGA TCGA/ Illumina Hiseq RNAseqV2

(Squamous cell carcinoma) (178) (16/ 16)

Gastric CCLE GEO/ Affy HG U133 Plus 2.0 Array

(Adenocarcinoma) (22) (38/ 31), [GSE13911]

Leukemia CCLE GEO/ Affy HG U133A Array

(Acute myeloid leukemia) (34) (26/ 38), [GSE9476]

Liver CCLE GEO/ Affy HG U133A 2.0 Array

(Hepatocellular carcinoma) (25) (22/ 22), [GSE14520]

Lung CCLE GEO/ Affy HG U133A Array)

(Adenocarcinoma) (45) (28/ 28), [GSE7670]

Ovarian CCLE GEO/ Affy HG U133 Plus 2.0 Array

(Carcinoma) (46) (12/ 12), [GSE14407]

Pancreas CCLE GEO/ Affy HG U133 Plus 2.0 Array

(Carcinoma) (44) (36/ 16), [GSE16515]

doi:10.1371/journal.pcbi.1003837.t001
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PCC values (Figure S7 in Text S1). Thus, the reaction content of

the cancer and normal models represent the gene expression data

sets well.

Second, we tested the accuracy of the simulated flux states of

the reconstructed models by evaluating whether the flux states

correctly predict metabolic states of cancer and normal cells. We

hypothesized that if the flux through a reaction was predicted to

increase (or decrease) its magnitude in cancer compared to

normal, then the expression level and/or abundance of the

associated active enzyme in cancer will increase (or decrease) in

order to meet the change in flux. With this hypothesis, we

compared the changing pattern (increase or decrease) between

flux and gene expression for the reactions with a significant flux

change. Flux changes were calculated using the Markov chain

Monte Carlo (MCMC) (see Materials and Methods for

details). Figure 4B shows the accuracy of the predictions for the

significantly changed fluxes (P-value , 0.001, fold-change $ 2).

The results are fairly accurate. Among the nine cancer models,

seven cancer types, except the lung (SCC) cancer and leukemia,

showed significantly better accuracy than random tests (P-value

, 0.05). Furthermore, our results were qualitatively robust with

variations in the P-value and fold-change thresholds (Figure S8
in Text S1)

In addition, we evaluated the accuracy of predicting essential

genes. The accuracy of reconstructed models was evaluated by the

enrichment of in vivo essential genes among in silico essential

genes computed from Flux Balance Analysis (FBA) (see Materi-
als and Methods for details). Across the nine cancer types, we

found that about 3–30% of genes contributed to cell growth, about

2–14% of genes were essential for the cell growth (Figure 4C).

Further, in several cancer types (breast, kidney, lung (SCC), and

liver), we found that genes predicted to have higher contributions

to the biomass formation are more enriched in the in vivo essential

genes (Figure 4D).

The analyses presented here confirm that the simulated flux

through the reconstructed models effectively predicts in vivo
cellular metabolic activity of cancer and normal cells.

15 candidate oncometabolites are predicted as a result
of loss-of-function (LoF) mutations

From the substrates and products of the nine LoF mutant

enzymes (Figure 3B), we chose the metabolites that significantly

change the flux state in cancer cells with LoF mutation activity

relative to the corresponding normal tissue. These metabolites

were identified as potential oncometabolites associated with LoF

mutations.

To predict LoF oncometabolites, we first modified a

reconstructed cancer model into mutated enzyme deficient

models. For example, as shown in Figure 3B, FASN, ACACB,

and CAD genes were found to be recurrently mutated in

leukemia. For each gene, we built a corresponding leukemia

model with a deficiency in that gene (e.g.. FANS-deficient,

ACACB-deficient, and CAD-deficient leukemia models). We

built a total of 13 mutated enzyme deficient models for nine

genes across nine cancer types that have feasible flux solution

states with the deficient function of the mutated enzyme

(Figure S9 in Text S1).

Once the deficient models were built, we simulated flux changes

that result from the enzyme deficiency by employing an MCMC

sampling method to the enzyme deficient models and matching

normal (no cancer with non-enzyme deficient) models. Substrates

or products of reactions with significantly changed flux for

deficient models as compared to normal models were chosen as

potential oncometabolites. Finally, 15 unique metabolites
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catalyzed by the mutated enzymes and surrounded by significantly

changing flux were predicted as context-specific LoF oncometa-

bolites (Figure 5A). Notably, previously known oncometabolites,

succinate and fumarate, were predicted as potential oncometabo-

lites due to the LoF of SDBH in gastric cancer (Figure 5A, Table

S7 in Text S1) [9–12].

