
RESEARCH ARTICLE

Graphettes: Constant-time determination of

graphlet and orbit identity including (possibly

disconnected) graphlets up to size 8

Adib Hasan1, Po-Chien Chung2, Wayne Hayes2*

1 Ananda Mohan College, Mymensingh, Bangladesh, 2 Dept. of Computer Science, University of California

Irvine, Irvine, California, United States of America

* whayes@uci.edu

Abstract

Graphlets are small connected induced subgraphs of a larger graph G. Graphlets are now

commonly used to quantify local and global topology of networks in the field. Methods exist

to exhaustively enumerate all graphlets (and their orbits) in large networks as efficiently as

possible using orbit counting equations. However, the number of graphlets in G is exponen-

tial in both the number of nodes and edges in G. Enumerating them all is already unaccept-

ably expensive on existing large networks, and the problem will only get worse as networks

continue to grow in size and density. Here we introduce an efficient method designed to aid

statistical sampling of graphlets up to size k = 8 from a large network. We define graphettes

as the generalization of graphlets allowing for disconnected graphlets. Given a particular

(undirected) graphette g, we introduce the idea of the canonical graphette KðgÞ as a repre-

sentative member of the isomorphism group Iso(g) of g. We compute the mapping K, in the

form of a lookup table, from all 2k(k − 1)/2 undirected graphettes g of size k� 8 to their canoni-

cal representatives KðgÞ, as well as the permutation that transforms g to KðgÞ. We also com-

pute all automorphism orbits for each canonical graphette. Thus, given any k� 8 nodes in a

graph G, we can in constant time infer which graphette it is, as well as which orbit each of

the k nodes belongs to. Sampling a large number N of such k-sets of nodes provides an

approximation of both the distribution of graphlets and orbits across G, and the orbit degree

vector at each node.

Introduction

Network comparison is a growing area of research. In general the problem of complete com-

parison of large networks is intractable, being an NP-complete problem [1]. Thus, approximate

heuristics are needed. Networks have been compared for statistical similarity from a high-level

using simple, easy-to-calculate measures such as the degree distribution, clustering co-

efficients, network centrality, among many others [2, 3]. While more sophisticated methods

such as spectral analysis [4, 5] and topological indices [6] have been useful, the study of small

subnetworks such as motifs [7] and graphlets [8, 9] have become popular. They have been used

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hasan A, Chung P-C, Hayes W (2017)

Graphettes: Constant-time determination of

graphlet and orbit identity including (possibly

disconnected) graphlets up to size 8. PLoS ONE

12(8): e0181570. https://doi.org/10.1371/journal.

pone.0181570

Editor: Yongtang Shi, Nankai University, CHINA

Received: March 1, 2017

Accepted: June 23, 2017

Published: August 23, 2017

Copyright: © 2017 Hasan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All the code and the

data files (the permutation maps, automorphism

orbit lists) are available in www.github.com/

Neehan/Faye.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0181570
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181570&domain=pdf&date_stamp=2017-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181570&domain=pdf&date_stamp=2017-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181570&domain=pdf&date_stamp=2017-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181570&domain=pdf&date_stamp=2017-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181570&domain=pdf&date_stamp=2017-08-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181570&domain=pdf&date_stamp=2017-08-23
https://doi.org/10.1371/journal.pone.0181570
https://doi.org/10.1371/journal.pone.0181570
http://creativecommons.org/licenses/by/4.0/
http://www.github.com/Neehan/Faye
http://www.github.com/Neehan/Faye

extensively to globally classify highly disparate types of networks [10] as well as to aid in local

measures used to align networks [11–14].

A graphlet is a small, connected, induced subgraph g of a larger graph G. Given a particular

graphlet g, the automorphism orbits of g are the sets of nodes that are topologically identical to

each other inside g. Graphlets and their automorphism orbits with up to k = 5 nodes were first

introduced in 2004 [8], and are depicted in Fig 1. Recently, automated methods have been cre-

ated that can enumerate, in a larger graph, all graphlets and their automorphism orbits up to

graphlet size k = 5 [15] and subsequently to any k [16], although the latter authors only applied

it up to k = 6. Unfortunately, we have found that these methods take a very long time (hours to

Fig 1. All (connected) graphlets of sizes k = 3, 4, 5 nodes, and their automorphism orbits; within each graphlet, nodes of

equal shading are in the same orbit. The numbering of these graphlets and orbits were created by hand [8] and do not correspond

to the automatically generated numbering used in this paper. The figure is taken verbatim from [16].

