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Retinal ganglion cells (RGCs) are projection neurons that transmit the visual signal
from the retina to the brain. Their excitability and survival can be strongly influenced
by mechanical stressors, temperature, lipid metabolites, and inflammatory mediators
but the transduction mechanisms for these non-synaptic sensory inputs are not
well characterized. Here, we investigate the distribution, functional expression, and
localization of two polymodal transducers of mechanical, lipid, and inflammatory
signals, TRPV1 and TRPV4 cation channels, in mouse RGCs. The most abundant
vanilloid mRNA species was Trpv4, followed by Trpv2 and residual expression of
Trpv3 and Trpv1. Immunohistochemical and functional analyses showed that TRPV1
and TRPV4 channels are expressed as separate molecular entities, with TRPV1-
only (∼10%), TRPV4-only (∼40%), and TRPV1 + TRPV4 (∼10%) expressing RGC
subpopulations. The TRPV1 + TRPV4 cohort included SMI-32-immunopositive alpha
RGCs, suggesting potential roles for polymodal signal transduction in modulation of fast
visual signaling. Arguing against obligatory heteromerization, optical imaging showed
that activation and desensitization of TRPV1 and TRPV4 responses evoked by capsaicin
and GSK1016790A are independent of each other. Overall, these data predict that RGC
subpopulations will be differentially sensitive to mechanical and inflammatory stressors.

Keywords: retina, calcium, TRPV1, TRPV4, endocannabinoids, glaucoma, RGC

INTRODUCTION

Vertebrate vision is based on separating photon input from background thermal energy and
extraction of luminance, local contrast, color, orientation, direction of motion, and “looming”
information from the visual scene (Lettvin et al., 1959). Feature extraction is conducted in parallel
by over 40 types of retinal ganglion cells (RGCs), which project axons from the retina to a
wide range of midbrain nuclei (Morin and Studholme, 2014; Baden et al., 2016). RGCs are
typically categorized by their light response and serendipitous expression of molecular markers
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(Zeng and Sanes, 2017) but this ignores the possibility that
RGC might also be classified based on their responsiveness
to the local milieu, which continually bombards them with
mechanical, cardiovascular and immune signals. We know that
non-canonical non-synaptic sensory inputs can dramatically
impact the function and survival of RGC subtypes (Muller et al.,
2014; Duan et al., 2015; Križaj, 2016; Ou et al., 2016) yet the lack
of knowledge about the transduction mechanisms that mediate
them hampers physiological insight and treatment in diseases
such as glaucoma, diabetic retinopathy, ischemia, and traumatic
ocular injury.

Transient receptor potential (TRP) vanilloid channels are
polymodal cation channels that function as molecular integrators
of many types of sensory input (Clapham, 2003; Nilius and
Szallasi, 2014). The 28 isoforms that constitute the TRP
superfamily function as transducers of the ambient physico-
chemical and inflammatory environment due to their sensitivity
for mechanical stressors (strain, pressure, shear flow, swelling),
temperature, pH, lipid, and inflammatory metabolites. Because
the channels are permeable to Ca2+ and can be activated
at resting membrane potentials, they are able to modulate
neuronal physiology in the absence of synaptic activation
(Bradshaw et al., 2013; Redmon et al., 2017). An archetypal
example is the dorsal root ganglion (DRG), composed of
sensory neuron populations that can be classified by the relative
expression of TRPV1 nociceptors, TRPV4 osmosensors, TRPM8
innocuous pain sensors, TRPA1 cold pain sensors, TRPM2
redox sensors, with TRPC1, TRPC6, and TRPV2 channels
adding additional layers of complexity (Sousa-Valente et al.,
2014; Teichert et al., 2014). Within the vanilloid subfamily,
TRPV1-4 (also known as thermoTRPs for their temperature
sensitivity) are non-selective cation channels whereas TRPV5
and TRPV6 are predominantly permeable to Ca2+ and typically
expressed in epithelial and bone cells (Clapham, 2003). The
most studied vanilloid isoforms are TRPV1 and TRPV4, with
∼50% sequence homology and activation by distinct agonists,
temperature ranges, mechanical, osmotic, and inflammatory
stressors (Martins et al., 2014; Nilius and Szallasi, 2014).
Gene association and clinical studies identified single-nucleotide
polymorphisms in the coding/promoter regions of TRPV4
with mutations that cause debilitating sensory and motor
neuropathies and musculoskeletal disorders (Nilius and Voets,
2013; Echaniz-Laguna et al., 2014). Inflammatory agents sensitize
TRPV1/4 channels by mechanisms that are not fully defined
whereas selective inhibition or deletion of TRPV1- and TRPV4-
expressing neurons produces burning, freezing, itch, mechanical
pain, and thermosensory phenotypes together with loss of
osmoregulation and hearing loss (Caterina et al., 1997; Tominaga
et al., 1998; Liedtke and Friedman, 2003; Alessandri-Haber et al.,
2004).

