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Abstract

Identifying the complete set of functional elements within the human genome would be a windfall for multiple areas of biological

research includingmedicine,molecularbiology, andevolution.Completeknowledgeof functionwould aid in theprioritizationof loci

when searching for the genetic bases of disease or adaptive phenotypes. Because mutations that disrupt function are disfavored by

natural selection, purifying selection leaves a detectable signature within functional elements; accordingly, this signal has been

exploited for over a decade through the use of genomic comparisons of distantly related species. While this is so, the functional

complement of the genome changes extensively across time and between lineages; therefore, evidence of the current action of

purifying selection in humans is essential. Because the removal of deleterious mutations by natural selection also reduces within-

species genetic diversity within functional loci, dense population genetic data have the potential to reveal genomic elements that are

currently functional. Here, we assess the potential of this approach by examining an ultradeep sample of human mitochondrial

genomes (n¼ 16,411). We show that the high density of polymorphism in this data set precisely delineates regions experiencing

purifying selection. Furthermore, we show that the number of segregating alleles at a site is strongly correlated with its divergence

across species after accounting for known mutational biases in human mitochondrial DNA (�¼0.51; P< 2.2�10�16). These two

measures trackone anotherat a remarkablyfine scale acrossmany loci—a correlation that is purely the result ofnatural selection.Our

results demonstrate that genetic variation has the potential to reveal with surprising precision which regions in the genome are

currently performing important functions and likely to have deleterious fitness effects when mutated. As more complete human

genomes are sequenced, similar power to reveal purifying selection may be achievable in the human nuclear genome.
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Introduction

Only 1–2% of human genome lies within protein-coding se-

quence (Lander et al. 2001). Determining the extent to which

the remainder of the genome is functional is crucial to our

understanding of human biology. A variety of recently devel-

oped experimental techniques have aided in the search of

noncoding DNA for functional elements (Dunham et al.

2012); however, on their own these techniques can produce

a huge number of false positives (Graur et al. 2013). Searches

for the evolutionary signature of purifying selection have

therefore proved a more fruitful strategy for identifying func-

tional elements; indeed phylogenetic searches comparing se-

quences of related species have revealed that approximately

5% of the human genome is constrained by natural selection

(Chinwalla et al. 2002; Siepel et al. 2005; Lunter et al. 2006;

Birney et al. 2007; Davydov et al. 2010), and similar strategies

have been used to predict the phenotypic severity of muta-

tions (Stone and Sidow 2005). Although whole-genome com-

parisons aimed at identifying the footprints of selection are

highly effective, they have been used primarily to detect ele-

ments under constraint for hundreds of millions of years of

evolutionary history (Siepel et al. 2005; Davydov et al. 2010).

However, the set of functional elements in the genome expe-

riences considerable turnover (Demuth et al. 2006). Com-

parative genomic techniques will fail in these instances,

particularly for the supremely interesting cases of human-

specific gain (Knowles and McLysaght 2009) and loss of func-

tion (Wang et al. 2006).

Surveys of genetic diversity within species, on the other

hand, have the potential to identify regions currently
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experiencing purifying selection and that are therefore func-

tional, as purifying selection will remove genetic diversity from

such loci. Unfortunately, genetic variation in the human

genome is quite sparse, with a comparison of any two homol-

ogous chromosomes uncovering less than 1 single-nucleotide

polymorphism (SNP) every kilobase (Lander et al. 2001).

Sampling more individuals, however, yields additional poly-

morphisms, and an ultradeep sample of mitochondrial varia-

tion from 16,411 genomes is available in the MITOMAP

database (Ruiz-Pesini et al. 2007). These data are extremely

polymorphic, with more than one SNP on every other base

pair on average. This data set thus serves as an ideal proving

ground for the approach of identifying functional constraint

using massive amounts of polymorphism data, which will

soon be available for nuclear genomes. Here, we show that

the density of polymorphism in these data closely tracks diver-

gence at a fine scale, implying that these data can indeed be

used to reveal the strength of purifying selection in the human

mitochondrial genome at a very high resolution. Our results

suggest an enormous potential for population genomic data

to uncover functional DNA elements, including those not con-

served across species.