https://doi.org/10.1371/journal.pone.0181570.g001

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 2 / 12

https://doi.org/10.1371/journal.pone.0181570.g001
https://doi.org/10.1371/journal.pone.0181570

days) even just to count graphlets up to size k = 5 on some large biological networks, such as

those in BioGRID [17]. It is not clear that such methods, especially for even larger k, will be

applicable to the coming age of ever bigger networks, since the total number of graphlets

appearing in a large network tends to increase exponentially with both k (the graphlet size)

and n (the number of nodes in the large network). Eventually, an exhaustive enumeration of

all graphlets appearing in a large network may become infeasible simply due to the number of

graphlets that need to be enumerated, even under the optimization of using orbit counting

equations. On the other hand, graphlets are too useful to abandon as a method of quantifying

the topological structure of graphs. An achievable alternative for a large network G is to statis-

tically sample its graphlets rather than exhaustively enumerate them. Additionally, such sam-

pling could be useful with the recent advent of comprehensive biological network databases
[18]: each sampled graphlet would act as a seed for local matching between larger networks,

similar to how k-mers (short sequences of length k) are used for seed-and-extend sequence

matching in BLAST [19].

To efficiently create a statistical sample of graphlets in a large network G, one must be able

to take an arbitrary set of k nodes from G, and efficiently (preferably in constant time) deter-

mine both which graphlet is represented, as well as the automorphism orbits of each of the k
nodes. Here, we solve this problem both by enumerating all graphlets (and their disconnected

counterparts, which we term graphettes) and their automorphism orbits up to graphettes of

size k = 8. We present a method that creates a lookup table that can quickly determine the

graphette identity of any k nodes, as well as their automorphism orbits. Since the lookup table

required significant time to pre-compute for k = 7 (a few hours on a single core) and k = 8

(hundreds of CPU weeks on a cluster), we provide the actual lookup tables for these values of k
online at http://github.com/Neehan/Faye.

Materials and methods

Definitions and notations

Given a graph G on n nodes, a k-graphette is a (not necessarily connected) induced subgraph g
on any set of k nodes of G. There are many ways one could choose the k nodes, for example (i)

choosing k nodes uniformly at random from G, or (ii) performing a local search around some

node u. We expect the former to be useful only in dense networks, while the latter is probably

more useful in sparse networks because most random sets of k nodes in a sparse graph will be

highly disconnected and thus not very informative. One could also (iii) perform edge-based

selection (with local expansion) to ensure dense regions are sampled more frequently than

sparse regions [20]; still other methods have been suggested [21].

Given a set of k nodes, we wish to quickly ascertain which graphette is represented, and

which automorphism orbits each of the k nodes belong to. To do that we need a canonical list

of graphettes and their orbits, and a fast way to determine which canonical graphette is repre-

sented by any permutation of k nodes. Here we demonstrate how, if k is fixed and relatively

small (k� 8 in our case), this can be accomplished in constant time by pre-computing and

storing a lookup table indexed by a bit vector representation of the lower triangular matrix of

the (undirected) adjacency matrix of the induced subgraph. Given such an index, the value

associated with that index identifies the canonical graphette (a canonical ordering of the nodes

for that graphette). We also pre-compute the automorphism orbits of all the canonical graph-

ettes. Thus, by reversing the lookup table we can, in constant time, infer the orbit identity of

each of the k nodes in that k-graphette. As a corrollary, we can also update the (statistically

sampled) graphette orbit degree vector of each of the k nodes, similar to the graphlet degree vec-

tor [9].

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 3 / 12

http://github.com/Neehan/Faye
https://doi.org/10.1371/journal.pone.0181570

We use the following abbreviations and notations throughout:

Canonization of graphettes

If graphs G and H are isomorphic, it essentially means they are exactly the same graph, but

drawn differently. For example, Fig 2 shows three different drawings of the Petersen graph.

Technically, an isomorphism between networks G and H is a permutation p : VðGÞ ! VðHÞ
so that

EðG; u; vÞ () EðH; pðuÞ; pðvÞÞ;

Consider a 3-graphette with nodes w, x and y. There are only 4 possible such graphettes,

depicted in Fig 3. However, by permuting the order of the nodes, each of these graphettes can

be represented by several isomorphic variants. In order to determine if two graphettes are iso-

morphic, we will represent its (undirected) graph with the lower-triangle of its adjacency

matrix. We will place this lower-triangular matrix into a bit vector, resulting in a representa-

tion similar to existing ones for orbit identification [16].

