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Cell-autonomous immune gene expression is
repressed in pulmonary neuroendocrine cells
and small cell lung cancer
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Small cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a

subset of SCLC has been termed “variant” due to the loss of NE characteristics. In this study,

we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human

tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then

we investigated the different immune phenotypes associated with high and low NE scores.

We found repression of immune response genes as a shared feature between classic SCLC

and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC

tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune

interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in

other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of

chemoresistance. These findings may help guide the design of treatment regimens in SCLC.
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Small cell lung cancer (SCLC), accounting for 15% of lung
cancer cases, with a 5-year survival of 6%, is designated by
the US Congress as a “recalcitrant cancer”1,2. SCLC is

classified as a high-grade neuroendocrine (NE) tumor3. A large
fraction of SCLC tumors are driven by ASCL1, a lineage oncogene
also important for pulmonary neuroendocrine cell (PNEC) fate
determination4,5. In healthy lung tissue, PNECs are rare and
dormant6, whereas upon lung injury, some act as stem cells to
regenerate surrounding epithelial cells7. SCLC occurs primarily in
heavy smokers, but despite the very high mutation burden8–10

from SCLC genomes predicted to contribute an ample supply of
neoantigens, SCLCs express low levels of major histocompatibility
complex class I (MHC I) proteins to present tumor-specific
antigens11,12. This could explain why, among various types of
cancer, checkpoint-blockade immunotherapy underperforms in
SCLC13,14.

Thirty-five years ago, it was observed that by contrast to classic
SCLC cell lines (which grew in tissue culture as floating cell
aggregates), a subset of patient-derived SCLC lines behaved dif-
ferently—growing as adherent monolayers in culture, with mor-
phologically larger cells, more prominent nucleoli, and expressed
few or no NE markers15,16. These characteristics led such tumors
to be termed “variant” or “non-NE” SCLC. Many of these variant
SCLC lines were established from patients whose tumors had
acquired resistance to chemotherapy and clinically relapsed, a
context in which genomic MYC amplification was also noted to
be more frequent17. Notch activation had been shown to mediate
the transition from classic to variant subtypes and accounts for
the intratumoral heterogeneity commonly seen in SCLC18.

Recently, extending the concepts of classic and variant SCLC,
both intertumoral, and intratumoral heterogeneity in SCLC has
been documented and has been associated with the expression of
lineage-specific transcription factors (TFs) ASCL1, NEUROD1,
YAP1, and POU2F3, and these various subtypes express different
levels of NE markers19–21.

We have previously defined a 50-gene NE signature that helps
us quantify the NE properties as a continuous NE score ranging
from −1 to 1, with a more positive score indicating higher NE
properties22. In the current study, we applied this NE scoring
method to SCLC samples from preclinical models and patient
tumors. We first assessed the relationship between NE scores and
SCLC molecular subtypes. Then, we investigated the immune
phenotypes associated with variable NE scores in SCLC and other
cancer types.

Results
Relationship between NE scores and SCLC molecular subtypes.
Using the 50-gene NE signature updated with all available
SCLC-related RNA-seq data (Supplementary Data 1), we
computed NE scores for patient-derived SCLC lines and
xenografts (PDXs) as well as four independent patient tumor
data sets (including one newly generated for this study)
(Table 1 and Supplementary Data 2). We examined the rela-
tionship between NE scores and expression of SCLC molecular
subtype-specific TFs as proposed by Rudin et al. (Fig. 1a, b).
Our findings are largely consistent with the previous proposal
that assigns ASCL1+ and NEUROD1+ SCLCs to NE subtypes
and POU2F3+ and YAP1+ SCLCs to non-NE subtypes. How-
ever, we note some discrepancies. First, we found that while
expression of ASCL1 and NEUROD1 seems to be mutually
exclusive in cell lines, they seem to co-express in many of the
tumor samples; a small set of samples with low NE scores still
express ASCL1 or NEUROD1; in “George_2015”, “Jiang_2016”
and our own data set, we have observed rare POU2F3+ samples
that have high NE scores.

With serially sectioned formalin-fixed paraffin-embedded
(FFPE) slides from 9 out of the 18 tumors for which we had
performed expression profiling, we examined the tumors with
hematoxylin and eosin (H&E) staining as well as immunohis-
tochemistry (IHC) staining of ASCL1, NEUROD1, and POU2F3
(Fig. 1c–f). The high NE-score tumors exhibited predominantly
classic SCLC morphology with dark nuclei, scant cytoplasm, and
inconspicuous nucleoli. Notably, this was not only seen in
ASCL1+ tumors (for example, SCLC-04, NE score 0.4) but also
in the POU2F3+ tumor with a positive NE-score (SCLC-15, NE
score 0.26) (Fig. 1c). On the other hand, while we observed
variant morphology in tumors with low NE scores, we noticed
intratumoral heterogeneity. In a tumor weakly positive for
ASCL1 (SCLC-20, NE score -0.05), the ASCL1-high regions were
found to be more classic-like whereas the ASCL1-low regions
were more variant-like (Fig. 1d). Our IHC-based quantifications
largely agree with the microarray gene expression assessments
(Fig. 1e). Tumors that were found to express both ASCL1 and
NEUROD1 stained positive for both markers as well. In addition,
intratumoral heterogeneity was commonly found within such
tumors, which contain areas with high expression of both TFs
but also areas with expression of only one TF (Fig. 1f).