Vertebrate retinas express many – perhaps most – TRP
isoforms (Gilliam and Wensel, 2011; Križaj, 2016) yet studies of
TRP signaling are in their infancy and it is unknown whether
different isoforms work together to transduce complementary
features of the intra-retinal milieu. In contrast to the canonical
TRPC1 isoform which is expressed in most retinal cells
(Molnar et al., 2012, 2016), the most extensively studied

isoform – TRPV1 – was localized to photoreceptors and subsets
of RGCs, bipolar, and amacrine cells (Yazulla, 2008; Middleton
and Protti, 2011; Ryskamp et al., 2014a; Jo et al., 2017). Its
cognate, TRPV4, has been detected in RGCs, Müller glia, and
endothelial cells (Ryskamp et al., 2011, 2014b; Jo et al., 2015;
Phuong et al., 2017; Taylor et al., 2017) but, unlike TRPV1,
appears to be absent from amacrine, bipolar, and photoreceptor
cells (Yarishkin et al., 2018). The relative expression of vanilloid
isoforms across RGCs is unknown, nor is it clear whether
TRPV1 and TRPV4 colocalize and/or can interact. Because
heteromultimerization could increase the cells’ capacity to
sense changes in ambient environment, we studied the relative
expression levels of TRPV1 and TRPV4 channels, investigated
their functional distribution and integration, and tested the
influence of channel activation on cellular calcium homeostasis
in mouse RGCs. We identified distinct RGC constellations
that include TRPV4-, TRPV1-, and TRPV1 + TRPV4-
expressing populations in which TRPV1 and TRPV4 channels
are activated independently. These data suggest that sensing of
ambient information (temperature, mechanical stress, pH, and
endocannabinoids) across physiological and pathological ranges
may be differentially distributed across RGC populations.

MATERIALS AND METHODS

Ethical Approval and Animals
Animal handling, anesthetic procedures, and experiments were
performed in accordance with the NIH Guide for the Care and
Use of Laboratory Animals and the ARVO Statement for the Use
of Animals in Ophthalmic and Vision Research. The project was
approved by the Institutional Animal Care and Use Committees
at the University of Utah. We assessed retinal TRPV1 expression
using a knock-in mouse in which Cre was inserted into
Exon 15 of Trpv1 (TRPV1Cre; Jackson Laboratory 017769).
This line was crossed to B6.Cg-Gt(ROSA)26Sortm9(CAG-
tdTomato)Hze/J (Ai9; 007909) in which the LoxP-STOP-LoxP
TdTomato construct is knocked in at the Gt(ROSA)26Sor locus
(Madison et al., 2010; Jo et al., 2017). Trpv4−/− mice have
an excised exon 12-encoding transmembrane pore domains
5 and 6 (Liedtke and Friedman, 2003). C57BL/6J (C57),
bacterial artificial chromosome (BAC)-transgenic Tg(TRPV4-
EGFP)MT43Gsat mice (referred to as TRPV4eGFP), TRPV1−/−,
TRPV4−/−, TRPV1Cre:Ai3, and Trpv1Cre:Ai9 mice were
maintained in a pathogen-free facility with a 12-h light/dark
cycle and unrestrained access to food and water. Data were
gathered from male and female mice with no noted gender
differences.

Reagents
The TRPV4 agonist GSK1016790A (GSK101) and antagonist
HC-067047 (HC-06) were purchased from Sigma. The
TRPV1 agonist capsaicin (CAP; 8-methyl-N-vanillyl-6-
nonenamide) and the TRPV1 antagonist capsazepine (CPZ;
N-[2-(4-Chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-
2H-2-benzazepine-2-carbothioamide) and the endogenous
agonist of CB1 receptors 2-arachidonoylglycerol (2-AG)
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TABLE 1 | Primer sequences used for PCR and semiquantitative real-time PCR analysis.

Name Forward primer Reverse primer Product size (bp)

Trpv1 AGGGTGGATGAGGTGAACTGGACT GCTGGGTGCTATGCCTATCTCG 199

Trpv2 GTTGGCCTACGTCCTCCTCACCTA TGCACCACCAGTAACCATTCTCC 158

Trpv3 CTCACCTTCGTCCTCCTCCTCAAC CAGCCGGAAGTCCTCATCTGCTA 201

Trpv4 TCCTGAGGCCGAGAAGTACA TCCCCCTCAAACAGATTGGC 166

Gapdh GGTTGTCTCCTGCGACTTCA TAGGGCCTCTCTTCCTCAGT 220

Actb CCACCATGTACCCAGGCATT AGGGTGTAAAACGCAGCTCA 253

were obtained from Cayman Chemicals. BDNF and CNTF
used to culture RGCs were obtained from GenWay Biotech.
Other salts and reagents were purchased from Sigma, VWR,
Across Organics, or Thermo Fisher. GSK101 (1 mM), HC-06
(10 mM), CAP (10 mM), and CPZ (20 mM) stocks in DMSO
were diluted in extracellular saline before use and placed into
reservoirs connected to gravity-fed perfusion systems (Warner
Instruments).

Magnetic-Activated Cell Sorting (MACS)
The retinas were incubated in an enzyme solution containing
16 U/ml papain (Worthington), 0.2 mg/ml L-cysteine (Sigma),
and 50 U/ml DNase I recombinant (Roche) for 45 min at
37◦C with gentle agitation and triturated with D-PBS solution
containing 1.5 mg/ml BSA, 1.5 mg/ml Trypsin inhibitor,
pH: 7.4, to yield a single cell suspension that was passed
through a 30 µm pre-separation filter and centrifuged. The cell
pellet was re-suspended and incubated in 0.5% BSA solution
containing CD90.1 MicroBeads (1:10; Miltenyi Biotech) for
15 min at 4◦C. After additional washing and centrifugation,
cells were separated using MACS LS columns and incubated
in serum-free neurobasal medium (Gibco/ThermoFisher)
with 1% penicillin/streptomycin (Sciencell), transferrin
(0.1 mg/ml), putrescine (16 ng/ml), insulin (5 µg/ml), 3,5,3-
triiodothyronine T3 (100 nM), progesterone (20 nM), 2%
B27, N-acetyl cysteine (5 ng/ml), sodium pyruvate (1 mM),
L-glutamine (2 mM), brain-derived neurotrophic factor (BDNF,
50 ng/ml), ciliary neurotrophic factor (CNTF, 10 ng/ml), and
forskolin (5 µM). The growth medium was changed every 2–3
days.