Results and Discussion

We set out to determine the extent to which polymorphism

data reveal the strength of purifying selection across the

human mitochondrial genome and downloaded the coordi-

nates of all 8,944 SNPs from MITOMAP (http://www.

mitomap.org/MITOMAP, last accessed August 4, 2013). We

reasoned that if the density of polymorphism was governed by

the amount of purifying selection acting on each site, then

SNP density would be correlated with divergence across spe-

cies, in accordance with expectations under the Neutral model

(Kimura 1982). This is indeed what we observe in the form of

a strong correlation between the number of alleles per site

and its average negated phyloP score (Siepel et al. 2006) mea-

suring divergence across vertebrates (Spearman’s �¼0.52;

P<2.2�10�16). This correlation is also highly significant

when averaging polymorphism and divergence within 10-bp

adjacent windows (�¼0.50; P< 2.2�10�16; fig. 1).

Although this observation is consistent with purifying selec-

tion both removing diversity and constraining divergence at

functional elements, such a pattern could also be generated

by variation in the spontaneous mutation rate. It has been

shown that mutation rate in the mitochondria varies accord-

ing to the duration for which a given site remains single

stranded on the H strand (DssH) during DNA replication

(Reyes et al. 1998). We also find evidence for this in the

form of a significant correlation between divergence at each

site and the duration the site is single stranded on the H strand

during replication, although this correlation is far weaker than

that shared between polymorphism and divergence (�¼0.11;

P<2.2�10�16). Moreover, after correcting for DssH, the

correlation between polymorphism and divergence at individ-

ual sites is essentially unchanged and still highly significant

(�¼0.49; P<2.2�10�16).

Rather than being driven by a subset of mitochondrial loci,

this correlation is significant (at P< 0.05) in 36/37 genes and is

significant in 35/37 genes after correcting for DssH (table 1).

Similarly, polymorphism and divergence are more strongly cor-

related in protein-coding (�¼�0.53; P<2.2�10�16) and

RNA-coding genes (�¼�0.43; P<2.2�10�16) than

noncoding DNA within the control region (�¼�0.23;

P¼9.3�10�15) or outside of it (�¼�0.30; P¼0.021). This

correlation is also far stronger at nonsynonymous than synon-

ymous sites (�¼ 0.25 for second codon position sites,

P<2.2�10�16; �¼ 0.079 for 4-fold degenerate sites,

P¼3.6�10�4; fig. 2) as expected if purifying selection is a

more predominant force at nonsynonymous sites. Finally, the

minor allele frequencies of SNPs from the Human

Mitochondrial Genome Database (mtDB; Ingman and

Gyllensten 2006) are correlated with divergence (�¼ 0.076;

P¼4.0�10�16), even though variation in mutation rate is not

expect to affect allele frequencies. Thus, purifying selection

uniquely drives patterns of polymorphism in the human mito-

chondrial genome. This finding supports previous reports that

purifying selection is a prominent force in the mitochondrial

genome (Rand and Kann 1996; Nielsen and Weinreich 1999;

Elson et al. 2004; Stewart et al. 2008). The patterns we ob-

served are not the result of positive selection, as the fixation of

a beneficial mutation through a selective sweep removes all

genetic diversity from a nonrecombining chromosome (Smith

and Haigh 1974). We are thus limited to observing mutations

occurring since the most recent sweep.

Having established that patterns of polymorphism across

the human mitochondria are largely determined by purifying

selection, we sought to determine the resolution at which

these data reveal the strength of selection acting on particular

sites in the genome. We examined patterns of SNP diversity

and divergence in 5-bp sliding windows across each gene in

the mitochondrial genome, observing the extent to which the

two measures mirror one another on a small scale. In partic-

ular, within each window, we calculated the average SNP

density per base pair and the average probability that the

site is not conserved across vertebrates according to

phastCons (Siepel et al. 2005). We find that for many loci,

tRNA genes in particular, these two measures track one an-

other to a surprising extent (e.g., the phenylalanine and tryp-

tophan tRNA genes shown in fig. 3; the remaining tRNA

genes are shown in supplementary fig. S1, Supplementary

Material online). This result demonstrates that SNP density

has the ability to reveal the strength of selection at a surpris-

ingly detailed resolution—on the scale of a few base pairs.