Immune gene repression is a NE lineage-specific property. We
performed a correlation between NE scores and SCLC tran-
scriptomic data to identify gene expression changes associated
with the NE program. Not surprisingly, gene ontology (GO)
analyses revealed genes related to the neuronal system as highly
expressed in high NE-score samples (Supplementary Fig. 1a, b).
By contrast, genes negatively associated with NE score were
enriched for GO terms related to immune response, and this was
observed in both the cell line and human tumor data sets (Sup-
plementary Fig. 1c, d). We also performed gene set enrichment
analysis (GSEA)23 with a variety of gene set libraries collected by
Enrichr24. Consistent with the previous report that Notch sig-
naling dependent REST (Neuron-Restrictive Silencer Factor)
activation represses neuronal gene expression in variant SCLC18,
we found REST targets (i.e., repressed by REST) are abundantly
expressed in high NE-score SCLCs. On the other hand,
interferon-stimulated genes (ISGs) are found to highly expressed
in the low NE-score (variant) SCLC samples (Fig. 2a, b and
Supplementary Data 3). As NFκB signaling mediates activation of
ISGs, we examined reverse-phase protein array (RPPA) data from
the cancer cell line encyclopedia (CCLE)25 and found higher
levels of activating serine 536 phosphorylation on p6526 in low
NE-score SCLC lines (Fig. 2c). This result aligns with the previous
findings that innate immune genes are more highly expressed in
an SCLC cell line H69 variant cell line with upregulation of
mesenchymal genes—it was found that in this cell line, TBK1,
IRF3, and STAT1 signaling is activated by a subclass of endo-
genous retroviruses (ERVs) through MAVS and STING to form a
positive feedback loop and sustain innate immune gene expres-
sion27. As classic SCLC is driven by lineage factor ASCL1 whereas
variant SCLC with loss of NE genes is driven by YAP1, we
examine the functional roles of YAP1 and ASCL1 in regulating
the ISGs in SCLC cell lines. Horie et al. previously examined the
consequences of silencing YAP1 in YAP1+ SCLC cell lines28.
From their results, we observed a significant decrease of ISG
expression in SCLC cell line SBC5 without upregulation of NE
genes targeted by REST. ASCL1 silencing from an ASCL1+
SCLC cell line H2107 on the other hand29, did not increase the
expression of ISGs (Supplementary Fig. 2).

Our 50-gene signature derived from lung cancer cell line
mRNA data (Supplementary Data 1) contains several genes with
immune-related functions that were found to highly express in
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variant SCLC. Some are involved in cytokine signaling; for
example, IL18 encodes for a proinflammatory cytokine30, and
OSMR encodes for a receptor for oncostatin M and IL-3131.
Furthermore, many of these genes are involved with immuno-
suppressive processes, including NT5E32, TGFBR233, ANXA134,
EPHA235, HFE36, and LGALS337. From our pathway analysis
results, NE score negatively correlated genes are also enriched for
genes upregulated in response to Tumor Necrosis Factor-alpha
(TNFA) or interleukin-1 (IL1) (Supplementary Data 3). indicates
that beyond these genes included in the NE expression signature,
there is a broad immune program concertedly upregulated in low
NE-score SCLC samples. We extended our analysis to a few
immune gene sets that were previously identified to express cell-
autonomously in cancer. These gene sets include the following:
SPARCS genes (stimulated 3 prime antisense retroviral coding
sequences) reported to express in mesenchymal tumors and
mediate interferon-gamma signal amplification27; “parainflam-
mation” genes in epithelial tumor cells38; and senescence-
associated secretory phenotype (SASP) genes39 that reinforce
the senescence arrest, alter the microenvironment, and trigger
immune surveillance of the senescent cells40. We observed that
the expression of these genes also negatively correlate with NE
scores in SCLC despite little overlap among genes in these various
sets (Supplementary Fig. 2a, b). We also assessed about 1,000
innate immune genes cataloged by the InnateDB41 and found a
significantly higher proportion of these genes negatively asso-
ciated with NE score from SCLC cell lines (Supplementary Fig. 3c
and Supplementary Data 4).

While the expression of neuronal program genes in high NE-
score SCLCs can be attributed to the NE lineage, we examined
single-cell RNA-seq (scRNA-seq) data from the healthy human
lung epithelial cells42 to check whether the expression repression
of ISGs is also a lineage-specific phenomenon that could be
observed in PNECs rather than being cancer-specific. Consistent
with the previous report that ASCL1 negatively regulates YAP1
during neuronal differentiation43, the highest expression of ASCL1
and lowest expression of YAP1 was observed in PNECs, relative to
other cell types. We confirmed that while PNECs have increased
expression of REST target genes, ISGs are indeed repressed as well
(Fig. 2d and Supplementary Fig. 4a). Additionally, we specifically

examined interferon receptors in PNECs and found that they also
have the lowest expression in PNECs (Fig. 2d). It has been
estimated that 10% of the genes in the human genome have the
potential to be regulated by IFN, many ISGs work in immune
defense against viral infection, but some could be hijacked by
viruses44. As some PNECs are rare stem cells, we reason that ISG
repression might lower their risk from viral infection. In the
context of the current COVID-19 pandemic, we examined
scRNA-seq data from Ouadah et al., who performed lineage
tracing with an Ascl1CreERT2; Rosa26LSL-ZsGreen mouse model to
show that some PNECs can transdifferentiate into other cell
types7. Supplementary Fig. 4b generated with their data shows that
AT2 and ciliated cells originated from PNECs in this model have
lost Ascl1 but increased Yap1 expression. Ly6e and Tmprss2, genes
involved in coronavirus defense45 and hijacked entry46, respec-
tively, were also upregulated.

Increased tumor–immune interaction in low NE-score SCLC
tumor samples. It has been long observed that the expression of
MHC I is low in SCLC11. Using single sample gene set enrich-
ment analysis (ssGSEA)47, we derived the MHC I scores for MHC
I genes. From studies that had collected lung tumors of different
histology, MHC I scores positively correlate with PTPRC (which
encodes for pan-leukocyte marker CD45) levels (Fig. 3a and
Supplementary Fig. 5a). The lowest MHC I and PTPRC gene
expression were found in neuroendocrine tumors, including not
only SCLC but also carcinoids (Fig. 3a), suggesting these NE
tumors with decreased MHC I have fewer immune infiltrates. In
SCLC data sets, low NE-score samples exhibited upregulation of
MHC I genes (Fig. 3b) and were associated with higher PTPRC
expression in patient tumor data sets (Supplementary Fig. 5b).
We also estimated immune cell infiltration by deriving immune
cell type-specific signature scores48 and found that they negatively
correlate with NE scores in SCLC patient tumors, suggesting
increased tumor–immune interaction in low NE-score tumors
(Fig. 3c).

We saw a higher expression of PD-L1 (CD274) in low NE-
score SCLCs for 3 out of 4 primary tumor data sets
(Supplementary Fig. 6a). Furthermore, genes from an IFN-
gamma related signature that has been shown to predict PD-1

Table 1 Data sets used for analyses.

