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Review Article

IntroductIon
Angiogenesis is a highly complex process involving a range of 
cell types and signaling pathways. Neovascularization requires 
the activation and proliferation of endothelial cells (ECs). 
Activation of Ecs by factors such as the vascular endothelial 
growth factor (VEGF) gives rise to new blood vessel formation. 
Studies have indicated that VEGFs induce angiogenesis in vitro 
as well as in vivo.[1‑4] In addition to normal tissue, angiogenesis 
can also occur in tumor tissue.[5‑9] The development of new vessels 
begins in pre‑malignant conditions as the demand for oxygen 
and nutrients by the growing cancer cell mass increases.[10] 
The developing vessels in tumors are unlike normal vessels. In 
tumors, vessels are irregular in diameter, have thin walls, and 
are leaky.[11,12] Cancer can be treated with surgery, chemotherapy, 
or radiation therapy.[13] The abnormal vascularity can make 
tumors resistant to chemotherapeutic agents. Anti‑angiogenic 

therapy suppresses tumor growth.[14] One of the new methods 
for treating cancer is the use of stem cells.[15] Some studies have 
indicated that stem cells have therapeutic effects on tumor tissue, 
whereas others have provided evidence of the negative effects 
of these cells.[16] Mesenchymal stem cells (MSCs) are involved 
in tumorigenesis, including induction of angiogenesis,[17] 
stimulation of epithelial–mesenchymal transition (EMT) and 
tumor metastasis,[18] and inhibition of tumor cell apoptosis.[19] 
MSCs suppress tumor growth by inhibiting angiogenesis,[20] 
inducing cell cycle arrest and apoptosis[21] [Figure 1]. This article 
provides an overview of the role of stem cells and vascular 
endothelial growth factors in cancer angiogenesis.

data acquIsItIon
Scientific publications, journals, and textbooks were excluded 
from the search. In vivo and in vitro studies were both evaluated 
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equally. Two independent researchers reviewed the included 
data, abstracts, titles, and full texts to determine their relevance 
for inclusion in the study. The search terms used were “cancer,” 
“angiogenesis,” “stem cell,” “paracrine secretions,” “vascular 
endothelial growth factor,” TGF‑β, TGF‑α, FGF2, PDGF, 
BFGF, granulocyte colony‑stimulating factor, granulocyte 
colony‑stimulating factor, interleukin‑8 (IL‑8), hepatocyte 
growth factor, epidermal growth factor, and other factors. No 
methodological search filter was applied. Scientists in related 
fields were contacted to assess the findings and conclusions of 
the related literature. In the event that additional information 
was needed, the authors were contacted whenever possible.

angIogenesIs
New blood vessels develop through vasculogenesis, 
angiogenesis, arteriogenesis, and collateral growth.[17] 
Angiogenesis is known as the process by which new blood 
vessels form from pre‑existing blood vessels.[5] It is a complex 
four‑step process involving the destruction of the basement 
membrane, the activation of ECs, the proliferation of ECs, 
and the continuation of the process under the influence of 
angiogenic (pro‑angiogenic) factors.[18] The reason for the 
complexity of the process is the requirement for a variety of 
biological interactions, including several cell types, angiogenic 
factors, and extracellular matrix. Typically, angiogenesis 
occurs in the fetal and adult stages. In adulthood, it plays a vital 
role in wound healing and the female reproductive cycle, such 