Semiquantitative Real-Time PCR
Total RNA was isolated using the Arcturus PicoPure RNA
Isolation Kit (Applied Biosystems) as described (Phuong
et al., 2017). One microgram of total RNA was used for
reverse transcription. First-strand cDNA synthesis and PCR
amplification of cDNA were performed using qScriptTM XLT
cDNA SuperMix cDNA synthesis kit (Quanta Biosciences). The
PCR products were run on 2% agarose gels and visualized
by ethidium bromide staining, along with 100-bp DNA
ladder (ThermoFisher). SYBR Green-based real-time PCR was
performed using Apex qPCR Master Mix (Genesee Scientific).
The results were performed in triplicate of at least four separate
experiments. The comparative CT method (11CT) was used to
measure relative gene expression where the fold enrichment was
calculated as: 2−[1CT(sample)−1CT(calibrator)] after normalization.

To normalize fluorescence signals, GAPDH and β-actin were
utilized as endogenous controls. The primer sequences and
expected product sizes are given in Table 1.

Retinal Dissociation and Optical Imaging
The animals were euthanized by isoflurane inhalation. The
retinas were isolated in ice-cold Leibovitz 15 (L15) medium
containing 11 mg/ml L15 powder, with (in mM) 20 D-glucose,
10 Na-HEPES, 2 sodium pyruvate, 0.3 sodium ascorbate,
and 1 glutathione. Incubation in L15 containing papain
(7 U/ml; Worthington) digested the extracellular matrix, and was
terminated by rinsing with cold L15 solution; 500 µm pieces
of retina were mechanically dissociated and cells were plated
onto concanavalin A (0.2–0.5 mg/ml) coated coverslips. Calcium
imaging followed established protocols (Ryskamp et al., 2011;
Jo et al., 2016; Lakk et al., 2017), with the cells loaded with the
Fura-2 AM (5–10 µM, Life Technologies) indicator dye for 45–
60 min. Extracellular saline contained: (in mM) 133 NaCl, 10
HEPES hemisodium salt, 10 glucose, 2.5 KCl, 2 CaCl2, 1.5 MgCl2,
1.25 NaH2PO4, 1 pyruvic acid, 1 lactic acid, and 0.5 glutathione.
Epifluorescence images were acquired using an inverted Nikon
microscope with a 40x (1.3 NA oil) objective. Subsets of cells were
stimulated with agonists and antagonists of TRPV1/4 channels.
340 and 380 nm excitation was delivered from an Xe lamp
(Lambda DG-4, Sutter Instruments). Emissions were collected
at 510 nm with 14-bit CoolSNAPHQ2 or Delta Evolve cameras
and analyzed using NIS-Elements. 1R/R (peak F340/F380 ratio –
baseline/baseline) was used to quantify the amplitude of Ca2+

signals.

Immunofluorescence
The immunolabeling protocol for vertical sections followed the
procedures described in Molnar et al. (2016) and Jo et al.
(2017). The retinas were fixed for 1 h in 4% paraformaldehyde,
rinsed with PBS, dehydrated, and embedded in OCT compound
mounting medium (Electron Microscopy Sciences); 12 µm thick
cryosections were incubated in a blocking buffer (5% FBS and
0.3% Triton X-100 in 1X PBS) for 20 min. Primary antibodies
(rabbit anti-TRPV4, 1:1000, LifeSpan Biosciences; rabbit anti-
RBPMS, 1:500, PhosphoSolutions; mouse anti-Thy1.1, Sigma,
1:500; mouse SMI-32, 1:100, Covance; mouse anti-GFP, 1:500,
Santa Cruz) were diluted in the diluent (2% BSA and 0.2%
Triton X-100 in 1X PBS) and applied overnight at 4◦C, followed
by incubation in fluorophore-conjugated secondary antibodies
(1:500; goat anti-mouse AlexaFluor 405, 488, or 647, goat anti-
rabbit AlexaFuor 488 or 594, Life Technologies) for 1 h at
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RT. Images were acquired on an Olympus CV1200 confocal
microscope using 20x (NA water) and 40x (0.9 NA water)
objectives.

Statistical Analysis
Data are presented as means ± SEM. Statistical comparisons
were made with one-way ANOVA test followed by post hoc
Tukey’s multiple comparison of means (Origin 8.0, Origin
Lab Corporation). A difference of P ≤ 0.05 (∗), P ≤ 0.01
(∗∗), P ≤ 0.001 (∗∗∗), and P ≤ 0.0001 (∗∗∗∗) were considered
statistically significant.