Source Name Tissue source Sample type n References

Human SCLC cell lines/
NCI/Hamon Center

SCLC Cell line 69 This study

Human Horie_2016 SCLC Cell line 4 28

Human Pozo_2020 SCLC Cell line 4 29

Human Cañadas_2014 SCLC Cell line 6 56

Human Drapkin_2018 SCLC PDX 19 57

Human Rudin_2012 SCLC Tumor 29 9

Human George_2015 SCLC Tumor 81 10

Human Jiang_2016 SCLC Tumor 79 80

Human SCLC tumors
(this study)

SCLC Tumor 18 This study

Human expO Lung cancer Tumor 109 82

Human Rousseaux_2013 Lung cancer Tumor 286 81,82

Human CCLE Pan-cancer Cell line –b 25

Human TCGA Pan-cancer Tumor 10535 53

Human TARGET Pan-cancer Tumor 734 53

Mouse Lim_2017 SCLC Pooled FACS-sorted tumor cellsa 6 18

Human Travaglini_2020 Healthy lung Single cell 9384c 42

Mouse Ouadah_2019 Healthy lung Single cell 46c 7

PDX patient-derived xenografts, FACS fluorescence-activated cell sorting, scRNA-seq single-cell RNA sequencing.
aIn Lim_2017, Rb1flox/flox;p53flox/flox;p130flox/flox;Rosa26mTmG; Hes1GFP/+ GEMM SCLC tumors were initiated by Ad-CMV-Cre, sorted by Tomato and GFP to obtain relatively pure tumor cells.
bCCLE data sets were used in multiple analyses with different numbers of cell lines; cCells.
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blockade response in multiple cancer types49 are highly expressed
in low NE-score SCLC tumors across multiple data sets (Fig. 3c).
We also examined a list of 21 immune checkpoint genes50,
immune-suppressive cytokines (IL-10 and TGF-beta), and their

receptors51, for their association with NE scores. We found that
these genes also have higher expression in low NE-score SCLC
tumors (Fig. 3c). Finally, the expression of 995 immunosuppres-
sive genes from the Human Immunosuppression Gene Atlas50

Fig. 1 NE score and SCLC molecular subtypes. a Heatmaps visualizing relative expression of molecular subtype-specific TFs and NE scores. Two heatmaps
were generated for each study, with one ordered by complete linkage hierarchical clustering of TFs and the other ordered by NE scores. Gene expression
was z-score standardized for each sample. b Pairs plot for NE scores and molecular subtype-specific TFs. Lower left panels are scatter plots showing a
pairwise relationship between variables, diagonal panels are density plots showing the distribution of each variable and upper right panels are correlation
coefficients from pairwise Pearson correlation. Refer to the top or right of each 5 × 5 matrix for subplot x or y axis variable labels. For example, for each data
set, the first subplot on the top row shows the distribution of NE scores from that data set, the scatterplot below it shows the relationship between NE
score (x axis value) and ASCL1 expression (y axis value), and the Pearson correlation coefficient between NE score and ASCL1 expression is provided in the
second cell of the top row. *p-value < 0.05. Note that in all studies: most samples have positive NE score; under TF-based classification, ASCL1+ subtype
dominates; NE scores positively correlate with ASCL1 and NEUROD1 but negatively correlate with POU2F3 and YAP1 expression. c H&E staining of two high
NE-score SCLC tumor samples showing classic SCLC morphology with dark nuclei, scant cytoplasm, and inconspicuous nucleoli. d ASCL1 IHC staining and
H&E staining of a low NE-score SCLC tumor, showing variable morphology at different selected areas, where ASCL1-low areas appear to be more variant-
like. e Quantifications of TF expression from IHC staining or microarray profiling, samples are ordered by increasing NE scores. f IHC of ASCL1, NEUROD1,
and POU2F3 in two tumors that express both ASCL1 and NEUROD1. Two areas per tumor were selected for showing intratumoral heterogeneity in ASCL1
and NEUROD1 expression patterns.
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was assessed, and again, the majority of these genes exhibit a
negative correlation between mRNA expression and NE scores
across different SCLC tumor data sets (Supplementary Fig. 6b
and Supplementary Data 5).

Besides gene expression-based analyses, we also performed
immunohistochemistry (IHC) with our 9 SCLC tumor samples to
quantify tumor-infiltrating CD8+ and CD4+ T cells (Supple-
mentary Data 2). Of importance, both intratumoral and
intertumoral heterogeneity were observed in T cell infiltration.
Within the same tumor, areas with low tumor ASCL1 levels
exhibited more CD8+ and CD4+ T cell infiltration, whereas areas
with high tumor ASCL1 levels showed fewer CD8+ or CD4+

T cells (Fig. 4a). Across all the SCLC tumor specimens assessed,
CD8+ and CD4+ T cell per area cell count positively correlated
with the T cell score computed from gene expression data, and
both IHC-based T cell counts and gene expression-based T cell
scores negatively correlated with NE scores (Fig. 4b).

Pan-cancer analyses for NE score expression and immune
response genes. These findings had prompted us to examine other
cancer types to see whether immune gene repression is seen in
other NE tumors and whether variant subtype from NE lineage loss
could also be observed (Fig. 4c). A recent study identified SCLC-like
epithelial tumors in pan-cancer samples using a principal compo-
nent analysis-based approach. They found that tumors across many
lineages with a higher SCLC-like score had lower immune gene

expression52. We applied our NE scoring method across all cancer
lineages (pan-cancer analysis) to compute NE scores and assess
their relationship with immune phenotypes. In pediatric (Ther-
apeutically Applicable Research to Generate Effective Treatments—
TARGET) and adult (The Cancer Genome Atlas—TCGA) pan-
cancer studies53, neuroendocrine tumor neuroblastoma (NBL), as
well as pheochromocytoma & paraganglioma (PCPG) were iden-
tified as containing the highest NE scores (Fig. 5a, b). Tumors of
glial origin, including Low-Grade Glioma (LGG) and Glioblastoma
Multiforme (GBM) also have high NE scores. Besides these NE/glial
tumors, a small number of high NE-score samples were observed
for bladder urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), lung adenocarcinoma (LUAD), lung squamous cell car-
cinoma (LUSC), pancreatic adenocarcinoma (PDAC) and stomach
adenocarcinoma (STAD), for which it is also known that neu-
roendocrine tumors, while uncommon, still comprise a small pro-
portion of the cases (Fig. 5a, b). In a previous immunogenomic
analysis that had classified pan-cancer TCGA samples into six
immune subtypes54, we found samples from the “immunologically
quiet” subclass have the highest NE score, followed by the “lym-
phocyte depleted” subclass (Fig. 5c). We further assessed the rela-
tionship between NE scores and the tumor-infiltrating lymphocytes
and leukocyte regional fractions previously reported for the pan-
cancer samples54, these immune metrics negatively correlate with
NE scores across all samples (Fig. 5d) and also within specific tumor
types (Supplementary Fig. 7).