We now describe the idea of a canonical representative of each isomorph. To provide an

explicit example, consider Fig 4, depicting the three isomorphic configurations of the

3-graphette that has exactly one edge. In order to determine that these graphettes are all iso-

morphic, we take the bit vector representation depicted, and define the lowest-numbered bit-

vector among all the isomorphs as the canonical representative. All the other isomorphs in the

lookup table point to it. In this way, every graph on 3 nodes can be efficiently mapped to its

canonical 3-isomorph.

We also automatically determine the number of automorphism orbits (see below) for each

canonical isomorph. Table 1 represents, for various values of k, the number of bits b(k) required

Fig 2. Three isomorphic representations of the Petersen graph.

https://doi.org/10.1371/journal.pone.0181570.g002

G(V, E) The Graph with nodes V and edges E

VðGÞ The set of nodes of graph G

EðG;u; vÞ The boolean value denoting connectivity between nodes u and v of graph G

(), iff If and only if

|S| The number of elements in set S.

Adj(G) The adjacency matrix representation of graph G

Aut(G) The set of automorphisms of graph G

KðgÞ Canonical isomorph of graphette g

https://doi.org/10.1371/journal.pone.0181570.t001

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 4 / 12

https://doi.org/10.1371/journal.pone.0181570.g002
https://doi.org/10.1371/journal.pone.0181570.t001
https://doi.org/10.1371/journal.pone.0181570

to store the lower-triangular matrix of all graphettes on k nodes (i.e., the length of the bit vector

used to store this matrix); the resulting total number possible representations of k nodes (which

is simply 2b(k)); the number of canonical isomorphs NC(k); and the number of canonical auto-

morphism orbits. Note that, to map each possible set of k nodes to their canonical isomorphs,

the lookup table has 2b(k) entries, and each entry has a value between 0 and NC(k) − 1. Note that

for k up to 8, the graphettes can be stored in 32 bits. In that case, the maximum space required

will be 32 × 228 = 1 GB. This is as far as we go, for now. Moore’s Law suggests that we may be

able to go to k = 9 within a few years, and to k = 10 in perhaps a decade or two.

We note that the most expensive part of our algorithm is creating the lookup table between

an arbitrary set of k nodes, to the canonical graphette represented by those k nodes; in the

absence of a requirement for this lookup table, one could use orbit counting equations [16] to

generate automorphism orbits up to k = 12.

Generating the lookup table from non-canonical to canonical graphettes

Assume the large graph G has n nodes labeled 0 through n − 1, and pick an arbitrary set of k
nodes U = {u0, u1, . . ., uk − 1}. Create the subgraph g induced on the nodes in U � VðGÞ, and

Fig 4. All 3-graphettes with exactly one edge; the canonical one is the one with lowest integer

representation (the middle one in this case). Each of them is placed in a lookup table indexed by the bit

vector representation of its adjacency matrix, pointing at the canonical one. In this way we can determine that

it is the one-edge 3-graphette in constant time.

https://doi.org/10.1371/journal.pone.0181570.g004

Fig 3. All the possible 3-graphettes.

https://doi.org/10.1371/journal.pone.0181570.g003

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 5 / 12

https://doi.org/10.1371/journal.pone.0181570.g004
https://doi.org/10.1371/journal.pone.0181570.g003
https://doi.org/10.1371/journal.pone.0181570

let its bit vector representation B be of the form lower-triangular matrix described in Fig 4. We

now describe how to create the lookup table that maps any such B to its canonical

representative.

We iterate through all 2b(k) bit vectors in order; for each value B, we check to see if it is iso-

morphic to any of the previously found canonical graphettes; if so, the lookup table value is set

to the previously found canonical graphette; otherwise we have a new, previously unseen

canonical graphette and the lookup table value is set to itself (B).

When checking for isomorphism between B and all previously found canonical graphettes,

we use a relatively simple brute force approach. If the degree distribution of the two graphettes

are different, we can immediately discard the pair as non-isomorphic; otherwise we resort to

cycling through every permutation of the nodes checking each pair for graph equality, which

has worst-case running time of k2k!. The total run time to compute the lookup table for a par-

ticular value k is thus bounded above by k2k! � NC(k) � 2b(k), where k! is the maximum number

of permutations we need to check if a non-canonical matches an existing canonical, k2 is the

worst-case running time to check if 2 specific permutations of k-graphettes are isomorphic,

there are at most NC(k) canonicals to check against [22], and 2b(k) = 2n(n − 1)/2 is the total num-

ber of undirected graphs on k nodes. More sophisticated approaches exist [23], which may

more easily allow higher values of k.