as ovulation, follicle development, corpus luteum formation, 
progesterone release, endometrial growth, and embryo 
implantation. In addition, this process plays an important 
role in the progression of cancer.[5,19,20] In 1971, Folkman was 
the first person to propose that tumor growth depends on the 
induction of angiogenesis. Subsequently, studies have shown 
the essential role of angiogenesis in tumor metastasis because 
it can provide the basis for tumor cells to metastasize farther 
away.[20] It also diminishes tumor access to chemotherapy 
drugs.[14] Many factors are involved in regulating angiogenesis, 
which are secreted by cells such as ECs, cancer cells, stromal 
cells, blood, and extracellular matrix.[5] These factors consist 
of pro‑angiogenic factors including BFGF, VEGF,[21,22] 
TGF‑β, TNF‑α, FGF2, PDGF, epidermal growth factor, 
angiogenin, angiopoietin,[23] granulocyte colony‑stimulating 
factor, interleukin‑8 (IL‑8),[24] and hepatocyte growth 
factor.[25] Anti‑angiogenic factors consist of angiostatin, 
thrombospondin‑1 and ‑2, platelet factor‑4, endostatin, 
anti‑thrombin III fragment, osteopontin, collagen, kininogen 
domains, vasostatin, calreticulin, soluble, and the tissue 
inhibitors of metalloproteinases.[5] Interaction and balance 
between pro‑angiogenic and anti‑angiogenic factors regulate 
angiogenesis[26] [Figure 1]. When the balance between the 
factors is disturbed in such a way that the balance moves toward 
the stimulus, the ECs become active, a change in the expression 
of genes and proteins occurs, and eventually, angiogenesis 
starts. Therefore, in angiogenesis, it is not sufficient to increase 
pro‑angiogenic factors, but also a reduction in the expression 
of anti‑angiogenic factors is required.[20] Hypoxia stimulates 
angiogenesis in tumor tissue by increasing the expression of 
the VEGF and other angiogenic stimuli.[5] The VEGF plays 
a major role in pathological angiogenesis, such as macular 
degeneration, diabetic retinopathy, inflammatory processes, 
tumor growth, and metastasis.[27]

effect of the Vegf on cancer cells
The role of the VEGF in tumor angiogenesis was established 
via stimulation of VEGFRs on the tumor endothelium. 
However, there is increasing evidence that the VEGF may have 
an additional role in cancer via the stimulation of VEGFRs in 
tumor cells.[28] Several studies have demonstrated the presence 
of VEGFRs in cancer cells, such as breast cancer, pancreatic, 
prostate, and lung cancer cells.[29‑32] Therefore, the expression 
of VEGFRs by tumor cells involves the major role of VEGF/
VEGFR signaling in these tumors. Yanga et al. (2015) 
demonstrated that VEGF‑B is a vascular remodeling factor 
promoting cancer metastasis and that targeting VEGF‑B may 
be an important therapeutic approach for cancer metastasis[33] 
Positive regulation of the VEGF/neuropilin‑1 axis in breast 
cancer tumorigenesis and metastasis may be associated with 
enhanced EMT and NF‑B and catenin signaling.[34] Zhao 
et al. (2015) showed that VEGF promotes tumor‑initiating 
cells’ (primary breast and lung cancers) self‑renewal through 
VEGFR‑2/STAT3 signaling[35] Myeloid‑derived suppressor 
cells (MDSCs) induced through VEGF signaling play 

Figure 1: Schematic image of angiogenesis switch
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important roles in tumor immune evasion in ovarian cancer, 
and the targeting of VEGF‑induced MDSCs represents a 
promising treatment for ovarian cancer.[36] Kong et al. (2020) 
showed that VEGF‑C mediates tumor growth and metastasis 
by promoting EMT‑epithelial breast cancer cells.[37] Tomida et 
al. (2018) indicated that VEGF/VEGF‑R inhibitors directly act 
on colon cancer cells and activate their evasive adaptation via 
various mechanisms.[38]

effect of Mscs on cancer cells
One of the important steps in angiogenesis is the differentiation 
of progenitor ECs into ECs and the proliferation of the resulting 
cells. Several different signaling control this process.[5] The 
tumor microenvironment consists of different types of cells 
that affect tumor angiogenesis.[28] A lack of balance between 
angiogenic factors results in the pathogenesis of many diseases. 
For example, insufficient angiogenesis causes ischemic 
disease, and high levels of it can lead to cancer.[29] Small 
vessels only contain ECs, but larger vessels contain mural 
cells (pericyte and vascular smooth muscle).[17] Nowadays, 
angiogenic therapy is just as important as surgical treatments, 
chemotherapy, and radiation therapy. Cancer anti‑angiogenesis 
treatments have an advantage over chemotherapy. They do 
not cause toxicity and have a synergistic effect in the use of 
other treatments such as chemotherapy, radiation therapy, and 
gene therapy.[20] Therefore, the advantage of anti‑angiogenesis 
therapy resulted in promoting researchers to come up with 
new anti‑angiogenesis treatments for cancer. One of the new 
methods in the treatment of cancer is the use of MSCs.[15]