RESULTS

Mammalian RGCs Express Multiple
Vanilloid TRP Isoforms
Vanilloid TRP channels are osmo- and thermosensitive non-
selective cation channels with critical functions in neuronal
neural plasticity, synaptic transmission, synapse formation,
neurogenesis, apoptosis, and survival (Sousa-Valente et al., 2014;
Ramírez-Barrantes et al., 2016; White et al., 2016). The mouse
retina expresses multiple members of the vanilloid subfamily
(Gilliam and Wensel, 2011) but their relative expression in
RGCs is not known. RNA profiling shows that mouse RGCs
express all four thermoTrp transcripts (Trpv1-4) (Figure 1A),
with expression dominated by Trpv4, followed by Trpv2,
Trpv3, and Trpv1 mRNAs, respectively (Figure 1B). TRPV4−/−

RGCs showed a trend toward Trpv1 upregulation but these
changes were not significant (Figure 1C). Examination of
mRNAs in TRPV4−/− RGCs showed little evidence of cross-
isoform plasticity apart from a (non-significant) trend toward
Trpv1 (Figure 1C). We conclude that mouse RGCs as a
group express all non-epithelial vanilloid Trp genes. Lack of
compensatory upregulation in KO mice lacking the dominant
TRPV4 channel might indicate absence of regulatory interaction
at the transcriptional level, or an absence of obligatory
heteromerization.

Pharmacological Activation of TRPV1
and TRPV4 Channels Reveals Functional
Overlap in a Subset of RGCs
TRPV1 and TRPV4 channels have been implicated in optic nerve
degeneration (Križaj et al., 2014; Sappington et al., 2015) and
axonal neuropathies (Echaniz-Laguna et al., 2014), and shown
to be sensitive to mechanical stressors (such as changes in cell
volume and strain; Sudbury et al., 2010; Ryskamp et al., 2016).
To categorize the relative fractions of TRPV1- and TRPV4-
expressing RGCs, we used microfluorimetry. Dissociated cells
were identified by the size and morphology of the somata,
and responsiveness to glutamate (100 µM) and high K+
(35 mM; Ryskamp et al., 2011). After loading with the calcium
indicator Fura-2-AM, cells were stimulated with pharmacological
activators and inhibitors of TRPV1 and TRPV4 channels. The
largest RGC cohort (35.08%) showed intracellular Ca2+ ([Ca2+]i)
increases in response to the TRPV4 agonist GSK101 (25 nM)

FIGURE 1 | Relative mRNA expression levels of vanilloid thermoTRP channels
in primary mouse RGCs. (A) End point PCR. RGCs express all four thermo
Trpv transcripts. Gapdh (glyceraldehyde 3-phosphate dehydrogenase) mRNA
served as a loading control. (B) Semiquantitative RT-PCR. The relative
abundance of thermo Trpv transcripts normalized with respect to Trpv4
content (n = 4). (C) Fold change in mRNA expression in TRPV4−/− RGCs
(n = 4) was calculated relative to expression in wild type cells.

and lack of sensitivity to the TRPV1 agonist CAP (10 µM;
Figures 2A,B). On average, in these cells, GSK101 evoked an
increase in the 340/380 ratio of 0.51 ± 0.05 (n = 87; P < 0.001).
As shown previously (Ryskamp et al., 2011, 2014a), the responses
to the TRPV4 agonist were characterized by a transient [Ca2+]i
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FIGURE 2 | TRPV1 and TRPV4 modulate Ca2+ homeostasis in subsets of RGCs. (A) Two simultaneously recorded RGCs (denoted by black and blue traces)
respond to GSK101 with [Ca2+]i elevations but are insensitive to CAP. (B) Averaged data for the GSK101-responding CAP-insensitive pool of cells (n = 87).
(C) Representative traces of CAP responders that were insensitive to GSK101. (D) Averaged data for the CAP-responding GSK101-insensitive cohort (n = 29). (E,F)
Traces and averaged data from GSK101 + CAP responders (n = 27). (G) Summary of averaged data. ∼24% of the TRPV4-expressing RGCs responded to CAP,
whereas ∼48% of TRPV1-expressing RGCs responded to GSK101. ∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001, ∗∗∗∗P ≤ 0.0001.

peak that inactivated in the continued presence of GSK101.
Subsequent co-applications of the drug evinced lower-amplitude
or missing Ca2+ responses due to tachyphylaxis (continued
channel desensitization). Pretreatment with CAP did not affect
the amplitude of GSK101-evoked [Ca2+]i responses in this
cohort, suggesting that tachyphylaxis is isoform-specific.

Another population, encompassing 11.69% of RGCs,
responded to CAP administration with increased [Ca2+]i with
an average CAP-evoked ratio increase of 0.45 ± 0.07 (n = 29;
P < 0.001; Figures 2C,D). These cells were unresponsive to
GSK101, and co-application of GSK101 and CAP yielded a
ratio increase of 0.39 ± 0.08 that was not significantly different
from the exposure to CAP alone. The third functional type
(10.89%) responded to both TRPV1 and TRPV4 agonists
(0.43 ± 0.09 and 0.48 ± 0.06 ratio increases, respectively; n = 27;
Figures 2E,F). A representative example of a cell classified into
the third cohort is shown in Figure 3, with vertical lines in
Figure 3A, corresponding to fluorescence images of free [Ca2+]i
elevations in the RGC cytosol shown in Figure 3B. As expected
(Ryskamp et al., 2011; Jo et al., 2017), the response to both
agonists desensitized in the continued presence of the agonist
(Figures 3Biv,viii). The dataset in Figure 2G shows that ∼46%
of total glutamate responder RGCs express TRPV4, and ∼20%
express TRPV1. Another way of parsing the data shows that
∼48% of TRPV1 expressing RGCs (22.6% of total glutamate-
responding cells) functionally express TRPV4 channels whereas
∼24% of TRPV4-expressing cells express TRPV1 as well.