This process can also be parallelized, which is what we did for k = 8. Essentially, we can split

the 2b(k) non-canonical graphettes into m sets of about 2b(k)/m graphettes each, and then spread

the computation across m machines. For each of the m sets Si, we loop through all graphettes

in that set and mark out which are isomorphic to each other. For each set Si, we will find a set

Ti of lowest-numbered “temporary” canonical graphettes in Si, along with the map TC: Si! Ti

of which graphettes in Si map to each temporary canonical in Ti. That is, for each graphette g 2
Si, 9h 2 Ti for which the temporary canonical TC(g) = h. Finally, once all the m sets have been

evaluated in this way, a second stage passes through all the Ti, i = 0, . . ., m − 1, merging the

temporary canonicals together into a final, global list of canonical graphettes, while also propa-

gating these globally lowest-numbered canonicals back up through the m temporary canonical

Table 1. For each value of k: The number of bits bðkÞ ¼ kðk� 1Þ

2
required to store the lower-triangle of the adjacency matrix for an undirected k-graph-

ette; the number of such k-graphettes counting all isomorphs which is just 2b(k); the number of canonical k-graphettes (this will be the number of

unique entries in the above lookup table [22], and up to k = 8, 14 bits is sufficient); and the total number of unique automorphism orbits (up to

k = 8, 17 bits is sufficient) [27]. Note that up to k = 8, together the lookup table for canonical graphettes and their canonical orbits fits into 31 bits, allowing

storage as a single 4-byte integer, with 1 bit to store whether the graphette is connected (i.e., also a graphlet). The suffixes K, M, G, T, P, and E represent

exactly 210, 220, 230, 240, 250 and 260, respectively.

k bits

b(k)

#Graphs

2b(k)
Space

b(k)2b(k)
#Canonicals

NC(k)

#Orbits

1 0 1 0 1 1

2 1 2 0.25 B 2 2

3 3 8 3 B 4 6

4 6 64 48 B 11 20

5 10 1 K 1.25 KB 34 90

6 15 32 K 60 KB 156 544

7 21 2 M 5.25 MB 1044 5096

8 28 256 M 896 MB 12346 79264

9 36 64 G 288 GB 274668 2208612

10 45 32 T 180 TB 12005168 113743760

11 55 32 P 220 PB 1018997864 10926227136

12 66 64 E 528 EB 165091172592 1956363435360

https://doi.org/10.1371/journal.pone.0181570.t002

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 6 / 12

https://doi.org/10.1371/journal.pone.0181570.t002
https://doi.org/10.1371/journal.pone.0181570

maps, so each graphette g globally maps to the globally lowest-numbered canonical; we call

this process sifting for canonicals, and it may require several iterations to globally find the final

list of canonicals. In this way we ran k = 8 in about a week across 600 cores, for a total of 600

CPU-weeks. This process could probably be made more efficient with smarter isomorphism

checking [23, 24].

Graph automorphism and orbits

An isomorphism p : VðgÞ ! VðgÞ (from a graph g to itself) is called an automorphism.

While an isomorphism is just a permutation of the nodes, it is called an automorphism if it

results in exactly the same labeling of the nodes in the same order—in other words exactly the

same adjacency matrix. The set of all automorphisms of g will be called Aut(g).

An automorphism orbit, or just orbit, of g is a minimally sized collection of nodes from VðgÞ
that remain invariant under every automorphism of g [25]. There can be more than one auto-

morphism orbit, and each orbit can have anywhere from 1 to k member nodes; refer again to

Fig 1 for some examples. More formally, a set of nodes ω constitute an orbit of g iff:

1. For any node u 2 ω and any automorphism π of g, u 2 ω() π(u) 2 ω.

2. if nodes u, v 2 ω, then there exists an automorphism π of g and a γ> 0 so that πγ(u) = v.

Now, we shall prove a few relevant results that will be useful later for automatically enumer-

ating the orbits.

Proposition 1. For each node u 2 VðgÞ and each automorphism p : VðgÞ ! VðgÞ, there
exists an integer λ> 0 such that πλ(u) = u.

Proof. Because π is an automorphism,

u 2 VðgÞ ¼) pðuÞ 2 VðgÞ

¼) p2ðuÞ 2 VðgÞ

..

.

¼) piðuÞ 2 VðgÞ; 8i 2 N:

Since jVðgÞj is finite and π is bijective, the conclusion obviously follows.