One of the cells used to treat breast cancer is the stem 
cell.[30] Stem cells are a group of undifferentiated cells that 
can discriminate into different types of specialized cells.[31] 
MSCs are a population of stem cells with self‑renewal and 
multipotentiality that hold great promise for regenerative 
medicine.[32] MSCs move to tumor sites and then incorporate 
between the tumor stroma.[34,39] These cells interact with 
cancer cells.[40,36] MSCs have been isolated from bone marrow, 
adipose tissue, and umbilical cord blood. MSCs promote 
tumor growth and suggest that the crosstalk between tumor 
cells and MSCs increased the expression of pro‑angiogenic 
factors, which may have induced tumor cell proliferation and 
angiogenesis thereby increasing solid tumor growth.[41] Adipose 
tissue‑derived stem cells (ADSCs) significantly promoted the 
proliferation and invasion of ovarian cancer cell (EOC) in 
both direct and indirect co‑culture assays. In addition, after 
co‑culture with ADSCs, EOC cells secreted higher levels of 
matrix metalloproteinases (MMPs), and inhibition of MMP2 
and MMP9 partially relieved the tumor‑promoting effects 
of ADSCs in vitro. Omental ADSCs play a promotive role 
during ovarian cancer progression.[42] IL‑8 secreted by MSCs 
promotes colorectal cancer angiogenesis and growth and can 
therefore serve as a potential novel therapeutic target.[43] MSCs 
promote the progression of colorectal cancer via AMPK/
mTOR‑mediated NF‑κB activation.[44] CXCL1/8 secreted 

by hADSCs could promote breast cancer angiogenesis and 
therefore provide better understanding of safety concerns 
regarding the clinical application of hADSCs and suggestions 
for further novel therapeutic options.[45] Human adipose‑derived 
mesenchymal stromal cells may promote progression and 
metastatic spread in breast cancer through a switch to a more 
malignant phenotype with worse prognosis.[46]