TRPV4 Is Coexpressed With TRPV1 in a
Subset of RGCs
We next investigated whether the results from functional
studies (Figures 2, 3) can be mirrored by proof-of-principle
histochemical evidence. TRPV4 channels can be studied

FIGURE 3 | Functional coexpression of TRPV1 and TRPV4 channels in a
representative RGC (asterisk). (A) The time course of the calcium response in
a C57 RGC sequentially stimulated with CAP and GSK101. The red vertical
lines denote the time points shown in panel Bi–viii. (B) Ratio images from the
RGC (asterisk) shown in A. Note that [Ca2+]i declines in the continued
presence of both agonists. The small-diameter somata adjacent to the RGC
are rod somata. Scale bar = 10 µm.

with validated antibodies (Ryskamp et al., 2011; Jo et al.,
2016) but the specificity of commercial TRPV1 antibodies is
questionable (Gilliam and Wensel, 2011; Molnar et al., 2012).
We therefore studied TRPV1Cre:Ai9 and TRPV1Cre:Ai3 retinas
in which channel expression manifests in the fluorescence

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 October 2018 | Volume 12 | Article 353

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00353 October 13, 2018 Time: 12:0 # 6

Lakk et al. TRPV1-TRPV4 Coexpression in RGCs

FIGURE 4 | TRPV1 expression in RGCs but not amacrine cells overlaps with TRPV4-ir. Confocal microscopy, vertical sections from the mouse retina.
(A) TRPV1Cre/Ai9 retina labeled for DAPI, TRPV4, and TRPV1. TRPV1:tdTomato is expressed in cell somata localized in ganglion cell layer (GCL), inner nuclear layer
(INL), and in a subset of putative Müller cells (asterisk). RGC that colocalizes TRPV1 and TRPV4 is marked by an arrowhead in panel iv. Arrows mark putative
(small-diameter) amacrine cells in RGCL and IPL that are TRPV4−. (B) TRPV1Cre/Ai3 section showing a TRPV1+ cell labeled by the GFP reporter. The cell was
immunopositive for TRPV4 and Thy1. Red arrows donate blood vessels. Pictures were obtained from two optical sections with a thickness of 1 µm. Scale
bars = 20 µm.

patterns of tdTomato and GFP reporters, respectively
(Mishra and Hoon, 2010; Jo et al., 2017). Cells were evaluated
in vertical sections from the central- to mid-peripheral retina in
order to increase the likelihood of hitting on TRPV1-expressing
RGCs (e.g., Jo et al., 2017).

We found that TRPV4 is localized to a substantial population
of putative RGCs (identified by Thy1 or RBPMS-ir). TRPV1+
cells, identified by tdT+ and GFP+ fluorescence (Figure 4),
typically colocalized with TRPV4-ir, with rare examples (arrow in
Figure 4A) that were immunonegative for TRPV4. Two examples
of TRPV1GFP cell that colocalized the RGC marker Thy1 (CD90)
with TRPV4 are shown in Figure 4B (arrowheads). Although
Thy1 labels a subset of displaced cholinergic syntaxin+ cells in
the RGC layer (Raymond et al., 2008), the presence of TRPV4
(which is absent from amacrines; Ryskamp et al., 2011) indicates
that the labeled cell is a RGC.

We investigated whether TRPV1 and 4 channels might be
expressed in SMI-32 cells, which label αRGCs, large-diameter

monostratified cells that arborize in ON or OFF sublaminae of
the inner plexiform layer (Coombs et al., 2006), play a role in
contrast sensitivity and are sensitive to ocular hypertension (Della
Santina et al., 2013; Schmidt et al., 2014; Ou et al., 2016). All
TRPV1-expressing RGCL cells were immunopositive for SMI-32
and TRPV4. Figures 5A,B show a TRPV1-expressing (RBPMS+)
RGC that strongly expresses SMI-32. Another example, shown
in Figures 5C,D, showcases a TRPV1-expressing αRGC that
also expresses TRPV4 (arrowhead in Figure 5D), whereas a
TRPV1-expressing putative amacrine cell (arrow in Figure 5C)
was TRPV4 immunonegative. We conclude that most RBPMS+
TRPV1+ cells are SMI-32+ and can thus be classified as αRGCs.
Of SMI-32+ cells, 35.9% were TRPV1+. TRPV1 expression was
detected in some Müller cells that were immunopositive for
TRPV4 (asterisks in Figure 4A). These data suggest that RGCs
sense their ambient environment through different combinations
of sensory transducers, with TRPV4 channels as dominant non-
epithelial vanilloid transducers. Moreover, Müller glia appear to

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 October 2018 | Volume 12 | Article 353

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00353 October 13, 2018 Time: 12:0 # 7

Lakk et al. TRPV1-TRPV4 Coexpression in RGCs

FIGURE 5 | SMI-32+ RGCs coexpress TRPV1 and TRPV4 signals. (A) A representative TRPV1-expressing RGC is labeled by the GFP reporter that was
immunopositive for SMI-32 and RBPMS. (B) Inset from A. (C) TRPV1-expressing RGCL neuron is labeled by SMI-32 and TRPV4 (D, arrowhead) antibodies. The
arrow denotes a TRPV4- and SMI-32-immunonegative putative amacrine cell in the proximal INL. Pictures were obtained from one optical section. Scale
bars = 20 µm.

express both vanilloid isoforms, which is consistent with their
function as regulators in the retinal microenvironment (Ryskamp
et al., 2015).

