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Tau is a microtubule-associated protein, localizing mainly in the axon of mature
neurons. Phenotypic analysis of Tau knockout mice has revealed an impairment of
synaptic plasticity but without gross changes in brain morphology. Since we previously
described the presence of tau mRNA in the somatodendritic compartment, including
the postsynapse, and demonstrated that it could be locally translated in response to
glutamate, it appears that the regulated translation of synaptic tau can have a direct
impact on synaptic function. Using SH-SY5Y cells, we herein confirm that glutamate
dose-dependently regulates the translation of tau protein without altering tau mRNA
levels. This is supported by the finding that cycloheximide blocks glutamate-stimulated
increases in tau protein levels. Our observation that neural excitation can directly
upregulate tau mRNA translation helps explain the pathological accumulation of tau
in the somatodendrite.
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INTRODUCTION

Intracellular inclusions of hyperphosphorylated tau protein (neurofibrillary tangles, NFTs) and
extracellular deposits of amyloid β (Aβ) are prominent neuropathological features in the brains
of Alzheimer disease patients (Selkoe, 2004). The propagation of NFTs from the entorhinal cortex
to the neocortex, followed by neuronal and synapse loss, corresponds closely with the temporal
and clinical manifestation of AD symptoms – from impaired memory to dementia (Braak and
Braak, 1991; Gomez-Isla et al., 1997; Iqbal and Grundke-Iqbal, 2002). Thus, the formation and
propagation of NFT is likely to contribute to AD symptomatology.

In the healthy brain, tau is an exclusively axonal protein, engaged in the assembly and stability
of microtubules (Weingarten et al., 1975). In contrast, in the AD brain, tau is hyperphosphorylated
and forms fibrils that appear as neuropil threads in dendrites and as NFTs in the somato-dendritic
compartment and axons (Kowall and Kosik, 1987). Evidence showing that NFT formation is
preceded by a pre-tangle stage where non-fibrillar and hyperphosphorylated tau accumulates in
the soma and dendrites of neurons (Gotz et al., 1995; Uchihara et al., 2001; Braak and Del Tredici,
2013) indicates that tau hyperphosphorylation occurs in the somatodendrite before its fibrillation
and the appearance of neurofibrilar lesions.

Tau has recently been ascribed with a role in synaptic function in physiological conditions.
For example, we showed that tau is essential for the induction of long-term depression (LTD)
(Kimura et al., 2014), a phenomenon that can be explained by its presence in the somatodendritic
compartment: non-axonal tau is translated from tau mRNA that is transported to the post-synapse
as a complex comprised of mRNA binding protein (mRNP) and MyosinIV (Kobayashi et al., 2017).
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In line with previous work showing that neuronal excitation
can trigger the local translation of other dendritic molecules
implicated in synapse formation and plasticity (e.g., CaMKIIα,
GluR, and Arc) (Steward and Halpain, 1999; Steward and Worley,
2002; Steward and Schuman, 2003; Bramham and Wells, 2007),
we reported that glutamatergic stimulation enhances tau protein
translation and the accumulation of hyperphosphorylated
tau in somatodendrites of mouse hippocampal neurons
(Kobayashi et al., 2017).

Our previous work (Kobayashi et al., 2017) was primarily
based on immunohistochemical and immunoblotting analyses,
approaches that allow visualization and quantitation of tau levels
in neuronal dendrites, soma, and axons. The present experiments,
performed on glutamate-stimulated human neuroblastoma
SH-SY5Y cells, aimed at strengthening the evidence that
accumulation of tau in somatodendritic compartment in disease
states is due to enhancement of tau translation in response to
glutamatergic stimulation.