Mscs and theIr dIfferentIatIon Into ecs
To create a vascular network, it is necessary to have a 
source of ECs, which are usually taken from blood vessels 
and umbilical cords. Because it is difficult to access these 
resources, the production of these cells is very limited. 
Therefore, searching for a better source to obtain these cells 
is essential. Stem cells are often used to differentiate into EC. 
Angiogenic factors are frequently used to differentiate MSCs 
from ECs.[47] MSCs can have quasi‑endothelial properties in 
pro‑angiogenic environments,[48] allowing them to participate 
in the processes of proliferation, migration, endothelial 
tube formation, and ultimately angiogenesis.[49] Expression 
of endothelial markers shows MSC differentiation into 
ECs.[47] In vitro and in vivo studies have shown that MSCs that 
invade ECs are able to form blood vessels.[47,49] MSCs could 
potentiate angiogenesis due to their ability to migrate and 
create capillary‑like structures, and this is achieved through 
growth factors.[50] MSCs present in cancerous tissue stroma 
play a key role in the proliferation of cancer cells, metastases, 
and resistance to chemotherapy.[51] MSCs are found in many 
tissues such as the umbilical cord, peripheral blood, skeletal 
muscle, adipose tissue,[52] dermis,[53] and synovial membrane.[54] 
MSCs are positive for CD105, CD73, and CD90, and negative 
for CD45, CD34, CD14, or CD11b, CD79, or CD19, and 
HLA‑DR molecules.[55,56] The umbilical cord MSCs do not 
express MHC types 1 and 2, so they are good candidates for 
clinical use.[57] Studies have shown that MSCs stimulate the 
growth and metastasis of tumors, whereas other studies have 
reported that MSCs suppress tumor growth and metastasis.[16,39] 
However, in connection with the role of tumor suppression, 
MSCs can suppress tumor growth through the AKT signaling 
pathway.[58] MSCs can also prevent cancer of human liver 
cancer cells and breast cancer cells by inhibiting the Wnt 
signaling pathway.[46,59] In addition, MSC inhibits tumor 
growth through anti‑angiogenic activity,[60] low expression of 
the X‑dependent apoptotic protein inhibitor (XIAP),[61] PI3K 
signaling pathway molecules,[58] and inhibition of cell cycle 
progression.[62] MSCs secrete angiopoietin 2, VEGF, IL8, 
BFGF,[63] PDGF,[64] and IL6.[65] Uterine endometrial stem cells 
secrete angiogenic factors such as MMP3, MMP10, GM CSF, 
angiopoietin 2, and PDGF‑BB.[66] Stem cells derived from fat, 
uterine endometrium, and placenta secrete angiogenic factors 
including VEGF, HGF, BFGF, TGFB, IGF1, PDGF, MMP3, 
and MMP10.[64,67] MSCs isolated from different tissues, 
depending on their origin, may have different potentials for 
clinical applications and there are differences in regression.[64] 
ADSCs secrete more angiogenic agents and are more capable 
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of forming new blood vessels than endometrial and umbilical 
cord‑derived stem cells.[68] Likewise, fat‑derived MSCs have 
more vascular potential than bone‑derived MSCs and umbilical 
cords.[69,70] ADSCs promote the development of breast cancer 
by releasing cytokines such as CXCL1 and CXCL8.[43,47‑68,70‑72] 
MSCs with IL6 secretion increase endothelin 1 in the tumor, 
thereby stimulating ECs and causing angiogenesis.[65] ADSCs 
secrete angiogenic factors such as HGF.[64] ADSC are affected 
by containing FGF2 receptors and are differentiated into 
ECs.[73] A 2017 study found that direct cell‑to‑cell contact 
between stem cells and ECs caused stem cells to differentiate 
into ECs.[74] TGF‑β also differentiates stem cells into ECs and 
lymph vessels.[75] In addition to growth factors, the suitability 
and effectiveness of the culture medium is a complementary 
approach to cell growth because it can have a major impact 
on cellular behavior and cell differentiation.[47] The most 
common ship environment used for ECs is EGM2. When 
bone marrow‑derived stem cells are cultured in the medium 
containing EGM2, the expression of endothelial markers such 
as CD31, VWF, and VEGFR2 increases.[76] Factors such as 
KDR, CD34, CD31, FLT1, V‑cadherin, and VCAM1 are some 
of the signs that differentiate ECs from stem cells.[77] SOD1 
is a factor secreted by MSCs through paracrine pathways that 
improves the damage and dysfunction of ECs due to lung 
cancer chemotherapy.[78] FGF is a growth factor involved in 
angiogenesis, wound healing, embryonic development, and 
a number of other endocrine signaling pathways. Cultivated 
ADSCs in the culture medium containing FGF showed that 
ADSCs were differentiated into ECs, and markers represent 
ECs.[79] FGF has a multiplier effect on MSCs and, most 
prominently, controls ADSC differentiation and plays a role in 
the migration of ECs.[79] Zhang et al. have found that an EGM2 
culture medium containing VEGF increased the levels of the 
mRNA VEGF and eNos in ADSCs. The BFGF also stimulates 
ECs.[71,62,63,69,70,73‑78,80]

Vegf: a Key factor In cancer 
angIogenesIs and Msc dIfferentIatIon Into 
ecs
The VEGF is a major factor in angiogenesis, stimulating 
the growth of new blood vessels from previous vessels and 
providing access to oxygen and nutrients for tumors.[81] The 
VEGF is an important pro‑angiogenic factor in breast cancer 
and is involved in the growth, survival, and invasion of tumor 
cells through autocrine pathways.[82] Studies have shown that 
the suppression of tumor suppressor genes such as P53 and 
the activation of oncogenic genes such as Kras, Hras, v‑Src, 
human epidermal growth factor HER 2, HER1/EGFR, FOS, 
trkB, V‑p3K, PTTG1, and Bcl2 increase VEGF expression 
in tumor cells.[83] Family members of the VEGF include five 
glycoproteins (VEGF‑A, VEGF‑B, VEGF‑C, VEGF‑D, and 
VEGF‑E) and placenta growth factors 1, 2, and 3. VEGF‑A is 
the most important member of the VEGF family, which mainly 
targets ECs.[82] PDGF and HIF‑1α induce VEGF expression in 