TRPV4 Signaling in TRPV1-Expressing
RGCs Does Not Involve Subunit
Heteromerization
Vanilloid TRP channels preferentially assemble into homomeric
channels (Hellwig et al., 2005); however, formation of
macromolecular complexes between TRPV4 and TRPC1
(Ma et al., 2015), TRPP2 (Stewart et al., 2010), and TRPV1
(Sappington et al., 2015) has been reported for endothelial,
kidney, and ganglion cells, respectively. We recently reported
that pharmacological blockade of TRPV4 has no effect on
TRPV1-mediated calcium signals (Jo et al., 2017). Here,
we took advantage of transgenic mice to test whether
heteromerization with TRPV1 is obligatory for TRPV4

functionality. To test TRPV1–V4 interactions, we assessed
the responsiveness to CAP in RGCs expressing a fluorescent
reporter (eGFP) under the control of the TRPV4 promoter (Gu
et al., 2016). Recordings from CAP responding TRPV4eGFP+

RGCs (Figures 6Ai,ii) showed an absence of effect of the
TRPV1 antagonist CPZ on baseline [Ca2+]i. The amplitude
of GSK101-induced [Ca2+]i elevations in the presence of
CPZ was 0.66 ± 0.12 (n = 12, P < 0.001; Figures 6A,B), not
significantly different from GSK101 responses in WT cells
(0.51 ± 0.05; Figure 2D). These data indicate that TRPV1 in
mouse RGCs is not required for TRPV4 function and vice versa,
TRPV4-mediated responses are largely unaffected by TRPV1
knockdown.

TRPV1 Channel Does Not Influence
TRPV4 Functionality in Subset of RGCs
Expression of cannabinoid receptors in most, if not all,
mammalian retinal cells (Ryskamp et al., 2014b; Jo et al., 2017)
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FIGURE 6 | TRPV4 signaling does not require TRPV1. (A) Cells dissociated from transgenic TRPV4GFP retinas (i,ii) and control retinas (iii,iv) show reporter
expression in large-diameter neurons (asterisk) but not rod somata (arrow). (B) Representative trace from a TRPV4GFP+ RGC shows a potential response to CAP
superimposed on spontaneous background Ca2+ transients. The TRPV1 antagonist CPZ (10 µM) did not affect the [Ca2+]i baseline or inhibit GSK101-evoked
[Ca2+]i elevations. (C) Averaged data for CAP and CPZ responses in TRPV4GFP+ RGCs (n = 12). (D) CPZ had no effect on the amplitude of GSK101-evoked [Ca2+]i
signals (n = 12). Scale bar = 10 µm. N.S., P < 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001.

suggests that tonic and/or activity dependent release of
endocannabinoids might be important for processing of visual
signals. Endocannabinoids regulate TRPV1 directly and through
CB1R-dependent intracellular messengers (Zygmunt et al., 1999)
but were also suggested to influence TRPV4 activation (Watanabe
et al., 2003; Ho et al., 2015). Exposure to the endogenous
agonist of CB1 receptor 2-AG suppresses TRPV1 channels in
mouse RGC (Jo et al., 2017). To establish whether 2-AG has
comparable effects on RGC TRPV4 activation we recorded
calcium signals from TRPV4eGFP (Figures 7A,B), as well as
wild type (black traces, Figures 7C–E) and TRPV1−/− RGCs
(orange traces, Figures 7C–E) in the presence or absence of 2-
AG. Figures 7B,C show that 2-AG (1 µM) does not affect the
[Ca2+]RGC baseline and GSK101-evoked [Ca2+]i signals in both
TRPV4+ (0.63± 0.12; n = 10) and TRPV1-TRPV4+ (0.56± 0.12;
n = 10) RGCs. Moreover, in TRPV1−/− RGCs (Figures 7C–E),
GSK101-evoked [Ca2+]i signals recorded in cells preincubated
with 2-AG (0.62 ± 0.05; n = 24) were also indistinguishable
from control responses (0.59± 0.05; n = 24). Consistent with the
pharmacological experiments (Figure 6), we found that ablation
of TRPV1 has no effect on GSK101-evoked signals (n = 8;
Figure 7A). These data suggest that, unlike TRPV1 signals,

TRPV4 signaling in the mouse retina will resist endocannabinoid
modulation.

DISCUSSION

This study provides a number of novel observations that
are relevant for the understanding of non-canonical sensory
transduction in vertebrate vision. First, we quantified the TRPV
isoform expression across RGCs. This is important because it
identifies potential targets for mechanical and inflammatory
stressors that affect specific subpopulations of these projection
neurons. Second, we determined the relative abundance and
colocalization of the two most extensively studied vanilloid
channel isoforms in mouse RGCs. Third, we provide evidence
against obligatory functional heteromerization between TRPV1
and TRPV4 channels. Fourth, we show that a proportion of SMI-
32+ αRGCs – cells known to be sensitive to IOP – coexpress
TRPV1 and TRPV4 channels. Together, these findings suggest
that projection of sensory information to retinorecipient nuclei
in the midbrain is differentially distributed across subpopulations
of RGCs.
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FIGURE 7 | RGC TRPV4 signaling is not modulated by endocannabinoids. Recordings from TRPV4eGFP, wild type (C57), and TRPV1−/− RGCs. (A) Representative
traces and (B) cumulative averaged data for CAP and 2-AG responses in TRPV4+ (n = 10) and TRPV1-TRPV4+ (n = 10) RGCs. (C) Preincubation with 2-AG has no
effect on the amplitude of the GSK101-evoked [Ca2+]i response (n = 24). (D) Ablation of the Trpv1 gene has no effect on the TRPV4 response (n = 8). (E)
Cumulative averaged data from WT (black) and TRPV1 (orange) KO RGCs. Neither exposure to 2-AG nor absence of TRPV1 impact GSK101-evoked [Ca2+]i
signaling. ∗P ≤ 0.05, ∗∗P ≤ 0.01.