RESULTS

Cell bodies and neurites of neural SH-SY5Y cells differentiated
with retinoic acid (RA) displayed tau immunoreactivity when
stained with a pan-tau antibody (Figure 1A). To confirm

the interaction of dendritic mRNA-binding proteins with tau
mRNA, whole-cell extracts of differentiated SH-SY5Y cells
were immunoprecipitated using specific antibodies against the
dendritic mRNA-binding proteins FMRP (Greenough et al.,
2001), Staufen (Kiebler et al., 1999), ZBP1 (Tiruchinapalli et al.,
2003), Pur α (Ohashi et al., 2000), and YB-1 (Funakoshi et al.,
2003; Tanaka et al., 2010). After extraction of RNA from
the immunoprecipitants, RT-PCR using specific primers for a
common region in six tau mRNA isoforms was performed
(Figure 1B). That analysis revealed that Tau mRNA interacts
with all of the dendritic mRNA-binding proteins of interest.
We also examined which tau mRNA – 3-repeat tau or 4-repeat
tau – is expressed in the differentiated cytosolic fraction of
SH-SY5Y cells (Figure 1C) by RT-PCR assays, using specific
primers to detect the region encoding the microtubule-binding
domains (MBDs). Only one RT-PCR product with a length
corresponding to 3-repeat tau was detected, supporting an earlier
report (Uberti et al., 1997).

Earlier work demonstrated that the excitotoxic effects of
glutamate in SH-SY5Y only become manifest after extended
(overnight) exposure to high doses of glutamate (Sun et al.,
2010). This contrasts with the rapid (within 30 min) induction of
translation of dendritic tau mRNA when hippocampal neurons
are treated with 0.5 M of glutamate (Kobayashi et al., 2017).
Here we show that neural activation with glutamate for 30 min

FIGURE 1 | Tau mRNA interacts with mRNA-binding proteins and is expressed in SH-SY5Y cells. (A) SH-SY5Y cells were treated with RA for 4 days and
immunostained with anti-tau antibody (Alexa Fluor 555) (left-hand image); the right-hand image shows a phase contrast (PC). (B) The cytosolic fraction of
differentiated SH-SY5Y cells was immunoprecipitated with specific antibodies directed against dendritic mRNA-binding proteins, or control IgG. RNA was extracted
from the immune complex, and double-stranded tau cDNA was detected by RT-PCR. (C) RNA was extracted from the cytosolic fraction and RT-PCR was performed
using specific primers to examine the presence of the 3- or 4-repeat regions. The primer positions are shown as opposed arrows. ϕX174: molecular marker.
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FIGURE 2 | Glutamate stimulates the translation of tau mRNA. (A) Differentiated SH-SY5Y cells were treated with various concentrations of glutamate for 30 min,
and cell extracts were examined for tau protein content by Western blotting. GAPDH served as a control. RT-PCR data of tau mRNA is also shown. (B) The signal
intensity of tau protein was normalized to that of GAPDH, and expressed as a relative amount. Each value represents the mean and standard error obtained from
four independent experiments. ∗P < 0.05 versus control (one-way ANOVA, followed by Tukey–Kramer post hoc test). (C) Quantitative RT-PCR of tau mRNA after
exposure to various doses of glutamate concentration. (D) Differentiated SH-SY5Y cells were treated with glutamate (1 mM) for 30 min in the presence or absence of
cycloheximide (20 µg/ml). Tau protein from each cell extract was analyzed by Western blotting. GAPDH was used as a loading control. (E) Levels of tau protein are
expressed relative to that of GAPDH. Each value represents the mean and standard error obtained from four independent experiments. ∗∗P < 0.01 versus control or
in the presence of CHX (one-way ANOVA, followed by Tukey–Kramer post hoc test).

dose-dependently upregulates tau protein levels, as measured by
quantitative Western blotting (Figures 2A,B); tau protein levels
plateaued at glutamate doses >1 mM (Figure 2B). Glutamate
treatment did not alter tau mRNA expression (Figure 2C)
and importantly, the glutamate-induced increase in tau protein
levels was abolished when the cells were co-incubated with
cycloheximide (Figures 2D,E); the latter indicates that glutamate
activates the translation of tau mRNA.