Fig. 2 Repression of ISGs in high NE-score SCLC and PNECs. a GSEA enrichment plots for selected gene sets. Results from SCLC cell lines, PDXs
(Drapkin_2018), and patient tumor data sets were superimposed. Normalized enrichment score (NES) was provided. *, multiple comparison-adjusted
p-value < 0.05. b Heatmaps for top 25 leading-edge genes selected from gene sets in a. Gene expression matrix of each data set was annotated with color-
coded Pearson correlation coefficient (from correlating NE score with gene expression) as a left-side column, and a top bar indicating NE scores. For each
data set, gene expression was z-score standardized across samples. c Scatter plot showing negative correlation between NE score and Ser536
phosphorylation on NFkB-p65 in SCLC cell lines. Pearson correlation coefficient was provided. *p-value < 0.05. d Heatmap showing relative expression of
selected lineage factors (ASCL1 and YAP1), REST targets, and ISGs (same genes as used in b, determined from a) as well as interferon receptor genes in
healthy human lung epithelial cells based on scRNA-seq experiments. Gene expression from all cells in each cell-type cluster was averaged and then
min–max scaled across cell types to a scale between 0 and 1.
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We took a close examination of NBL using cell line expression
data from CCLE25 along with patient tumor data from
TARGET55 for lineage factors ASCL1 and YAP1, REST targets,
ISGs, MHC I, immune cell-specific signature scores48, Ayer
et al.’s PD-1 blockade response signature49, immune check-
points50, and suppressive cytokines and receptors51. The pattern
for NBL (Fig. 5e) highly resembles that of SCLC (Figs. 2b and 3b,
c) suggesting the existence of a variant NBL subset with decreased
neuroendocrine features, increased cell-autonomous expression
of immune genes as well as increased tumor–immune interaction.
Like SCLC, we also found higher levels of NFkB-p65 phosphor-
ylation in the low NE-score variant NBL cell lines (Fig. 5f).

MHC I re-expression in chemoresistant SCLC. As it was pre-
viously observed that variant SCLC cell lines were frequently
derived from patients whose tumors had relapsed on che-
motherapy17, we wondered if the development of chemoresistance
in tumors was associated with the altered expression of immune
genes, especially MHC I. Five sets of data with origin-matched
chemosensitive and chemoresistant samples were examined to
address this question. In 2017, using a genetically engineered
mouse model (GEMM), Lim et al. showed that Notch-active SCLC
cells were more chemoresistant18. Using their data we found the
Notch-active SCLC cells had switched from ASCL1+ to YAP1+,
have reduced NE scores, and increased expression of ISGs and
MHC I genes (Fig. 6a). We next examined a series of preclinical
models we and others have developed for human SCLC. Classic,

high NE-score SCLC cell lines predominantly grow as floating
aggregates in culture, but contain a small proportion of cells
growing adherently in a monolayer. By selecting for adherent
growth, we generated an adherent subline H69-AD(/NCI-H69-
AD) from parental, chemosensitive H69(/NCI-H69) cells (Fig. 6b).
Increased resistance to Cisplatin (~10 fold) and Etoposide (~6
fold) was observed in H69-AD compared to the parental H69 cells
(Fig. 6c). We found H69-AD had transitioned to become a low
NE-score (-0.02) YAP1+ variant line compared to the parental
high NE-score (0.91) classic ASCL1+ line. Both ISGs and MHC I
genes were found to have increased expression in H69-AD
(Fig. 6d). In a previous study, Cañadas et al. also derived sublines
from H69. Hepatocyte growth factor treatment was used to induce
the mesenchymal transition of H69 cells, resulting in H69-M lines
that were found to be chemoresistant both in vitro and in vivo56.
From their data set, we also found MHC I expression increased in
H69-M compared to parental H69 cells. There was some increase
in ISGs too, but less prominent compared to H69-AD from us.
Notably, although YAP1 expression increased in H69-M, ASCL1
levels did not change (Fig. 6d). As the fourth set of data, PDX
models established sequentially from SCLC tumors (Drap-
kin_2018) collected before and after chemotherapy from the same
patient57 were examined. In PDXs from patient MGH1518 for
which chemoresistance had developed in the relapsed sample, we
found upregulation of MHC I, but not ISGs (Fig. 6d). Of note, this
relapsed sample maintained a high NE score but expressed higher
levels of MYC, consistent with previous findings that MYC

Fig. 3 Low NE-score variant SCLC has increased tumor–immune interaction. a Expression of MHC I genes and pan-leukocyte marker PTPRC in lung
tumors from the “Rousseaux_2013” data set. Box whisker plots are filled with color reflecting the median NE score in different histological subtypes. The
centerline in the boxplot represents the median, the lower and upper hinges correspond to the first and third quartiles, the whiskers extend from the hinge
to the value no further than 1.5 * IQR away. Color for scatterplot symbols reflects NE score for different samples. b Heatmaps visualizing expression of
MHC I genes across multiple SCLC data sets. c Heatmaps visualizing expression of PTPRC, immune-cell-type-specific signature scores, PD-1 blockade
response-predicting IFN-gamma-related signature genes49, immune checkpoint genes, and suppressive cytokines and receptors in SCLC tumor data sets.
MHC I score and immune infiltrate scores were computed using ssGSEA methodology. Sample-wise z-score standardized values were used for the
heatmaps.
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mediates chemoresistance57. Lastly, we generated a set of sub-
cutaneous xenograft models from a high NE-score human SCLC
cell line NCI-H1436 with or without selection for resistance to
Cisplatin and Etoposide in mice (Fig. 6e). Compared to the par-
ental xenograft, the drug-resistant xenografts maintained ASCL1
expression but exhibited increased B2M (MHC I complex sub-
unit), PSMB8 (immunoproteasome subunit) (Fig. 6e), andMYC58.
Collectively, these findings suggest MHC I can re-express upon
the development of chemoresistance—in some cases, with lineage
transition; and in some other cases, accompanied by an increase in
MYC expression.