24 dominant substructures of candidate
oncometabolites are predicted as a result of gain-of-
function (GoF) mutations

As described in the example of IDH, mutated enzymes could

possibly confer new catalytic activities by simultaneously changing

the native reaction mechanism and/or catalyzing different

Figure 2. Overall statistics on genetic mutations in metabolic genes. (A) The violin plot depicts the distribution of the number of mutated
enzymatic genes per patient (sample) in each cancer type (Green box: median, red asterisk: average). A median of 5,20 metabolic genes were
mutated per patient (sample). (B) The percentage of mutated metabolic genes per cancer. (C) The percentage of mutation types. Missense mutation
was mostly frequently observed across cancer types.
doi:10.1371/journal.pcbi.1003837.g002
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substrates. In this study, we used a chemoinformatics approach to

predict promiscuous catalytic activities of enzymes resulting from

GoF mutations. This chemoinformatics approach has been shown

to be useful in predicting enzymes promiscuity [30,31], assigning

Enzyme Commission (EC) number [32,33], and analyzing

reaction databases [34].

To predict candidate oncometabolites resulting from promis-

cuous activities of mutated enzymes, a systems framework was

developed to determine new enzyme functionalities due to

mutated enzymes. First, each substrate and product present in

the mutated enzyme reactions were compare against the Human

Metabolome Database (HMDB) [35]. In order to decrease

computational efforts and select a manageable set of metabolites

for biochemical reaction operators (BROs) simulation, Tanimoto

coefficient cut off values were determined for each mutated

enzyme reactions. Then, synthetic reactions were constructed by

applying generic BROs to previously HMDB selected metabolites

(see Materials and Methods for details). Then, simulated

synthetic reactions were compared against the reactions associated

with the mutated enzymatic genes. To do this, Tanimoto

coefficients of substrates and reactions were calculated between

pairs of reactions. In order to emulate the GoF enzyme behavior,

different Tanimoto coefficient cut-off values were imposed on each

reaction according to the IDH GoF mutation case. Pairs of

reactions with Tanimoto similarity scores of less than or equal to a

specific cut-off were saved and identified as possible gain of

function pairs (see Figure S10 in Text S1for details). Finally,

from these reaction pairs, structural features of oncometabolites

were predicted.

Among the 17 genes with recurrent GoF mutations, seven genes

could have catalytic activity in cancer (see Figure S11 in Text S1 for

details). The final GoF mutated enzymatic gene list for this analysis

contains seven unique genes. Among the reactions associated with the

seven mutants, reactions catalyzing large molecules that could yield

more than 30,000 promiscuous activities due to the compounds

complexity were excluded from the analysis, and finally 33 reaction

associations were identified from the enzymatic list. Notably, cofactors

were not taken into account for the compound list generation.

A summary of mutated enzymes associated reactions and their

predicted promiscuity catalytic activities is given in Table S8 in

Text S1. For example, for the CAD gene which catalyzing L-

glutamine, 2866 potential promiscuity catalytic reactions associat-

ed with 170 substrates and 1644 products were predicted in CAD

mutant lung (SCC) cancer and gastric cancer (Table S8 in Text
S1, Figure 5B, all detailed information of predicted promiscuity

reactions is shown in the File S2).

In most cases promiscuous substrates show similarities with the

native substrate [36,37]. We conducted compound similarity

analysis in order to demonstrate dominant substructures of

promiscuous substrates and products (Table S8 in Text S1).

The compound structure shown in the Table S8 in Text S1 is the

dominantly observed substructure of promiscuous substrates and

products. Notable, several promiscuous substrates and products

did not have dominant substrates. Finally, we identified 24

Figure 3. Recurrently mutated enzymes in the nine cancer types. (A) The 96 metabolic genes that are recurrently mutated in samples ($ 5%).
The functional pathways in the grey box denote enriched pathways among the 96 genes (Hypergeometric, P , 0.001). (B) The selected 20 metabolic
genes that are recurrently mutated in samples ($ 5%), and are expected to have a significant functional impact from their genomic sequence
mutations in any of nine cancer types. Blue box: recurrently mutated genes for GoF analysis (gene having missense mutations). Red box: recurrently
mutated genes for LoF analysis (genes having nonsense, frame shift indels, splice site indels&SNP mutations).
doi:10.1371/journal.pcbi.1003837.g003
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Figure 4. The accuracy of the reconstructed context-specific GEMs. (A) Pearson’s pairwise correlation plot shows correlation of gene
expression P/A calls (right-bottom; green) and model structures (left-upper; purple) between cancer types. Values next to the correlation plot
represent final correlation between gene expression P/A calls and the network structure for each cancer type, values in parentheses represent P-
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promiscuous compound substructures as features of GoF onco-

metabolites (Figure 5B).