As a simple proof of concept, we sought to use SNP density

to predict function at a fine scale via a hidden Markov model

(HMM; Rabiner 1989). Using a similar strategy as phastCons

(Siepel et al. 2005), we learned a two-state HMM (constrained
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vs. unconstrained) where the observation for each site in the

genome is the number of alleles at the site. We then used this

HMM to predict constrained regions to which we refer as

mitoPopCons elements. There is extremely strong overlap be-

tween mitoPopCons elements obtained from polymorphism

data and phastCons elements predicted from divergence

(P< 0.0001; fig. 4; see Materials and Methods). Although

mitoPopCons recovers somewhat fewer genic base pairs

than phastCons (35.4% of all genic base pairs are recovered

by mitoPopCons versus 49.7% by phastCons), mitoPopCons

elements contain fewer intergenic base pairs (0.75% of

mitoPopCons base pairs are intergenic versus 3.4% of

phastCons bases). Given the dramatically deeper evolutionary

time period examined by phastCons data, that it seems to

perform only marginally better than mitoPopCons under-

scores the potential of population genetic approaches.

phastCons elements are smaller and more numerous (1,395

elements averaging 6.7 bp in length) than mitoPopCons ele-

ments (33 elements averaging 167 bp), perhaps implying that

phylogenetic data allow for higher resolution prediction than

even our dense polymorphism data. On the other hand, ele-

ment length distributions may have been influenced by the

difference in emission probability training methods used for

mitoPopCons (trained via the Baum–Welch algorithm; see

Materials and Methods) and phastCons elements. In any

case, the success of this simple HMM shows that SNP diversity

has the ability to accurately predict function at a fine scale in

the human mitochondria.

We have shown that ultradense polymorphism data can be

used to accurately detect functional nucleotides in the human

mitochondrial genome, potentially at the level of the individual

base pair, while sidestepping limitations of phylogenetic

approaches. This result suggests that as whole-genome

sequencing becomes more ubiquitous, it may become possi-

ble to perform such high-resolution prediction in the nuclear

genome as well. Applying a polymorphism-based approach to

the nuclear genome will present several additional challenges.

First, independent assortment and recombination in the nu-

clear genome cause different loci to have distinct genealogical

histories and therefore varying levels of diversity under neu-

trality, thereby potentially impeding the detection of selection.

As another consequence of recombination, both positive

(Smith and Haigh 1974) and negative selection

(Charlesworth et al. 1993) will have localized effects on

flanking variation, rather than genome wide as in the mito-

chondria. These forces will further increase variance in poly-

morphism at unselected sites and may thus obscure the signal

of negative selection at selected sites.

Another difficulty of the nuclear genome is that its nucle-

otide diversity is far lower than that of the mitochondrial

genome (Lander et al. 2001), meaning that an even larger

number of sequences than examined here may be required

to accurately detect selection. Moreover, the power to detect

function increases logarithmically with sample size (supple-

mentary fig. S2, Supplementary Material online). However,

given the ever-increasing rate at which new human genome

sequences are released, this problem may not be insurmount-

able. Finally, there is likely more variation in the strength of

purifying selection acting in the nuclear genome than in the

mitochondria. As a consequence, weakly constrained but still

functionally important regions may evade detection, especially

by a two-state method, allowing for only one level of con-

straint like the HMM used here.

If these hurdles can be overcome, approaches such as ours

will then have an enormous impact on biological research, al-

lowing for the discovery of the complete set of functional

FIG. 1.—The correlation between polymorphism and divergence in the human mitochondrial genome. The average number of alleles per base pair in

10-bp windows is shown in the x-axis and divergence as measured by the negated phyloP score is shown in the y-axis.
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elements in the human genome and the degree to which new

mutations at each site are deleterious. Such efforts will vastly

improve predictions of the phenotypic impact of mutations oc-

curring in humans and will prioritize searches for disease-caus-

ing mutations. This information will also reveal species-specific

changes in selective pressures at the resolution of individual

nucleotides, thereby greatly improving our understanding of

how the functional components of genomes evolve.

Materials and Methods

We converted all coordinates obtained from MITOMAP and

mtDB from the Cambridge Reference Sequence (CRS)

coordinate space to the human reference genome’s

(GRCh37) coordinate space by aligning the two mitochondrial

sequences using MUSCLE (Edgar 2004). We downloaded

phyloP scores for each mitochondrial site from the UCSC

Genome Browser Database (Meyer et al. 2013). Because

there are no allele frequency data available for MITOMAP

SNPs, we used the number of alleles at each site as our mea-

sure of diversity. For the correlation of minor allele frequency

with divergence, we used frequencies of biallelic SNPs from

mtDB. We measured the duration of single strandedness

(DssH) following Chong and Mueller (2013), using the coordi-

nates of the light-strand origin of replication from MITOMAP.