We also checked whether expression levels of MHC I andMYC
differ by tumor source and anatomical site based on the “NCI/
Hamon Center” patient-derived SCLC lines data set (Supple-
mentary Fig. 8). Interestingly, the lowest MHC I and MYC levels
were both observed for cell lines derived from primary site lung
tumor specimens and they are all high-NE tumors, whereas
higher MHC I levels were observed in SCLC lines isolated from
metastatic tumor samples especially those from lymph node and
bone marrow. These observations remain to be validated with
primary and metastatic samples from the same patients.

Discussion
In this study, we examined NE properties of patient-derived SCLC
cell lines, PDXs, and human tumors based on NE scores estimated
from a gene expression signature. Currently, it is believed that
Notch activation drives the lineage transition from ASCL1+ to
NEUROD1+ to YAP1+ subtype59, whereas POU2F3+ SCLC is a
standalone subtype that originated from tuft cells60. While we
observed mutually exclusive patterns of ASCL1 and NEUROD1
expression in cell lines, their co-expression was identified in many
patient tumors. Our IHC results further revealed intratumoral
heterogeneity in such tumors, suggesting ongoing lineage transi-
tion in primary treatment-naive tumors. From the alignment of
NE scores and molecular subtype-specific TF expression, we
observed rare high NE-score POU2F3+ tumors in three inde-
pendent data sets, raising the possibility that POU2F3+ tumors
could also arise from NE lineage. Does this represent the fact that
all of the respiratory epithelium arises from a common stem cell
that then differentiates into sub-niches giving rise to the other
differentiated cells? Such concept would also explain the obser-
vations in GEMMs61,62 that SCLC may occasionally arise from
other non-NE cells of the respiratory epithelium.

Fig. 4 Intertumoral and intratumoral heterogeneity in T cell infiltration from SCLC tumors with variable NE features. a IHC of ASCL1, CD4, and CD8 in
selected tumors. SCLC-04 is an SCLC tumor with an NE score of 0.4. CD8 or CD4 T cells were few in the ASCL1-high regions but abundant in the ASCL1-
low regions; SCLC-20 is a tumor with NE score of −0.05, similar reciprocal relationship of ASCL1 staining and T cell infiltration was observed.
Representative regions with high or low ASCL1 staining were shown. b Relationship between IHC-determined per area CD4 and CD8 T cell count, gene
expression-based T cell score, and NE score in all nine tumors assessed. Lower left panels are scatter plots showing a pairwise relationship between
variables, diagonal panels are density plots showing the distribution of each variable and upper right panels are correlation coefficients from pairwise
Pearson correlation. *p-value < 0.05. T cell score was calculated by the ssGSEA method. c Schematic diagram showing a relationship between
neuroendocrine and immune gene expression in normal cells and neuroendocrine tumors (NETs).
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Our investigation of immune phenotypes associated with variable
NE scores had identified repression of ISGs in classic high NE-score
SCLC. While it remains to be determined what other pulmonary
cells besides PNECs can function as cells of origin for SCLC61–65, the

gene expression similarities between PNECs and SCLC suggests
many of the SCLC properties could be tied to PNEC characteristics.
We confirmed ISG repression in PNECs relative to other lung epi-
thelial cells through the examination of scRNA-seq data from

Fig. 5 Relationship between NE scores and immune phenotypes in pan-cancer samples. a, b NE scores of pan-cancer samples in the TARGET pediatric
cancer cohorts (a) and TCGA adult cancer cohorts (b). c NE scores by immune subtype in TCGA pan-cancer samples. d 2D density plots visualizing the
relationship between NE scores and tumor-infiltrating lymphocytes regional fraction (Pearson correlation coefficient −0.15, p-value < 2.2e−16) or
leukocyte fraction in TCGA pan-cancer samples (Pearson correlation coefficient −0.31, p-value < 2.2e−16). e Heatmap visualizing expression of various
genes and summary scores previously assessed for SCLC and now in NBL with cell line and tumor data sets side-by-side. For each data set, sample-wise
z-score standardized values were used. f Scatter plots showing a negative correlation between NE score and Ser536 phosphorylation on NFkB-p65 in NBL
cell lines. Pearson correlation coefficient was provided. *p-value < 0.05. For all box whisker plots, the centerline represents the median, the lower, and
upper hinges correspond to the first and third quartiles, the whiskers extend from the hinge to the value no further than 1.5 * IQR away.
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healthy human lungs. As a limitation of our current study, the
biological significance and mechanism of ISG repression in healthy
and cancer cells of NE lineage remains to be determined with
additional functional studies. ISGs provide viral defense for cells but
some can be hijacked by viruses44. Since PNECs assume stem cell
roles for tissue regeneration after injury7, lowering expression of
ISGs and other genes involved in viral entry presumably have some
role in self-protection. While we observed repression of basal ISG
expression in PNECs, it remains to be determined in the presence of
interferon stimulation whether PNECs would also be less primed for
further activation of ISGs. Like SCLC, PNECs can switch from
ASCL1+ to YAP1+ through Notch activation, but in the context of
tissue repair7. Our findings suggest that the increase of cell-
autonomous immune gene expression as high NE-score SCLCs
transition to low NE-score SCLCs are mirroring the changes that
normally take place during the transdifferentiation of PNECs to
other lung epithelial cell types, and in SCLC, this had, in turn, led to

increased tumor–immune interaction. Interestingly, our pan-cancer
analysis had extended this finding of a reciprocal relationship
between neuroendocrine and immune gene expression to other
cancer types. For NBL, a cancer with drastically distinct etiology
compared to SCLC, we were also able to identify more inflam-
matory variant cancer cell line and tumors with loss of NE lineage
gene expression. It would be interesting to explore more of such
molecular similarities between SCLC and other tumors with NE/
neuronal lineage.