Discussion

In this study, we predicted potential oncometabolites in nine

types of cancer by analyzing the massive scale genetic variants

integrated with cancer and normal GEMs. We first predicted

potential oncometabolites that could result from LoF mutations by

simulating flux changes in the metabolic network due to the LoF of

mutated enzymes. Second, we predicted oncometabolites that

could result from GoF mutations by inferring promiscuous

catalytic activities of enzymes resulting from their GoF mutations.

Setting aside the generally accepted LoF criterion (nonsense,

splice-variants and frame-shift), we rarely have information about

the mutational directionality of a given missense mutation whether

it functions as GoF or LoF. Specifically in the oncometabolite

analysis, enzymes can be disrupted in both ways. Whereas an LoF

of an enzyme gives a predictable malfunctions (e.g. an accumu-

lation of a target product), a GoF mutation is much more

unpredictable and is the very place in which an in silico analysis

should be targeted. As in the example of IDH, IDH gained an

unexpected catalytic activity that is result from missense

mutations. Therefore, in this study, we focused on the possible

metabolic perturbation of a GoF mutation in an enzyme can

raise. Note that, assuming a mutation to be GoF is different

from asserting the mutation is GoF. Using the aforementioned

criteria, we predicted 15 oncometabolites resulting from the

LoF mutations, and 24 substructures of oncometabolites

resulting from the GoF mutations. These predictions can be

used as a guide to examine select mutant enzymes and

generation of oncometabolites. Notably, in our reconstructed

models, several cancer and/or normal models do not uptake

glucose or secrete CO2 in their optimal flux states (optimal

solution). In order to prevent this problem, we allowed small

amounts of uptakes to important vitamins exchange reactions

(Table S4 in Text S1). Also, we constrained models to uptake

glucose, oxygen and secrete CO2, biomass. With the updates,

now most of models produce presumably reasonable uptake

and secrete flux states (see flux variation ranges in the Table
S5, S6 in Text S1). Although still several models do not secrete

any CO2 in the optimal flux states, this problem is not a critical

problem in our study since the representative flux states in our

results were determined from the sampling points within the

suboptimal solution space (90% of optimality solution space)

that is the flux variation ranges shown in the Table S5 and S6

in Text S1.

Altered energy metabolism in cancer cells is accepted as a

hallmark of cancer [2,5]. With the discovery of oncometabolites

such as 2-HG, succinate, and fumarate that originate from

mutations in key enzymes, alteration of metabolism is now

considered to be a strong oncogenic factor. With the existence of

oncometabolites established, there is clearly a great interest in

determining if there are additional metabolites with oncogenic

potential. Large-scale data sets available for a variety of cancers

and genome-scale models of metabolism can be used to predict the

existence of oncometabolites, and can contribute to therapies and

biomarkers in cancer.

Oncometabolites could be used to develop therapies and

identify biomarkers associated with cancer. Recent studies

showed that inhibition of mutant IDH1 delays growth of glioma

cells and induces cellular differentiation in leukemia, which

shows possibility of a potential application as a therapy for

cancer [38,39]. Also, it has been reported that a breast cancer

subtype with elevated level of 2-HG was associated with

reduced survival. This study indicated that high levels of 2-HG

may be a useful biomarker for breast cancer diagnosis and

prognosis [40]. Thus, predicting existence of potential onco-

metabolites would be beneficial in cancer therapies and

biomarker identification.

Materials and Methods

Model setup and parameterization
In order to reconstruct cancer type specific metabolic models

and their paired normal models, we used data sets of gene

expression experiments collected from TCGA consortium and

GEO Database which are composed of expression profiles of

primary cancer cells and site-matched normal cells (Table 1).