We shall call the set of nodes

CpðuÞ ¼ fu;pðuÞ; . . . ; pl� 1ðuÞg

the cycle of u under automorphism π, where λ is the smallest positive integer such that

πλ(u) = u.

Note that λ is not unique since πλ(u) = π2λ(u) = � � � = u. Also, π, u, and λ are tied together

into triples such that knowing any two determines the third.

Corollary 1.1. π maps every node 2 CpðuÞ to a node (possibly same) 2 CpðuÞ.
Corollary 1.2. In any automorphism π of g, every node appears in exactly one cycle.
In other words, the cycles π creates are disjoint. (However, the cycles from different

automorphisms might not be so.) Hence, it makes sense to say splitting an automorphism
into its cycles. For example consider the permutation π = (201354) of (012345). Since π(0) = 2,

π(2) = 1, π(1) = 0, the nodes (012) form a cycle. Now start with the next node, 3. π(3) = 3. So,

(3) is another cycle. Finally, π(4) = 5, π(5) = 4, so, (45) form another cycle. Hence, the permuta-

tion (201354) is split into three cycles, namely (012), (3), (45).

Proposition 2. The orbits are disjoint. (In other words, each node appears in exactly one
orbit.)

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 7 / 12

https://doi.org/10.1371/journal.pone.0181570

Proof. Assume the contrary, i.e., a node u 2 VðgÞ appears in two different orbits ω1 and ω2.

According to the second condition, for any other node v 2 ω1, there exists an automorphism π
of g and a γ so that πγ(u) = v. However, from the first condition,

u 2 o2 ¼) pðuÞ 2 o2

¼) p2ðuÞ 2 o2

..

.

¼) pgðuÞ 2 o2

¼) v 2 o2

Therefore, every node v 2 ω1 also belongs to ω2. Hence, ω1� ω2.

Following the same logic, ω2� ω1, implying ω1 = ω2.)(

Corollary 2.1. Each cycle appears in exactly one orbit, which completely contains that cycle.
Proof. If an orbit ω partially contains a cycle CpðuÞ, then ω is not invariant under automor-

phism π, as π will map some node in ω (and CpðuÞ) to another node outside ω (but still in

CpðuÞ) according to corollary 1.1, contradicting our definition of orbits. Since two orbits are

disjoint, CpðuÞmust appear only in ω, and in none of the other orbits.

These statements are enough to be able to find all orbits of each graphette, as we now

demonstrate.

Automatically enumerating all orbits of a graph

From the propositions in the previous section, an algorithm to enumerate the orbits can be

constructed like this:

1. Generate all automorphisms of g.

2. Split each automorphism into its cycles.

3. Merge the cycles from different automorphisms to form orbits.

Generating all automorphisms of g. Referring to Algorithm 1, the function

GENERATEAUTOMORPHISMS() applies every possible permutation of VðgÞ over Adj(g). Each per-

mutation creates an isomorph of Adj(g). If Adj(g) is unchanged under some permutation π,

then by definition, π is an automorphism of g. Hence it is saved into Aut(g).

Two optimization strategies are employed:

1. No node is mapped to another node with unequal degree.

2. An automorphism of graph g is also an automorphism of its complement graph g0.

In practice, this algorithm generates all automorphisms of all the canonical graphettes up to

size 8 in a matter of seconds. Nevertheless, for additional speed up in higher sizes, modern

sophisticated automorphism detection algorithms [23, 24] may be used.

Splitting automorphisms into cycles. An automorphism π of g is basically a permutation

of nodes of g. Hence, to split π into cycles, we can repeatedly apply π over every node u 2 π
and remember the nodes u transforms into. This forms the cycle with node u, i.e. CpðuÞ, which

is saved in C. After first visit, each node is marked visited to prevent more visits.

Merging cycles to enumerate orbits. Suppose CðgÞ is the set of all cycles resulting from

all the automorphisms of g.

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 8 / 12

https://doi.org/10.1371/journal.pone.0181570

To enumerate orbits from it, first each node u is colored with a unique color ω(u) = u. Then

ω(u) is continuously updated to reflect the current color of u, as the nodes belonging to same

orbits are gradually colored by identical color.

For the nodes of each cycle c 2 CðgÞ, we save their minimum color in ωmin, and then color

all of them with ωmin. After coloring all the cycles in this way, nodes belonging to same orbits

get the same color, and hence, get enumerated.