The full repertoire of immune evasion strategies employed by
SCLC remains to be elucidated. However, our results tying together
with current clinical treatment findings raise several important
questions and paradoxes. The first paradox is that we found a
depletion of immune infiltrates in high NE-score SCLC tumors and
other neuroendocrine tumors (NETs), associated with the down-
regulation of MHC I expression. While this MHC I expression
explains the presence of very few T cells, it raises the question of how

Fig. 6 MHC I upregulation in chemoresistant SCLC. a Heatmap visualizing increased expression of ISGs, MHC I genes as cells switch from Ascl1+ to
Yap1+ in SCLC GEMM tumors from the “Lim_2017”. GFP was expressed from an endogenous promoter of a Notch target gene Hes1 in Rb−/−/p53−/−/
p130−/− (TKO) background. Using flow cytometry, the authors first sorted out SCLC tumor cells and then further sorted by GFP to obtain relatively pure
tumor cells with different Notch activation status. Three biological replicates were each provided for GFP negative (Notch inactive, classic high-NE) cells
and GFP-positive cells (Notch-active, low-NE). b Different morphology and culture characteristics of adherent H69-AD and the parental H69. c
Dose–response curves for Cisplatin and Etoposide in the H69 cell line pair. Note that H69-AD, the adherent line, is more resistant with higher IC50s.
d Expression changes of selected genes in H69 cell line pair from this study, H69 and derived mesenchymal H69-M cell lines from “Canadas_2014” and
autologous PDX samples before and after chemotherapy from “Drapkin_2018”. PDX parameters: TTP, time to progression, defined by time to 2× initial
tumor volume; RESP, change in tumor volume between initial tumor volume and a minimum of days 14–28. Relapsed sample from MGH-1514 did not show
increased chemoresistance based on the RESP and TTP parameters. Note that unlike other heatmaps, due to the small number of samples in each data set,
the expression is not scaled across samples in this heatmap. e qPCR measurement of normalized ASCL1, B2M, and PSMB8 expression in naive parental and
chemoresistant H1436 xenograft tumors. p-values are based on a two-sided t-test. The centerline in the boxplot represents the median, the lower and
upper hinges correspond to the first and third quartiles, the whiskers extend from the hinge to the value no further than 1.5 * IQR away.
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high NE-score NETs evade natural killer cells that normally would
recognize the missing self that such MHC I expression loss
conveys66. Thus, we feel the high NE-score low-MHC I expression
pairing indicates we need to understand how natural killer cell
mechanisms are avoided in NET pathogenesis. The second paradox
is that low NE-score variant SCLCs appear to be associated with
expression of MHC I and a more immune infiltrated tumor
microenvironment, yet clinical trials of immune checkpoint-
blockade do not clearly show these are the tumors responding to
such therapy. Since we found these tumors also express many
immunosuppressive genes it will be important to know which of
these immunosuppressive gene functions need to be targeted to
achieve anti-tumor immune responses. Finally, we observed the
expression of MHC I in selected SCLC samples with chemoresis-
tance and increased MYC expression even without changes in
ASCL1 expression. We need to know whether immunosuppressive
mechanisms are the same or different in the high vs. low NE-score
SCLC resistant to chemotherapy. We conclude, that some 30 years
after the first description of classic (high NE-score) and variant (low
NE-score) SCLCs there are important links between these NE
phenotypes and the expression of immune phenotypes, and between
similar gene expression profiles of SCLC and pulmonary neu-
roendocrine cells. Importantly, these correlations identify important
problems to be solved of clinical therapeutic translational relevance.

Methods
Computation of NE score. The construction of the original NE signature has been
described by Zhang et al.22. In this study, this signature has been updated with
expression data from RNA-seq experiments. A quantitative NE score can be
generated from this signature using the formula: NE score= (correl NE – correl
non-NE)/2, where correl NE (or non-NE) is the Pearson correlation between
expression of the 50 genes in the test sample and expression of these genes in the
NE (or non-NE) cell line group. This score has a range of −1 to +1, where a
positive score predicts for NE while a negative score predicts for non-NE cell types.
The higher the score in absolute value, the better the prediction.

Pathway enrichment analysis with GO terms. Gene Ontology enRIchment
anaLysis and visuaLizAtion tool (GOrilla67, http://cbl-gorilla.cs.technion.ac.il/) was
used to identify enriched GO terms68 related to biological processes (BP) from gene
lists ranked by increasing or decreasing Pearson correlation with NE scores in cell
line data sets or “George_2015” tumor data set. The p-value threshold was set at
10−3 for resulting GO terms. The output was visualized by Treemap R scripts
generated from “reduce + visualize gene ontology” (REViGO69, http://revigo.irb.
hr/) and further customized with a modified color scheme.

Gene set enrichment analysis (GSEA). Gene set libraries were downloaded from
Enrichr24 (https://amp.pharm.mssm.edu/Enrichr/). Fast GSEA based on gene label
permutation from R package “fgsea”70 was first used for a fast screening across a
large number of gene set libraries. After reviewing the results for SCLC cell lines,
sample label permutation-based GSEA23 was run for selected gene set libraries to
obtain normalized enrichment scores and multiple comparison-adjusted p-values.
Pearson correlation was used as the ranking metric from correlating gene
expression with NE scores.

Visualization. All heatmaps were generated by R package “ComplexHeatmap”71.
Other R packages used for visualization include “ggplot2”72, “ggridges”73, “ggrepel”74,
“ggpubr”75, “treemap”76, “RColorBrewer”77, “jcolors”78 and “patchwork”79.

Expression data. Horie_201628 is a set of microarray data that examines the effect
of YAP1 KD in SCLC cell lines, the author-processed data were downloaded from
GEO with accession id GSE93400. Pozo_202029 is a set of RNA-seq data that
examines the effect of ASCL1 KD in SCLC cell lines, FPKM data was obtained from
the author. The original data have been deposited to GSE151002. Drapkin_201857

is a set of RNA-seq data for SCLC PDX. Transcript per million (TPM) data
processed by the original authors were downloaded from GEO with accession id
GSE110853; Rudin_20129 is a set of RNA-seq data for human SCLC tumors, it was
obtained from the authors; George_201510 is a set of RNA-seq data for human
SCLC tumors, FPKM (fragments per kilobase of exon per million fragments
mapped) data processed by the original authors were obtained from a supple-
mentary table of the original publication; Jiang_2016 is a set of RNA-seq data for
human SCLC tumors80 DESeq normalized read count data was downloaded from
GEO with accession id GSE60052; IGC’s Expression Project for Oncology—expO
(GSE2109) and Rousseaux_2013 (GSE30219)81 are microarray data for lung cancer

samples with different histological subtypes, processed previously for the lung
cancer explorer (LCE)82. Pan-cancer RNA-seq data from TCGA and TARGET
processed by Expectation-Maximization (RSEM) algorithm was downloaded from
Toil xena hub53. CCLE cell line RPPA data, as well as TPM RNA-seq data, were
downloaded from the DepMap portal (19Q1)25. Travaglini_2020 is a set of scRNA-
seq data from healthy human lung42. Author-processed count data were down-
loaded from Synapse with accession id syn21041850. FACS-sorted SmartSeq2 data
was used. Cell types with less than 10 cells were removed from analyses. Oua-
dah_2019 is a set of scRNA-seq data from healthy mouse lung7. TPM data were
downloaded from GEO with accession id GSE136580. For data from GEO, R
package GEOquery83 was used for extracting the expression and phenotype data.
Quantile normalization was performed for bulk expression data by running the
“normalize.quantiles” function from R package “preprocessCore”84. Log 2 trans-
formation of gene expression data was performed as necessary. Library size nor-
malization was performed for author-processed scRNA-seq data by running the
“library.size.normalize” function from R package “phateR”85.