In order to maximize platform consistency, we focused on

using Affymetrix and Illumina Hiseq RNA-seq platforms. The

present/absent (P/A) calls of the Affymetrix gene expression

were made using the ‘mas5calls’ function in the ‘affy’ package

(ver. 1.28.0) implemented in R (ver. 2.15.0), and a threshold of

10 read maps was used to define detection of the P/A calls of

RNA-seq data at the gene level [41]. In our study, genes that

are expressed in more than 99% of the total number of samples

in a data set are finally determined as present (expressed)

genes.

The P/A call results of gene expression are then incorporated to

the reactional space using Gene Inactivity Moderated by

Metabolism and Expression (GIMME) algorithm implemented

in COBRA Toolbox v2.0 [42,43]. For the medium condition, a

standard RPMI-1640 condition was used in all simulations

[21,22]. Although, same medium uptake rates were applied to

different cancer and normal models, this is not likely to cause

serious artifacts since the proposed method is based on differences

of network structure of cancer vs. normal models as determined by

gene expression P/A call results.

As cancer cells are known to maximize their proliferation rate,

the biomass formation was maximized in all cancer models

[21,22] (Formula 1). However, normal cells may have different

objectives depending on the growth signals [3], thus we designed

a new objective function which can cover the different cellular

objectives in both proliferative and quiescent normal cells

(Formula 2).

values of significance (Figure S6 in Text S1). (B) The accuracy of the predicted flux changes from the reconstructed models. The prediction of gene
expression changes from changes in flux was tested against gene expression data sets for cancer vs. normal. The black bar depicts the accuracy of the
flux prediction from the reconstructed models. The grey bar denotes the median value of 10,000 accuracies from the random flux. The error bar
shows the standard error mean (SEM) of 10,000 random accuracies. (C) The percent stacked column chart shows the percent of genes for three
categories of gene knockout effects (Essential: knockout effect that reduced the growth rate more than 10%, 1,10% reduced: knockout effect that
reduced the growth rate from 1 to 10%, No change: knockout does not cause any change). (D) The accuracy of a model is evaluated by enrichment
analysis of experimentally validated essential genes among the predicted essential genes with the model. A P-value from the hypergeometric test is
converted to a z-score. Higher z-scores correspond to more significant enrichment (Orange: z-scores of essential genes, yellow: z-scores of genes
causing 9% growth reduction, sky-blue: causing 5% growth reduction, 1%: causing 1% growth reduction).
doi:10.1371/journal.pcbi.1003837.g004
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Figure 5. Predicted oncometabolites. (A) LoF oncometabolites. Metabolites surrounded by reactions with significantly changed flux in the mutated
enzyme deficient model compared to the normal model were finally predicted as the potential LoF oncometabolites. The heatmap shows predicted
oncometabolites (black) across nine mutated enzyme deficient cancer models ([m], [c] and [e]: metabolites observed in mitochondria, cytosol, and
extracellular, respectively). (B) GoF oncometabolite substructures. By applying the chemoinformatics approach, promiscuous catalytic activities of
enzymes resulting from their GoF mutations were predicted. The heatmap represents predicted dominant substructrues of promiscuous substrates and
products across seven cancer types. Full list of substructrues of promiscuous substrates and products is shown in the Table S8 in Text S1.
doi:10.1371/journal.pcbi.1003837.g005

Prediction of Oncometabolites In Silico

PLOS Computational Biology | www.ploscompbiol.org 10 September 2014 | Volume 10 | Issue 9 | e1003837



MaximizeVobj cancer~Vbiomass (1)

MaximizeVobj normal~a
Vbiomass

Vmax
biomass

zb
VATP

Vmax
ATP

(2)

Subjectto

S.v~0

Because normal cells have different, or multiple, physiological

objectives (i.e., biomass or ATP formation), we constructed an

objective function that was a linear combination of these

physiological functions (Formula 2). Each reaction flux in the

objective function was scaled by its maximum achievable flux in

the given growth condition. The contribution of each component

may be weighted with an additional coefficient (a and b) with a

value of 0 denoting no contribution to the objective. Here,

coefficient a and b are set to be 1 and 1, respectively (equal

contribution of biomass and ATP).

Markov chain Monte Carlo sampling
The distribution of feasible fluxes in the models used in this

study was determined using Markov chain Monte Carlo

(MCMC) sampling [44], and was implemented with the

COBRA Toolbox v2.0 [42]. Specifically, the objective func-

tion was provided a lower bound of 90% of the optimal growth

rate as computed by flux balance analysis [45]. Thus, the

sampled flux distributions represented sub-optimal flux-distri-

butions, but still simulated fluxes relevant to cell growth and

maintenance.