Subsequently, we undertook a detailed analysis of the time
course of activity-dependent tau mRNA translation, using 1 mM
glutamate (Figures 3A–C). Western blot analysis revealed that
after peaking at 30 min after application of glutamate, tau
protein levels declined gradually (Figure 3B). At no time point
were the changes in tau protein accompanied by alterations in
tau mRNA levels (Figure 3C). Another important observation
from these experiments was that glutamate treatment resulted
in a marked increase of phosphorylated tau bearing an
AD-relevant epitope (detected by anti-tau pSer396 antibody)
(Figures 3D,E). A significant upregulation of phosphorylated
tau was also observable when results were normalized to total
tau levels (Figure 3F), confirming that glutamate increases
tau phosphorylation.

Together, these results demonstrate that glutamatergic
stimulation leads to rapid de novo synthesis and phosphorylation
of tau independently of tau mRNA transcription.

DISCUSSION

Regulation of Tau Translation
In healthy, mature neurons, tau is predominantly localized
in axons, with only low levels of expression in dendrites
(Kanai and Hirokawa, 1995; Hirokawa et al., 1996; Ittner and
Ittner, 2018). In contrast, somatodendritic levels of tau are
significantly increased in AD and other tauopathies (Kowall
and Kosik, 1987; Hoover et al., 2010). While the mechanisms
responsible for the differential distribution of tau in healthy vs.
diseased neurons are still unclear, one plausible mechanism for
somatodendritic accumulation of tau is through the transport
of tau mRNA in association with mRNP to the somatodendritic
compartment where tau protein is synthesized de novo upon
neuronal activation, e.g., by glutamate (Kobayashi et al., 2017).

Using differentiated human SHSY5Y cells, we here confirmed
our previous observation in primary mouse hippocampal
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FIGURE 3 | Glutamate-responsive translational activation of tau mRNA is transient, but induces AD-relevant phosphorylation of the newly synthesized tau protein.
(A) Time course analysis of the glutamate-dependent increase of tau protein levels. Differentiated SH-SY5Y cells were treated with 1 mM glutamate for the time
indicated and tau protein from each cell extract was analyzed by Western blotting. GAPDH served as a loading control. RT-PCR analysis of tau mRNA is also shown.
(B) The signal intensity of tau protein at each indicated time point was expressed relative to that of GAPDH. Each value represents the mean and standard error
obtained from five independent experiments. ∗P < 0.05 versus control (one-way ANOVA, followed by Tukey–Kramer post hoc test). (C) Quantitative RT-PCR of tau
mRNA at each time point is shown. (D) Differentiated SH-SY5Y cells were treated with different concentrations of glutamate for 30 min, and total tau protein and
phosphorylated tau (anti-tau pSer396) was detected by Western blotting. The amount of phosphorylated tau protein was expressed relative to that of GAPDH (E) or
total tau (F). Each value represents the mean and standard error obtained from four independent experiments. ∗∗P < 0.01 versus control (one-way ANOVA, followed
by Tukey–Kramer post hoc test).

neurons (Kobayashi et al., 2017) that tau mRNA associates with
dendritic mRNA-binding proteins, such as FMRP (Greenough
et al., 2001), Staufen (Kiebler et al., 1999), ZBP1 (Tiruchinapalli
et al., 2003), Pur α (Ohashi et al., 2000), and YB-1 (Funakoshi
et al., 2003; Tanaka et al., 2010); as in hippocampal neurons,
tau protein was visualized in both the cell body and neurites
of SHSY5Y cells. Further, glutamate was found to stimulate tau
mRNA translation into tau protein in a dose-dependent manner;
maximum levels of tau protein were detectable at 30 min after
application of glutamate after which they declined gradually
(Figures 3A,B). Proteasomal or autophagic activity are likely to
be responsible for the latter reductions in dendritic tau protein
(see Balaji et al., 2018).

Synaptic Tau
Although only transiently increased, it is highly plausible
that the glutamate-stimulated translation of tau protein is of
biological significance. Indeed, we previously reported that
hippocampal LTD cannot be induced in mice lacking the tau
gene (Kimura et al., 2014), suggesting a role for tau in synaptic

plasticity and function. Furthermore, it has been reported that tau
phosphorylation at Ser396 is required for LTD induction (Regan
et al., 2015). Glutamate-induced phosphorylated tau in synapse
may involve in synaptic plasticity.