Gene signatures. SPARCS gene set is from a study by Cañadas et al. (Fig. 1S in
original article)27. Parainflammation gene set is from a study by Aran et al. (Fig. 1C
in original article)38. SASP gene set is from a study by Ruscetti et al. (Fig. 2C in
original article)86. InnateDB genes were downloaded from InnateDB41, non-
human genes were filtered out.

Gene set “REST ENCODE” is from the “ENCODE_and_ChEA_Consensus_
TFs_from_ChIP-X” library, and “IFNA-BT2” and “IFNG-BT2” are from the
“LINCS_L1000_Ligand_Perturbations_up” library. Both libraries were downloaded
from Enrichr24. The top 25 genes from the leading edge and are common to all
SCLC data sets were selected for heatmap visualization. For ISGs, the leading edge
genes from “IFNA-BT2” and “IFNG-BT2” were first combined and then the top 25
genes were selected.

Mouse ISGs, from Cilloniz et al.87, were identified from interferome88 by
specifying “mouse” as the species of interest and “lung” as the organ of interest. An
unfiltered ISG set was used for Fig. 6A.

Human MHC I gene set is a combination of genes under GO terms “GO_
MHC_CLASS_I_PROTEIN_COMPLEX” and “GO_MHC_CLASS_I_PEPTIDE_
LOADING_COMPLEX” from Molecular Signatures Database (MSigDB)23,89.
Mouse MHC I genes were selected from GO: 0019885, “antigen processing and
presentation of endogenous peptide antigen via MHC class I” based on the Mouse
Genome Informatics (MGI) database90. Immune-cell-specific gene sets in human
are from DisHet48. Interferon-gamma signature that predicts response to PD-1
blockade is from Ayers et al.49. The 21-gene immune checkpoint set and 995-gene
immunosuppressive set are from HisgAtlas, a human immunosuppression gene
database50.

MHC I and Immune infiltrate scores. R package GSVA91 was used to compute
immune infiltrate scores by single sample GSEA (ssGSEA) method23,47.

Patients and tissue specimens. Study participants included 18 patients who were
diagnosed with SCLC and underwent surgical resection of lung cancer between
2006 and 2010 at the Department of Lung Cancer Surgery, Tianjin Medical Uni-
versity General Hospital. Written informed consent was obtained, and the insti-
tutional ethics committee of Tianjin Medical University General Hospital approved
the study. The cases were selected based on the following criteria: (1) diagnosis of
primary lung cancer clinical stage I to IV (pTNM); (2) undergoing surgical
resection. Pathologic diagnosis was based on WHO criteria. Lung cancer staging
for each patient has performed according to the AJCC Cancer Staging Manual, 8th
edition, and was based on findings from physical examination, surgical resection,
and computed tomography of the chest, abdomen, pelvis, and brain. The following
information was collected from the patients’ medical records: age, gender, clinical
stage, pathologic diagnosis, differentiation, lymph node status, metastasis, smoking
status, and overall survival time. Resected lung and lymph node tissues were
immediately immersed in liquid nitrogen until RNA extraction.

Immunohistochemistry—histology and immunohistochemistry. Tissue blocks,
once collected, were reviewed by a staff thoracic pathologist to confirm SCLC
histology. Consecutive four-micrometer-thick tissue sections were cut for immu-
nohistochemistry. IHC staining was performed with a Bond Max automated
staining system (Leica Microsystems Inc., Vista, CA) using IHC parameters opti-
mized previously. Antibodies used in this study included ASCL1 (dilution 1:25;
Clone 24B72D11.1, BD Biosciences, Cat# 556604), NEUROD1 (dilution 1:100;
Clone EPR20766, Abcam, ab213725), POU2F3 (dilution 1:200; polyclonal, Novus
Biologicals, NBP1-83966), CD4 (dilution 1:80; Leica Biosystems, CD4-368-L-CE-
H) and CD8 (dilution 1:25; Thermo Scientific, MS-457s) in a Leica Bond Max
automated stainer (Leica Biosystems Nussloch GmbH). The expression of proteins
was detected using the Bond Polymer Refine Detection kit (Leica Biosystems, Cat#
DS9800) with diaminobenzidine as chromogen92. The slides were counterstained
with hematoxylin, dehydrated and cover-slipped. FFPE cell lines pellets with
known expression of ASCL1, NEUROD1, and POU2F3 were used to establish and
optimize IHC conditions and assess sensitivity and specificity for each antibody.
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Immunohistochemistry—image analysis. The stained slides were digitally scan-
ned using the Aperio ScanScope Turbo slide scanner (Leica Microsystems Inc.)
under ×200 magnification. The images were visualized by ImageScope software
(Leica Microsystems, Inc.) and analyzed using the Aperio Image Toolbox (Leica
Microsystems Inc.). Different intensity levels of ASCL1, NEUROD1, or POU2F3
nuclear expression were quantified using a 4-value intensity score (0, none; 1, weak;
2, moderate; and 3, strong) and the percentage (0–100%) of the extent of reactivity.
A final expression score (H-score) was obtained by multiplying the intensity and
reactivity extension values (range, 0–300) as previously described93. For example,
for SCLC-04, (3+)% nuclei is 1.22, (2+)% nuclei is 9.97, (1+)% nuclei is 47.81, the
resulting H-score is 3*1.22+ 2*9.97+ 1*47.81= 71.41.

The lymphocyte cells expressing CD4+ and CD8+ were counted by a pathologist
using Aperio Image Toolbox analysis software (Aperio, Leica Biosystems) and
expressed as cell density (CD4+ and CD8+ cells/mm2 of analyzed tissue)92,94.