MCMC sampling was used to obtain thousands of feasible flux

distributions using the artificially centered hit-and-run algorithm

with slight modifications, as described previously [46,47]. As a

result, a mixed fraction of approximately 0.50 was obtained,

suggesting that the space of all possible flux distributions is nearly

uniformly sampled.

For each reaction, a distribution of feasible steady-state flux

values was acquired from the uniformly sampled points, subject to

the network topology and model constraints. Similar measures

were taken for all other models in this work.

Flux change prediction in cancer versus normal
To simulate changes in reaction flux occurring in a shift

between cancer and normal, the sampled fluxes for each reaction

were compared between cancer and normal as follows. First,

reactions that carried no flux in both conditions or that were

involved in loops [48] were removed and not used in further

analysis. Next, flux magnitudes were normalized between each

pair of media conditions. To do this, the flux value of each sample

point was divided by the sum of all flux magnitudes for the sample

point (Formula 3).

normalized fluxij~fluxij=
Xn

i~1

abs(fluxij) ð3Þ

n~number of reactions,i~ithreaction,j~jthsample point

Once the flux values were normalized, the changes of fluxes

between two conditions were determined as previously described

[47]. Briefly, differential reaction activity was determined by

assuming that a reaction is differentially activated if the

distributions of feasible flux states (obtained from MCMC

sampling) under two different conditions do not significantly

overlap. For each metabolic reaction, a P-value was obtained

by computing the probability of finding a flux value for a

reaction in one condition that is equal to or more extreme

than a given flux value in the second condition. The

significance of P-values was adjusted for multiple hypotheses

(FDR # 0.01).

Flux versus gene expression changes
The approach presented here extends the pre-published method

called Flux Space Shift analysis (FSS) [49]. FSS utilizes MCMC

sampling of the metabolic solution space to compute the

distribution of all possible steady-state fluxes an enzymatic reaction

can carry in a cell in a given growth condition. For each reaction,

a P-value is computed from the distributions of possible fluxes for

the reaction in a cancer cell and its matched normal cell. This P-

value represents the probability of choosing a flux value from a

reaction in a cancer cell that is also within the distribution for that

reaction in a normal cell. The P-values are then corrected for

multiple hypotheses, and the list of reactions that show signifi-

cantly different fluxes for cancer vs. normal is returned, along with

the direction of the change in magnitude (up or down). All

significantly changed fluxes are then decomposed into a list of

genes that help to catalyze the reactions using the gene-protein-

reaction associations in the model. Through this, one can obtain

lists of genes that are expected to be up-regulated or down-

regulated. Here, in order to minimize the ambiguity, genes that

are associated both with reactions that increase and other

reactions that decrease were removed, and reactions catalyzed

by more than one isoenzyme were also filtered out from the

analysis since not all isozymes are necessarily to change their gene

expression level. Once the lists of genes that are expected to be up-

or down-regulated are gathered, the predictions were compared to

the actual gene expression changes. The accuracy of the prediction

was demonstrated by the ratio of the number of correctly

predicted genes divided by the number of total predictions

(Formula 4). The significance of the accuracy is demonstrated by

a comparison with the background distribution using 10,000

random accuracy tests.

Accuracy~
TPzTN

TPzTNzFPzFN
ð4Þ

(TP: True positive, TN: True negative, FP: False positive, FN:

False negative)

Gene essentiality prediction
Accuracy of reconstructed cancer specific models was

assessed using experimentally determined essential genes. We

collected a list of cancer essential genes from [50]. Ulti-

mately, 14 cancer cell essential metabolic genes which were

reported as common essential genes across 13 cancer cell line

were used.

We performed in silico single gene deletion tests on each model,

and genes whose deletion effect reduces the maximum objective

reaction by more than 10% were determined to be in silico
essential genes. Finally, as the total number of predicted in silico
essential genes varies according to the models, the accuracy of the

models were evaluated with P-values from the hypergeometric

enrichment tests of experimental essential genes against the in
silico essential genes.
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Gain-of-function oncometabolite prediction
Defining similarity (measuring similarities of substrates

and reactions). Mutated enzymes are able to carry out new

catalytic functions by simultaneously changing the native reaction

mechanism and catalyzing different substrates. The changes could

be measured and compared using a chemoinformatic approach.