While synaptic proteins, such as glutamate receptors and
BDNF, are locally translated from their mRNA in the synaptic
region (Kim et al., 2013; Leal et al., 2014), the origin of tau
in synapses under physiological conditions has been somewhat
controversial: although tau mRNA shares RNA binding proteins
with synaptic protein mRNAs, and several authors reported the
presence of presynaptic tau in human and animal brain tissue
(Tai et al., 2012; Jadhav et al., 2015), other investigators failed to
detect an overlap in immunolabeled endogenous mouse tau with
dendritic proteins such as drebrin and microtubule-associated
protein 2 (Kubo et al., 2019). Nonetheless, given the evidence
that reducing tau levels has a major impact on synaptic function
(Hoover et al., 2010; Kimura et al., 2014; Regan et al., 2015; Guo
et al., 2017), a postsynaptic site of tau action seems highly likely.
We suggest that synaptic tau may often elude detection because
of its short lifespan.
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Implications of Synaptic Tau for
Neurodegeneration
Neurofibrillary tangles are a well-known pathological marker
for neurodegeneration in AD and the other tauopathies
and, conversely, correlate with cognitive decline. However,
NFTs themselves do not induce neurotoxicity; rather, tau
aggregation processes seem to be responsible for synaptic
degradation and cognitive dysfunction (Santacruz et al.,
2005; Kimura et al., 2010; Takashima, 2013). Since the
shift in localization of tau from a predominantly axonal
site to somatodendritic site occurs during early stages
of neurodegeneration (Zempel et al., 2010; Zempel and
Mandelkow, 2014), the consensus now holds that tau aggregates
start to form from accumulations of phosphorylated tau in
the somatodendritic compartment. Although it is still unclear
as to how somatodendritic phosphorylated tau accumulation
contributes to neurotoxicity, several hypotheses appear to be
tenable. For example, we previously reported that granular
tau oligomers appear before tau fibril formation and that
an inhibitor of tau aggregation blocks the formation of
granular tau and prevents neuronal loss in a mouse model
of tauopathy (Soeda et al., 2015). These findings suggest
that aggregates of granular tau oligomers are responsible for
inducing neurotoxicity. Moreover, tau dimerization is known
to be a crucial initiating step in the neurodegenerative process
in tau-expressing cells; this, in turn, further enhances tau
aggregation and the production of reactive oxygen species
(ROS) and cytoplasmic Ca2+ which ultimately trigger cell
death (Pickhardt et al., 2017). While any cytoplasmic tau
can precipitate such neurotoxicity, it is worthwhile noting,
in the context of this study, that tau aggregates in the
synapse can impair clathrin-mediated endocytosis (Hoover
et al., 2010; Yu et al., 2019). The loss of synaptic function
through the aggregation of tau can potentially inhibit the
endocytosis and homeostatic balance of excitatory synaptic
receptors, thus disrupting synaptic plasticity and ultimately
triggering cell death.

MATERIALS AND METHODS

Antibodies
Anti-tau (rabbit) antibody (catalog no. SC1996-R, lot no.
B1213) was from Santa Cruz Biochemistry. Anti-tau pSer396
(rabbit) antibody (catalog no. BS4196, lot no. CJ36131) was
from Bioworld Technology. Anti-FMRP (mouse) antibody
(catalog no. MAB2160, lot no. 2137991, clone 1C3) was from
Millipore. Rabbit anti-Staufen1 (catalog no. ab73478, Gr21579-
1), mouse anti-Pur α (catalog no. ab77734, lot no. GR98153-
2), and rabbit anti-YB-1 (catalog no. ab76149, GR221265-24,
clone EP2708Y) antibodies were from Abcam. Anti-ZBP1/IMP1
(mouse) antibody (catalog no. RN001M, lot no. 001, clone
6H6) was from MBL Life Science. Alexa Fluor 555-conjugated
goat anti-rabbit IgG (catalog no. A21428, lot no. 1937183)
was purchased from Thermo Fisher Scientific. Horseradish
peroxidase (HRP)-linked anti-rabbit IgG (donkey) (catalog no.
NA934V. lot no. 377022) was from GE Healthcare Life Science.