Algorithm 1 Automatically enumerating automorphism orbits of a graph
function GENERATEAUTOMORPHISMS (Graphg)
Aut(g)= {} // Find the automorphisms of g
for each permutationπ of VðgÞ do
applyπ over Adj(g)
if Adj(g)== π(Adj(g))then put π in Aut(g)
end if

end for
end function
function GENERATECYCLES (automorphism π)

C ¼ fg
for node u in π do
if u is not visitedthen
mark u visited
new cycle CpðuÞ ¼ fg
node v = π(u)
whilev != u do
put v in CpðuÞ
mark v visited
v = π(v)

end while
put CpðuÞ in C

end if
end for

end function
function ENUMERATEORBITS (CðgÞ)
for each node u 2 VðgÞ do ω(u) = u
end for
for cycle c 2 CðgÞ do
let ωmin =1
for node u 2 c do ωmin = min(ωmin, ω(u))
end for
for node u 2 c do ω(u) = ωmin
end for

end for
end function

Proof of correctness of Algorithm 1

Here we prove that Algorithm 1 determines every orbit of g.

Suppose a set ω is among the final sets generated by Algorithm 1. We shall prove ω is an

orbit of g by showing that it follows the two properties of orbits:

1. Let a node u 2 ω form the cycle CpðuÞ under automorphism π. The GENERATECYCLES func-

tion will apply π repeatedly until it finds a λ so that πλ(u) = u and will therefore determine

CpðuÞ. Since the ENUMERATEORBITS function assigned u to ω, it had also assigned all nodes in

CpðuÞ to ω. Hence u 2 ω() π(u) 2 ω.

2. Suppose nodes u, v 2 ω. Then, either they belonged to a cycle from which they were

assigned to a mutual set ω in ENUMERATEORBITS function, or there is a third node w so that

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 9 / 12

https://doi.org/10.1371/journal.pone.0181570

w shares separate cycles with u and v under different automorphisms π1 and π2. In the first

case, u and v already belong to a common cycle. In the second case, assume p
g1

1 ðwÞ ¼ u and

p
g2

2 ðwÞ ¼ v. Consider the permutation � ¼ p
g2

2 � p
� g1

1 . Since composition of two automor-

phisms is an automorphism [26], ϕ is also an automorphism. And notice that

�ðuÞ ¼ p
g2
2 ðp

� g1
1 ðuÞÞ ¼ p

g2
2 ðwÞ ¼ v

implying u and v belong to a common cycle under ϕ.

Therefore, ω is indeed an orbit of g. Since each node was given a unique orbit color in the

beginning of ENUMERATEORBITS, every orbit of g will be eventually found by Algorithm 1.

Results and discussion

Using the algorithms described herein, we have enumerated all possible graphlets, including

the generalization of disconnected counterparts called graphettes, up to size k = 8. The code

and data can be found in http://github.com/Neehan/Faye. (Note that the github code uses the

upper triangle matrix, though we intend to convert it to use the lower tringle as that representa-

tion has already been established [16].) We have also enumerated all orbits up to size k = 8.

More importantly to the statistical sampling technique described in the Introduction, we have

used a bit-vector representation of all possible adjacency matrices of all possible sets of up to

k = 8 nodes and created a lookup table from the 2k(k − 1)/2 k-sets to their canonical graphette

representatives. This allows us to determine, in constant time, the graphette represented by

these k nodes, as well as the automorphism orbits of each nodes. This allows efficient estima-

tion of both the global distribution of graphlets and orbits, as well as an estimation of the

graphlet (or orbit) degree vector for each node in a large graph G.

Although the lookup tables for k> 8 are at present too big to compute or store, we could

also use NAUTY or SAUCY to enumerate all the canonical graphettes up to size k = 12, and

use our orbit generation code Algorithm 1 to determine all the orbits in all graphettes up to

size k = 12. We have verified that previous results are consistent with ours in terms of the num-

ber of distinct graphettes [22] and orbits [27] determined, as displayed in Table 1.

In future work we will study which statistical sampling techniques most efficiently produce

a good estimate of the complete graphlet and local (per-node) degree vectors. We also intend

to study how this method may aid in cataloging of graphlets for database network queries, or

in non-alignment network comparison [10]. Finally, there may be ways to combine our

method with those of orbit counting equations [15, 16] to more efficiently produce samples of

orbit counts.

Acknowledgments

We thank Sridevi Maharaj, Dillon Kanne, and the anonymous referees for several helpful sug-

gestions on presentation.