For the DssH analyses, we omitted sites within the control

Table 1

Gene-Specific Correlations Between SNP Density and Negative phyloP Score

Gene Name Gene Description Gene Start

(hg19)

Gene End

(hg19)

Spearman’s

q

P Spearman’s q

(Correcting for DssH)

P(Correcting

for DssH)

MT-TF tRNA phenylalanine 579 649 �0.484 1.90� 10�5
�0.468948 3.71� 10�5

MT-RNR1 12S ribosomal RNA 650 1603 �0.429 <2.20� 10�16
�0.4169046 <2.20� 10�16

MT-TV tRNA valine 1604 1672 �0.336 0.004783 �0.326022 0.006261

MT-RNR2 16S ribosomal RNA 1673 3230 �0.443 <2.20� 10�16
�0.4435798 <2.20� 10�16

MT-TL1 tRNA leucine 1 3231 3305 �0.301 0.008593 �0.29837 0.00932

MT-ND1 NADH dehydrogenase subunit 1 3308 4263 �0.542 <2.20� 10�16
�0.5149936 <2.20� 10�16

MT-TI tRNA isoleucine 4264 4332 �0.269 0.02551 �0.2523745 0.03643

MT-TQ tRNA glutamine 4330 4401 �0.463 4.19� 10�5
�0.476385 2.34� 10�5

MT-TM tRNA methionine 4403 4470 �0.291 0.01611 �0.2880727 0.01721

MT-ND2 NADH dehydrogenase subunit 2 4471 5512 �0.516 <2.20� 10�16
�0.461188 <2.20� 10�16

MT-TW tRNA tryptophan 5513 5580 �0.509 9.42E� 10�6
�0.4626812 7.11� 10�5

MT-TA tRNA alanine 5588 5656 �0.429 0.0002381 �0.4412621 0.0001475

MT-TN tRNA asparagine 5658 5730 �0.378 0.0009899 �0.3765626 0.001025

MT-TC tRNA cysteine 5762 5827 �0.596 1.26� 10�7
�0.5709837 5.55� 10�7

MT-TY tRNA tyrosine 5827 5892 �0.352 0.00371 �0.3486535 0.004118

MT-CO1 Cytochrome c oxidase subunit I 5905 7446 �0.633 <2.20� 10�16
�0.6186776 <2.20� 10�16

MT-TS1 tRNA serine 1 7447 7515 �0.627 8.31� 10�9
�0.6107229 2.51� 10�8

MT-TD tRNA aspartic acid 7519 7586 �0.365 0.002186 �0.320253 0.007758

MT-CO2 Cytochrome c oxidase subunit II 7587 8270 �0.573 <2.20� 10�16
�0.5291891 <2.20� 10�16

MT-TK tRNA lysine 8296 8365 �0.331 0.005158 �0.2809919 0.01846

MT-ATP8 ATP synthase F0 subunit 8 8367 8573 �0.266 0.0001042 �0.2637231 0.0001233

MT-ATP6 ATP synthase F0 subunit 6 8528 9208 �0.389 <2.20� 10�16
�0.3823366 <2.20� 10�16

MT-CO3 Cytochrome c oxidase subunit III 9208 9991 �0.538 <2.20� 10�16
�0.5314281 <2.20� 10�16

MT-TG tRNA glycine 9992 10059 �0.396 0.0008191 �0.3404812 0.004497

MT-ND3 NADH dehydrogenase subunit 3 10060 10405 �0.510 <2.20� 10�16
�0.5000739 <2.20� 10�16

MT-TR tRNA arginine 10406 10470 �0.470 7.66� 10�5
�0.4415206 0.0002317

MT-ND4L NADH dehydrogenase subunit 4L 10471 10767 �0.491 <2.20� 10�16
�0.5133884 <2.20� 10�16

MT-ND4 NADH dehydrogenase subunit 4 10761 12138 �0.561 <2.20� 10�16
�0.5419698 <2.20� 10�16