Cell Culture and Immunocytochemistry
Human neuroblastoma SH-SY5Y cells were grown in Dulbecco’s
modified Eagle medium with 10% fetal bovine serum. Cells
were differentiated by incubation with 33.3 µM RA for
4 days. For immunocytochemistry, the cells were fixed in 4%
paraformaldehyde in phosphate-buffered saline (PBS) for 10 min,
treated with 0.5% Triton X-100 in PBS for 15 min, and then
incubated with anti-tau antibody in PBS containing 5% skimmed
milk at room temperature for 2 h. After washing with PBS,
specimens were incubated with Alexa Fluor 555-conjugated
second antibody for 1 h, washed with PBS, and viewed with an
Olympus inverted microscope linked to a DP-70 imaging system.

Western Blot Analysis
Cells were lysed in TKM buffer containing 50 mM
triethanolamine (pH 7.8), 50 mM MgCl2, 0.25 M sucrose, 1 mM
phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol
(DTT), protease inhibitors (complete cocktail, Roche), 1×
phosphatase inhibitor cocktail solution (Wako Pure Chemical
Industries), and ribonuclease inhibitor (0.2 unit/µl, Takara Bio
Inc.). The lysate was centrifuged at 3,000 rpm for 10 min and
the supernatant was used as the cytosol fraction. Proteins were
separated by SDS-PAGE and transferred to a Polyvinylidene
difluoride (PVDF) membrane. After treatment with anti-tau
antibody, the membrane was incubated with a secondary
HRP-conjugated antibody. Protein signals were detected with
an ECL kit (GE Healthcare Life Science) and assessed by
densitometric analysis.

Immunoprecipitation and RT-PCR
Each antibody (2 µg) was bound to Dynabeads Protein G
(Life Technologies) and incubated with cell lysate at 4◦C
for 4 h. The beads were washed with PBS containing 0.1%
BSA and co-immunoprecipitated RNAs were extracted with
SDS–phenol–chloroform and dissolved in water. First-strand
cDNA was synthesized with Moloney Murine Leukemia Virus
(MMLV) reverse transcriptase (Takara Bio Inc.) using an oligo
(dT) primer. Double-stranded tau cDNA was synthesized using
specific primers. The RT-PCR products were stained with
ethidium bromide and analyzed using a gel documentation
system (BioRad GelDoc XR Plus ImageLab). Primer pairs
were: 5′-ACTGGCATCTCTGGAGTGTGTG-3′ (forward)
and 5′-GCAGCTACAAGCTAGGGTGCAAG-3′ (reverse). To
investigate which tau mRNA – 3-repeat tau or 4-repeat tau –
is expressed in differentiated SH-SY5Y cells, RT-PCR was
performed using specific primers with the following sequences:
5′-AGGTGAACCTCCAAAATCAGGGGATC-3′ (forward) and
5′-ACADTTGGAGGTCACTTTGCTC-3′ (reverse).

Quantitative RT-PCR (Real-Time
qRT-PCR)
Total RNA was extracted with a mini-prep RNA extraction kit
(QIAGEN) in accordance with the manufacturer’s instructions,
and first-strand cDNA was synthesized from 1.0 µg of total
RNA using reverse transcriptase (Takara Bio Inc.) as described
above. Aliquots of cDNA were used for qPCR with a StepOnePlus
Real Time PCR system (Applied Biosystems) using PowerUp
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SYBR Green Master Mix (Thermo Fisher Scientific). The level
of tau mRNA expression was normalized to that of β-actin
mRNA. The primer sequences used for double-stranded tau
cDNA are given above. The primers for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) mRNA were as follows:
5′-TGAGTACGTCGTGGAGTCCACTG-3′ (forward) and 5′-
GGGATGATGTTCTGGAGAGC-3′ (reverse).
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