Previous studies have successfully shown the efficacy of the

chemoinformatic approach for enzyme promiscuity predictions

[30,31], reaction Enzyme Commission (EC) number assignments

[32,33], and reaction database analysis [34]. In this study, native

and nonnative substrates and reactions are represented by a

fingerprint, and the similarity of reactions and substrates were

compared by calculating the corresponding Tanimoto coefficient

between fingerprints.

Chemical representation. For compound and reaction

representation we used MDL Molfiles. A Molfile contains

information about the atoms, bonds, connectivities, and coordi-

nates of a molecule. The Molfile consists of some header

information, the Connection Table containing atom info, then

bond connections and types, followed by sections for more

complex information.

Substrate fingerprint. As stated before, substrates are

represented by chemical fingerprints. The chemical fingerprint

(CFP) of a molecule is defined as CFP = (Fi), in which Fi refers to

a molecular fragment with real occurrences of a molecule. Fi is

obtained by molecular fragmentation method. Each Fi in the

fingerprint is represented in bit string where each position of the

sequence is represented by ‘1’ or ‘0’ digits, depending on the

presence or absence of the structural pattern predefined by Fi.
Previous studies have shown good results by using linear fragments

from 5 up to 6 bonds [32,33]. In order to choose optimal

parameters for the compounds present in the HMDB, the

ChemAxon parameter optimization criteria was used. From this

analysis, the fingerprint length, the maximum fragmentation

pattern length and number of bit in the string were 1024, 6, and 2

respectively.

Reaction fingerprint. In the case of reaction fingerprints, each

compound present in the reaction is represented as a CFP. This

fingerprint is a segmented fingerprint that is constituted from 8

chemical fingerprint sections. This reaction fingerprint representation

allows us to compare reactions from its structural and transforma-

tional features. Parameters were defines as previously stated.

Tanimoto coefficient (TC). The comparison of two finger-

prints involves the calculation of the TC. Values of this metric are

non-negative numbers. Here, we used the TC dissimilarity

(TCdiss) metric. A zero dissimilarity value indicates that the two

fingerprints are identical, and the larger the value of the

dissimilarity coefficient the higher the difference between the

two structures. In its original form, Tanimoto metrics it is a

similarity metric (TCsim, Formula 5):

TCsim~
B(a&b)

B(a)zB(b){B(a&b)
ð5Þ

Where a and b are two binary fingerprints, & denotes binary

bit-wise and-operator, | denotes bit-wise or-operator and B(x) is

the number of 1 bits in any binary fingerprint x:

B(x)~Dfxi~1gDxi[f0,1g; i~1,:::,ngD~
Xn

i~1

xi

From that it is straightforward to obtain a dissimilarity measure

(Formula 6):

Tdiss~1{Tsim ð6Þ

Synthetic reaction construction
For synthetic reaction construction, we first defined a set of 374

irreversible generic biochemical reaction operators (BROs) that

has been used in previous studies, mostly for prediction purposes

for metabolic engineering [51–53], enzyme promiscuity analysis

[31,54], and xenobiotics degradation [55]. These BROs can

represent approximately 75% of enzymes present in the KEGG

Database and 72% of BRENDA EC numbers. Essentially, a BRO

is constructed based on the smallest substructure representing the

structural changes of substrates and products in a specific reaction.

Each BRO is related to specific cofactors and a third-level EC

number for further reaction reconstruction and identification. For

BRO representation, we used SMIRKS [56], a language used for

describing generic reactions (transformations) by using SMARTS

[56] representation of the reaction’s substructures. A SMARTS

pattern may include not only a specification of reaction center, but

also a specification of a local structure that must occur or is

necessarily absent based on our best understanding of the relevant

biochemistry [57]. After BRO construction, we generate all

possible reactions that may occur and every compound that may

be produced given the previous selected list of human metabolites.

Then, specific cofactors were assigned, and for filtering purposes

mass balance was performed.

Compound clustering analysis
For each mutated enzyme, Maximum Common Substructure

(MCS) analysis was used in order to identify the most common

chemical patter from all predicted products and substrates. The

idea is to identify from a range of chemical structures, the largest

substructure common in all of them.

For all calculations, with regard to handling compounds,

building reaction, substrate fingerprint generation, reaction

fingerprint generation, TC dissimilarity calculations, BROs

simulations, and MCS analysis we used MATLAB linked with

ChemAxon’s package libraries, specifically Marvin, JChem Base,

Standardizer and Reactor [(ChemAxon, Budapest,Hungary,

www.chemaxon.com)].
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