Transcript analysis in mouse RGCs revealed that the cells
express all four non-epithelial vanilloid mRNAs, with Trpv4
by far the most prevalent transcript, followed by Trpv2
and residual expression of Trpv1 and Trpv3 (Figures 1A,B).
Our functional data were broadly reflective of the Trpv
transcriptome, with ∼50% RGCs responding to the TRPV4
agonist, ∼20% responded to the TRPV1 agonist, and ∼10%
responsive to agonists specific for both channels. A similar
expression pattern emerged from immunohistochemical and
electrophysiological analyses in the rat DRG, in which ∼89%
neurons were shown to express TRPV4, ∼34% express TRPV1
channels, and 28% express projection of both channels (Cao
et al., 2009) whereas TRPV1 and TRPV2 (Lewinter et al.,
2004) and TRPV1 and TRPM8 displayed little coexpression
(Kobayashi et al., 2005). The percentage of TRPV4-ir RGCs
exceeds the size of the GSK101-responding pool, presumably
because cell dissociation/separation compromises the activation
of these stretch-activated channels (e.g., Ryskamp et al.,
2011).

TRPV1 and TRPV4 coexpression in mouse RGCs is in accord
with quantifications that had been conducted separately for each

isoform (Ryskamp et al., 2011; Jo et al., 2017). Previous work
localized TRPV4 to RGC somata, and primary dendrites, but
there is little information about subcellular TRPV1 expression
due to the lack of specificity of TRPV1 antibodies (Gilliam and
Wensel, 2011; Molnar et al., 2012). Coexpression of multiple
thermoTRPs isoforms in single RGCs suggests that the cells
may be capable of parallel transduction of sensory information
that includes osmotic gradients, mechanical strain, acidity, and
biolipids such as endocannabinoids and polyunsaturated fatty
acids (e.g., arachidonic acid and eicosanoids). The possibility
that TRPV4 channels mediate the disproportionate sensitivity
of certain neurons to mechanical stressors is supported by the
observations that (i) TRPV4 activation augments excitability by
stimulating TTX-sensitive currents and voltage-operated calcium
channels (Li et al., 2011) and increases the firing of substantia
nigra (Guatteo et al., 2005), DRG (Cao et al., 2009), hippocampal
neurons (Shibasaki et al., 2007), and RGCs (Ryskamp et al.,
2011), (ii) TRPV4 mutations underlie debilitating sensory
and motor neuropathies (Nilius and Voets, 2013) whereas
(iii) TRPV4−/− mice exhibit impaired mechanical nociception
(Liedtke and Friedman, 2003) and (iv) may be protected from
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mechanical hyperalgesia and glaucomatous neurodegeneration
(Alessandri-Haber et al., 2004; Ryskamp et al., 2016). Mice
lacking a functional Trpv4 gene show impaired responses to
intense mechanical stimuli but normal responses to low threshold
stimulation (Liedtke and Friedman, 2003; Suzuki et al., 2003),
suggesting that TRPV4 will preferentially mediate calcium signals
in respond to excessive mechanical stress (for example, in
hypertensive glaucoma). Consistent with this, elevated calcium
levels were reported in glaucomatous RGCs (Niittykoski et al.,
2010).

TRPV1 is the most extensively studied retinal vanilloid
channel, with reports suggesting pre- and postsynaptic
expression across multiple cell types (Yazulla, 2008; Ryskamp
et al., 2014b) that include a subpopulation of RGCs (Jo et al.,
2017). Although Trpv1 mRNA levels in RGCS were negligible
compared to Trpv2 and Trpv4 expression, CAP-responding
cells constituted ∼20% of the overall magnetoseparated
population. This suggests that low expression of the Trpv1
gene is sufficient to support TRPV1-mediated Ca2+ entry in
a substantial mouse RGC cohort. Our findings in the retina
mirror previous studies the brain, which was reported to show
low Trpv1 expression (Cavanaugh et al., 2011) even though
neurons across multiple brain regions respond to CAP with
TRPV1-dependent modulation of synaptic plasticity and vesicle
release (Gibson et al., 2008; Wu et al., 2014; Fenwick et al., 2017).
While physiological functions of retinal TRPV1 have not been
clearly defined, its localization to αRGCs, which respond to
modest IOP elevations with dendritic and synaptic remodeling
(Ou et al., 2016) potentially links pressure-dependent RGC
excitability (Weitlauf et al., 2014) and apoptosis (Sappington
et al., 2009) to the early loss of large-diameter RGCs exposed
to glaucomatous stressors such as IOP (Glovinsky et al., 1991).
Arguing against a direct TRPV1 role in pressure transduction are
the limited expression of the channel in RGCs and the reports
that TRPV1 ablation augments RGC injury in a mouse model of
ocular hypertension (Ward et al., 2014). There is also conflicting
evidence about whether TRPV1 is expressed in retinal glia, as
the channel was reported in rabbit but not detected in rat Müller
cells (Leonelli et al., 2009; Martínez-García et al., 2013). Our
analysis of reporter mice shows that TRPV1 is expressed in a
subset of Müller glia but it remains unclear whether this was due
to non-uniformity of Trpv1 expression or an artifact resulting
from differential expression of the reporter transgene.