Author Contributions

Conceptualization: Adib Hasan, Wayne Hayes.

Formal analysis: Adib Hasan, Wayne Hayes.

Investigation: Po-Chien Chung, Wayne Hayes.

Methodology: Po-Chien Chung, Wayne Hayes.

Project administration: Wayne Hayes.

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 10 / 12

http://github.com/Neehan/Faye
https://doi.org/10.1371/journal.pone.0181570

Resources: Wayne Hayes.

Software: Adib Hasan, Po-Chien Chung.

Supervision: Wayne Hayes.

Validation: Adib Hasan.

Writing – original draft: Adib Hasan, Wayne Hayes.

Writing – review & editing: Adib Hasan, Wayne Hayes.

References
1. Cook SA. The Complexity of Theorem-proving Procedures. In: Proceedings of the Third Annual ACM

Symposium on Theory of Computing. STOC’71. New York, NY, USA: ACM; 1971. p. 151–158. Avail-

able from: http://doi.acm.org/10.1145/800157.805047.

2. Newman M. Networks: an introduction. 2010. United Slates: Oxford University Press Inc, New York.

2010; p. 1–2.

3. Emmert-Streib F, Dehmer M, Shi Y. Fifty years of graph matching, network alignment and network com-

parison. Information Sciences. 2016; 346:180–197. https://doi.org/10.1016/j.ins.2016.01.074

4. Wilson RC, Zhu P. A study of graph spectra for comparing graphs and trees. Pattern Recognition. 2008;

41(9):2833–2841. https://doi.org/10.1016/j.patcog.2008.03.011

5. Thorne T, Stumpf MP. Graph spectral analysis of protein interaction network evolution. Journal of The

Royal Society Interface. 2012; p. rsif20120220.

6. Dehmer M, Emmert-Streib F, Shi Y. Interrelations of graph distance measures based on topological

indices. PloS one. 2014; 9(4):e94985. https://doi.org/10.1371/journal.pone.0094985 PMID: 24759679

7. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks

of complex networks. Science. 2002; 298(5594):824–827. https://doi.org/10.1126/science.298.5594.

824 PMID: 12399590

8. Pržulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or geometric? Bioinformatics. 2004;

20(18):3508–3515. https://doi.org/10.1093/bioinformatics/bth436 PMID: 15284103

9. Pržulj N. Biological network comparison using graphlet degree distribution. Bioinformatics. 2007; 23(2):

e177–e183. https://doi.org/10.1093/bioinformatics/btl301 PMID: 17237089

10. Yaveroğlu ÖN, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Karapandza R, et al. Revealing the hid-

den language of complex networks. Scientific reports. 2014; 4:4547. https://doi.org/10.1038/srep04547

PMID: 24686408

11. Kuchaiev O, Milenković T, Memišević V, Hayes W, Pržulj N. Topological network alignment uncovers

biological function and phylogeny. Journal of The Royal Society Interface. 2010; 7(50):1341–1354.

https://doi.org/10.1098/rsif.2010.0063

12. Malod-Dognin N, Pržulj N. L-GRAAL: Lagrangian Graphlet-based Network Aligner. Bioinformatics.

2015; https://doi.org/10.1093/bioinformatics/btv130

13. Saraph V, Milenković T. MAGNA: maximizing accuracy in global network alignment. Bioinformatics.

2014; 30(20):2931–2940. https://doi.org/10.1093/bioinformatics/btu409 PMID: 25015987

14. Mamano N, Hayes W. SANA: Simulated Annealing far outperforms many other search algorithms for

biological network alignment. Bioinformatics. 2017; 0(0):8.

15. Hočevar T, Demšar J. A combinatorial approach to graphlet counting. Bioinformatics. 2014; 30(4):

559–565. https://doi.org/10.1093/bioinformatics/btt717 PMID: 24336411

16. Melckenbeeck I, Audenaert P, Michoel T, Colle D, Pickavet M. An Algorithm to Automatically Generate

the Combinatorial Orbit Counting Equations. PLoS ONE. 2016; 11(1). https://doi.org/10.1371/journal.

pone.0147078 PMID: 26797021

17. Chatr-aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, et al. The BioGRID inter-

action database: 2013 update. Nucleic Acids Research. 2013; 41(D1):D816–D823. https://doi.org/10.