the tumor cells.[84] The VEGF is then attached to its receptor on 
the surface of ECs, causing the cells to grow and proliferate. 
However, it increases MMP expression in tumor cells.[82] There 
is also a VEGF receptor on tumor cells.[85] This growth factor is 
involved in the migration, proliferation, and differentiation of 
MSCs into ECs.[86] The study by Sami G in 2017 showed that the 
VEGF is involved in the differentiation of MSCs into ECs.[87] 
The study by SG Ball et al. revealed that the VEGF stimulates 
the proliferation and migration of MSCs by activating the 
PDGF (5).[88] One of the signaling pathways through which 
the VEGF can play a role in distinguishing MSCs from ECs 
is MAPK, which is an intracellular pathway.[89] ERK1/2‑c‑jun 
NH2 and P38 are members of the cascade MAPK.[90] When 
VEGFR2 is activated, PLC‑γ phosphorylates and activates the 
MAPK signaling pathway.[87] In 2008, J Xu demonstrated that 
VEGF mediates the differentiation of bone‑derived MSCs into 
ECs by activating the MAPK pathway.[91] VEGF is the most 
common growth factor for distinguishing bone marrow MSCs 
from ECs. The NFKB pathway regulates VEGF secretion 
from MSCs. Inhibition of this pathway reduces its secretion.[6] 
The VEGF, along with FGF, induces c‑Kit, IL‑3R, M‑CSF, 
CSFR1, Flt3L, Flt3, and CXCR4 receptors in ECs, resulting 
in an increased ability of the VEGF and FGF to form vascular 
tubes. STAT3 and P38 MAPK pathways cause VEGF secretion 
from MSCs.[7] The Rho family plays an important role in the 
migration and angiogenesis of VEGF‑induced ECs. The VEGF 
activates the Rho/ROCK messaging pathway and stimulates 
nuclear translocation of myocardin‑related transcription 
factor‑A (MRTE‑A) and differentiates MSCs into ECs.[7] 
Therefore, VEGF production by MSCs may be a crucial factor 
responsible for the angiogenic potential of MSCs and can 
promote angiogenesis in cancer.[79‑91]

conclusIons
Whereas the potential of MSCs to induce angiogenesis leading 
to tissue regeneration has been well documented in preclinical 
and clinical studies, the effect of paracrine factors secreted 
by these MSCs is currently under investigation. Considering 
cancer as a common cause of death worldwide, the use of 
stem cells to treat the disease requires serious contemplations 
and observations. Therefore, more studies should be done 
in relation to the secretory factors of stem cells and the 
mechanism of action of these factors.

Abbreviations are used: VEGF: vascular endothelial growth 
factor, ECs: endothelial cells, MSCs: mesenchymal stem cells, 
TGF‑β: transforming growth factor‑beta, TGF‑α: transforming 
growth factor‑alpha, FGF2: fibroblast growth factor 2, 
PDGF: platelet‑derived growth factor, BFGF: basic fibroblast 
growth factor, TNF‑α: tumor necrosis factor α, TIMPs: tissue 
inhibitors of metalloproteinases, CD: cluster differentiation, 
MHC: major histocompatibility complex, HLA‑DR: human 
leukocyte antigen—DR isotype, XIAP: X‑dependent apoptotic 
protein inhibitor, PI3 K: phosphatidylinositol‑3‑kinase, MMP3: 
matrix metalloproteinases, GM CSF: granulocyte–macrophage 
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colony‑stimulating factor, PDGF‑BB: platelet‑derived growth 
factor‑BB, HGF: hepatocyte growth factor, IGF1: insulin‑like 
growth factor, CXCL: chemokine (C‑X‑C motif) ligand, 
ADSC: adipose tissue‐derived stem cells, EGM: endothelial 
growth medium, vWF: von Willebrand factor, VCAM: vascular 
cell adhesion molecule, SOD1: superoxide dismutase, EGM2: 
endothelial cell growth medium 2, MAPK: mitogen‑activated 
protein kinase, ERK1: extracellular signal‑regulated kinase.
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