This is the first report that a small but significant fraction
of RGCs (∼10%) functionally coexpress TRPV1 and TRPV4
isoforms. Interestingly, this cohort included cells that were
immunopositive for SMI-32, a marker of αRGCs which form
four independent mosaics within the IPL-RGCL (Krieger et al.,
2017), include M4 ipRGCs (Schmidt et al., 2014), and constitute
one of the fastest pathways for retina–brain information transfer.
Whether native TRPV1 and TRPV4 channels are capable of
heteromultimerization has been controversial given that subunit
interactions predicted by FRET studies (Cheng et al., 2007)
and co-immunoprecipitation (Sappington et al., 2015) have not
been not substantiated by investigations of TRPV1-4 subunit
expression in heterologously expressing cells (Hellwig et al.,
2005). TRPV4−/− mice exhibit impaired mechanical nociception

but show conserved TRPV1-mediated responses to noxious
heat (Liedtke and Friedman, 2003; Suzuki et al., 2003). We
expand on these studies to show that heteromerization is
not obligatory for the activation of native neuronal TRPV1
or TRPV4 channels as indicated the observation that neither
activation nor inhibition of TRPV1 affect the amplitude and
kinetics of GSK101-evoked calcium responses. Vice versa,
pretreatment with TRPV4 agonists/antagonists had no effect
on the cells’ responsiveness to CAP. We also found that (i)
desensitization of one isoform has little effect on the agonist-
evoked responsiveness of the other and (ii) CB1 receptor
activation which inhibits TRPV1 channels (Jo et al., 2017)
has no effect on TRPV4-mediated signals in TRPV1-expressing
RGCs; this finding mirrors the analyses in DRG neurons
which showed that native TRPV1 and TRPV4 currents can
be explained by single channel properties of each channel
(Premkumar et al., 2002; Kim et al., 2016). It is possible
that interactions between the two channels will emerge under
pathological circumstances, as either channel can contribute
to mechanical hyperalgesia (Vennekens et al., 2008; Huynh
et al., 2014) and both were linked to optic neuropathy
(Ryskamp et al., 2011; Weitlauf et al., 2014). Indeed, TRPV1
activation that is not harmful in healthy tissue can be
pathological during mechanical hyperalgesia and facilitated
by pro-inflammatory molecules that have been implicated in
glaucoma such as ATP, prostaglandins, and arachidonic acid
metabolites (Nilius and Szallasi, 2014). We hypothesize that
TRPV1/4 sensitization (“allodynia”) amplifies pressure-induced
neuronal damage through eicosanoid products of CYP450,
which activate TRPV4 (5′6′-EET, 11′,12′-EET) and TRPV1
(12-(S)-HETE, 20-HETE) (Watanabe et al., 2003; Wen et al.,
2012; Ryskamp et al., 2014b) or N-arachidonoyl taurine which
activates both channels (Bradshaw et al., 2013). TRPV1/4-
dependent mechanical allodynia is a characteristic feature of
neurogenic inflammatory and neuropathic pain paradigms in
sensory neurons (Alessandri-Haber et al., 2004; Amadesi et al.,
2006; Grant et al., 2007). Importantly, hyperalgesia-associated
properties of thermoTRPs channels would also augment the
susceptibility of retinal neurons and glia to glaucomatous
injury (Križaj, 2016). Among inflammatory agents that sensitize
TRPV1 and TRPV4 are ATP, bradykinin, prostaglandin E2,
and PAR2 agonists which have been linked to cytotoxicity and
neurodegeneration (Grant et al., 2007; Nilius and Szallasi, 2014;
Lu et al., 2015). However, certain messenger molecules may
preferentially stimulate one isoform over the other. For example,
TRPV4 signaling in RGCs is unaffected by the long-chain
unsaturated acyl-amide 2-AG that potently modulates TRPV1
activation (Bradshaw et al., 2013; Ryskamp et al., 2014b; Jo et al.,
2017).

Collectively, these findings extend our understanding of how
non-canonical sensory stimuli are transduced in mammalian
RGCs. We know that the devastating effects of pressure, strain,
swelling, ocular trauma and inflammatory inputs on vision
tend to be associated with early effects of mechanical stress on
the viability and function of RGCs (Križaj, 2016). It remains
to be seen whether synergistic activation of TRPV1 and 4
under pathological conditions unlocks novel models of sensory
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transduction, as observed for somatosensory afferents, in which
combined expression of TRPV1, TRPM3, and TRPA1 is required
for the transduction of noxious heat (Vandewauw et al., 2018).
A non-mutually exclusive possibility is that the two vanilloid
isoforms impart complementary sensory information that could
be important for signaling in specific RGC classes such as αRGCs.
Because mouse RGC subpopulations tend to be conserved in
primates (Chalupa and Williams, 2008), our findings might
extend across phylogenetic domains.
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