1093/nar/gks1158 PMID: 23203989

18. Pillich RT, Chen J, Rynkov V, Welker D, Pratt D. NDEx: A Community Resource for Sharing and Pub-

lishing of Biological Networks. Protein Bioinformatics: From Protein Modifications and Networks to Pro-

teomics. 2017; p. 271–301. https://doi.org/10.1007/978-1-4939-6783-4_13

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 11 / 12

http://doi.acm.org/10.1145/800157.805047
https://doi.org/10.1016/j.ins.2016.01.074
https://doi.org/10.1016/j.patcog.2008.03.011
https://doi.org/10.1371/journal.pone.0094985
http://www.ncbi.nlm.nih.gov/pubmed/24759679
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
http://www.ncbi.nlm.nih.gov/pubmed/12399590
https://doi.org/10.1093/bioinformatics/bth436
http://www.ncbi.nlm.nih.gov/pubmed/15284103
https://doi.org/10.1093/bioinformatics/btl301
http://www.ncbi.nlm.nih.gov/pubmed/17237089
https://doi.org/10.1038/srep04547
http://www.ncbi.nlm.nih.gov/pubmed/24686408
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1093/bioinformatics/btv130
https://doi.org/10.1093/bioinformatics/btu409
http://www.ncbi.nlm.nih.gov/pubmed/25015987
https://doi.org/10.1093/bioinformatics/btt717
http://www.ncbi.nlm.nih.gov/pubmed/24336411
https://doi.org/10.1371/journal.pone.0147078
https://doi.org/10.1371/journal.pone.0147078
http://www.ncbi.nlm.nih.gov/pubmed/26797021
https://doi.org/10.1093/nar/gks1158
https://doi.org/10.1093/nar/gks1158
http://www.ncbi.nlm.nih.gov/pubmed/23203989
https://doi.org/10.1007/978-1-4939-6783-4_13
https://doi.org/10.1371/journal.pone.0181570

19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos JS, Bealer K, et al. BLAST+: architecture

and applications. BMC Bioinformatics. 2009; 10:421. https://doi.org/10.1186/1471-2105-10-421 PMID:

20003500

20. Rahman M, Bhuiyan MA, Al Hasan M. Graft: An efficient graphlet counting method for large graph anal-

ysis. IEEE Transactions on Knowledge and Data Engineering. 2014; 26(10):2466–2478. https://doi.org/

10.1109/TKDE.2013.2297929

21. Pržulj N, Corneil DG, Jurisica I. Efficient estimation of graphlet frequency distributions in protein—

protein interaction networks. Bioinformatics. 2006; 22(8):974–980. https://doi.org/10.1093/

bioinformatics/btl030 PMID: 16452112

22. Sloane N. Online Encyclopedia of Integer Sequences (OEIS);. Available from: http://oeis.org/A000088.

23. Mckay BD. Nauty; 2010. Available from: http://users.cecs.anu.edu.au/*bdm/nauty.

24. Codenotti P, Katebi H, Sakallah KA, Markov IL. Conflict Analysis and Branching Heuristics in the Search

for Graph Automorphisms. In: Tools with Artificial Intelligence (ICTAI). IEEE; 2013.

25. Gross JL. Graph Theory—Lecture 2: Structure and Representation—Part A;. Available from: http://

www.cs.columbia.edu/*cs4203/files/GT-Lec2.pdf.

26. Automorphism of a group;. Available from: https://groupprops.subwiki.org/wiki/Automorphism_of_a_

group.

27. Sloane N. Online Encyclopedia of Integer Sequences (OEIS);. Available from: http://oeis.org/A000666.

Graphettes: Graphlet and orbit determination up to size 8

PLOS ONE | https://doi.org/10.1371/journal.pone.0181570 August 23, 2017 12 / 12

https://doi.org/10.1186/1471-2105-10-421
http://www.ncbi.nlm.nih.gov/pubmed/20003500
https://doi.org/10.1109/TKDE.2013.2297929
https://doi.org/10.1109/TKDE.2013.2297929
https://doi.org/10.1093/bioinformatics/btl030
https://doi.org/10.1093/bioinformatics/btl030
http://www.ncbi.nlm.nih.gov/pubmed/16452112
http://oeis.org/A000088
http://users.cecs.anu.edu.au/bdm/nauty
http://www.cs.columbia.edu/cs4203/files/GT-Lec2.pdf
http://www.cs.columbia.edu/cs4203/files/GT-Lec2.pdf
https://groupprops.subwiki.org/wiki/Automorphism_of_a_group
https://groupprops.subwiki.org/wiki/Automorphism_of_a_group
http://oeis.org/A000666
https://doi.org/10.1371/journal.pone.0181570