MT-TH tRNA histidine 12139 12207 �0.277 0.02112 �0.1786413 0.1419

MT-TS2 tRNA serine 2 12208 12266 �0.470 0.0001712 �0.489146 8.45� 10�5

MT-TL2 tRNA leucine 2 12267 12337 �0.374 0.001311 �0.3543069 0.002434

MT-ND5 NADH dehydrogenase subunit 5 12338 14149 �0.532 <2.20� 10�16
�0.5141183 <2.20� 10�16

MT-ND6 NADH dehydrogenase subunit 6 14150 14674 �0.500 <2.20� 10�16
�0.4776221 <2.20� 10�16

MT-TE tRNA glutamic acid 14675 14743 �0.347 0.003468 �0.3476731 0.003421

MT-CYB Cytochrome b 14748 15888 �0.551 <2.20� 10�16
�0.5025513 <2.20� 10�16

MT-TT tRNA threonine 15889 15954 �0.560 1.00� 10�6
�0.4354723 0.0002578

MT-TP tRNA proline 15957 16024 �0.103 0.4044 �0.1870294 0.1267
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FIG. 3.—The probability of polymorphism versus the probability of unconstrained evolution across vertebrates. (A) The 5-bp sliding genomic windows

showing SNP density (blue) and one minus the probability of conservation across vertebrates (red) according to phastCons (Siepel et al. 2005) across the

phenylalanine tRNA gene. (B) The same plot for the tryptophan tRNA gene.

FIG. 2.—The correlation between polymorphism and divergence at nonsynonymous and synonymous sites. The number of alleles observed at each site is

shown in the x-axis, and divergence (negative phyloP score) is shown in the y-axis at (A) second codon position (nonsynonymous) sites and (B) 4-fold

degenerate (synonymous) sites. We added noise to the number of alleles to reveal the density of sites along the y-axis.
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region. To control for the DssH-divergence correlation, we fit a

generalized linear model treating the number of segregating

alleles at each site as a Poisson distributed response variable

and with DssH value as the predictive variable using R. We then

calculated the correlation between phyloP scores and the

polymorphism residuals.

The HMM analysis was performed in MATLAB with the

same transition matrix as used to learn the phastCons HMM

for the UCSC Genome Browser (Kent et al. 2002). For each

base pair, the emitted observation was the number of alleles

(ranging one and four) found in the MITOMAP data set. The

rationale for this approach was that after training the HMM,

its two states should have different probabilities of emitting 1,

2, 3, or 4 alleles at a given site, and this would result in one

state being more likely in stretches of DNA under selective

constraint, whereas the other state would have higher likeli-

hood in less constrained sequences. After assigning an initially

random emission probability matrix, we then used Baum–

Welch training to learn the emission parameters only for the

constrained and unconstrained states by using large number

of pseudocounts for transition matrix to ensure that it

remained invariant during training. To guard against conver-

gence at a poor local optimum, we repeated this process ten

times and kept the emission matrix under which the observed

sequence data had the highest likelihood. After training, we

considered the state with the higher probability of emitting

monomorphic sites to be the “functional” state and the other

state to be “nonfunctional.” Next, we predicted constrained

elements by using the Viterbi algorithm. We tested for signif-

icant overlap between our HMM predictions and mammalian

phastCons elements from the UCSU Genome Browser by

counting the number of base pairs constrained according to

both methods and compared this count with those obtained

after permuting the coordinates of our predictions. This was

repeated for 10,000 permutations to obtain a P value.

To reveal the relationship between sample size and the

HMM’s power to recover functional sites, we also repeated

the HMM analysis as described above for different sample

sizes using the number of alleles at each site in the mtDB

set—the MITOMAP set could not be used for this as it lacks

reliable allele frequency estimates. The sample sizes we exam-

ined ranged from 100 to 1,800, incrementing by 100. We also

used a sample size of 1,864, which was the minimum sample

size among all SNPs in the mtDB set. For each sample size, we

randomly downsampled from the full mtDB data set by ran-

domly drawing the desired number of alleles from the full set

at each site without replacement. We then counted the

number of distinct alleles observed at each site within the

downsampled set, and this number was used as the observa-

tion for the HMM.

Supplementary Material

Supplementary figures S1 and S2 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjour

nals.org/).
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