Microarray assay. The Human Genome U133 Plus 2.0 microarray with 54,000
probe sets was purchased from the Affymetrix (Lot#: 4032359). Total RNA was
extracted with the Trizol reagent (Invitrogen) from the tissue samples. The
extracted RNA was purified using the Oligotex mRNA Midi Kit (Qiagen). Then
double-strand cDNA synthesis was made using a one-cycle cDNA synthesis kit
(Affymetrix) and purified again by column followed by the synthesis of com-
plementary RNA (cRNA) with in vitro transcription (IVT) kit (Affymetrix). The
cRNA was fragmented after purification by column and the quality was verified by
ultraviolet spectrophotometer and 1.2% denaturing agarose gel. After the test gene-
chip (Lot#: 4020852, Affymetrix) was affirmed satisfactory, the real chip hybridi-
zation of cRNA fragmentation was performed and then stained and washed.
Finally, the real chip was scanned in an Affymetrix scanner and the data were
collected by GCOS (gene-chip operation software). CEL files were read into an
AffyBatch object by “AffyBatch” function under the “affy”95 R package. Alternative
cdf package96 “hgu133plus2hsentrezg” was downloaded from “http://mbni.org/
customcdf/22.0.0/entrezg.download/hgu133plus2hsentrezg.db_22.0.0.zip” and was
specified in the function so that the resulting expression data were processed to
gene level rather than the original probe level. (Probe name follows format con-
catenating Entrez ID for the gene and “_at”. For example “3939_at” corresponds to
gene LDHA). The AffyBatch object was then converted to an expression set using
robust multi-array average (RMA) expression measure by running the “rma”
function under R package “affy”. Quantile normalization was performed by run-
ning “normalize.quantiles” function from the R package “preprocessCore”84.

RNA-seq. RNA samples from SCLC cell lines (n= 69) were prepared at UT
Southwestern (Dallas TX) and sent to Baylor College of Medicine (David Wheeler,
Houston TX) for paired-end RNA sequencing. The analysis was then performed at
UT Southwestern: Reads were aligned to the human reference genome GRCh38
using STAR-2.797 (https://github.com/alexdobin/STAR) and FPKM values were
generated with cufflinks-2.2.198 (http://cole-trapnell-lab.github.io/cufflinks/). All
data were then pooled, upper-quartile normalized99, and log-transformed.

Cell culture. All SCLC cell lines used in these studies were originally established in
the John D. Minna and Adi F. Gazdar laboratories. The cultured SCLC cell lines
were obtained from both the National Cancer Institute (NCI) and Hamon Cancer
Center (HCC) libraries. Cells were cultured in RPMI-1640 media (Sigma Life
Science, St. Louis, MO) supplemented with 5% Fetal Bovine Serum (FBS). RPMI-
1640 supplemented with 5% FBS will be referred to as R5. All cells were incubated
in NuAire (NuAire, Plymouth, MN) humidified incubators at 37 °C at 5% CO2. All
cell lines were regularly tested for mycoplasma contamination (Bulldog Bio,
Portsmouth, NH) and fingerprinted using a PowerPlex 1.2 Kit (Promega, Madison,
WI) to confirm the cell line identity.

Establishing adherent H69 (H69-AD). The early passage of the parental H69 cell
line grew as a mixture of floating and adherent cells. To enrich for adherent cells,
the floating population of H69 was washed off during growth media replacement
and fresh media was provided for the expansion of the remaining adherent cells.
This was repeated until every passage grew as adherent cells with few to no sus-
pension cells. This derived adherent subline was designated as H69-AD.

Drug–response assay. Cisplatin and Etoposide were obtained from Selleck Che-
micals LLC, USA. 5000 cells of H69 and H69-AD were cultured in 100 µl R5
growth media per well in ultra-low adherent, clear, round bottom, 96 well plates
(BD Biosciences, USA) for 48 h. An additional 100 µl R5 plus either a control
(DMSO) or drug was added to the plate. 96 h after drug treatment, each cell line
was assayed using the Cell-Titer-Glo reagent (Promega, Inc.). The fluorescence
intensity was recorded at 570 nM. A standard 4-parameter log-logistic fit between
the survival rate and the dosage was generated by the “drm” function from the R
package “drc”100.

Xenograft models for parental and chemoresistant SCLC tumors. Sub-
cutaneous xenograft in NSG mice was derived from direct implantation of

untreated H1436 cells or re-implantation of chemoresistant tumors after 4 cycles of
Cisplatin and Etoposide (EC), or plus 4 cycles of Cisplatin (reduced from EC due to
toxicity). Specifically, a million H1436 cells were resuspended in 100 µl mixture of
serum-free RPMI-1640 and Matrigel (BD Bioscience #356237) at 1:1 ratio and
immediately injected in the flank of 6–8-week-old female NSG mouse (Jackson
Laboratory #005557). Mice were randomized after tumor cell injection. Treatment
starts after a week when the tumor becomes palpable. 5 mg/kg/w Cisplatin (Sigma
P4394) in saline, 10 mg/kg/w Etoposide (Sigma E1383) in 30% PEG 300 (Sigma
202371) were freshly prepared and administered by intraperitoneal injection, for 4
cycles in total to obtain the first group of chemoresistant tumors. An additional 4
cycles of Cisplatin were administered in the second group of mice to obtain tumors
with further potentiated chemoresistance. To harvest the tumor, 10 ml digestion
media was used per mouse. This was prepared freshly by supplementing 9 ml HBSS
with 1 ml type IV collagenase, 50 µl DNase II and 50 µl 1M CaCl2. Tumors were
collected and placed in HBSS immediately following dissection. A fraction of the
tumor was cut into a few pieces and flash-frozen in liquid nitrogen to be saved in
aliquots for molecular assays. The remaining chunk was finely minced with a sterile
scalpel blade. For re-implantation, the minced tissue was resuspended in digestion
media, rotated at 37 °C for 20 min, filtered through a 40 µm filter, centrifuged at
300 × g for 5 min.

Quantitative reverse transcription PCR. ~20 mg flash-frozen tumor fragments
were weighed out and homogenized in 1 ml TRIzol (Invitrogen #15596-026) in
Precellys tissue homogenizing mixed beads kit (Cayman Chemical #10409). 0.2 ml
chloroform (Fisher #S25248) was added to the TRIzol lysate and the mixture was
vortexed for 10 s and centrifuged at 12,000 × g for 15 min at 4 °C for phase
separation. 450 µl aqueous phase was collected, mixed well with 0.5 ml isopropanol
(Fisher #A451-1), and precipitated RNA was collected by centrifugation at 12,000 ×
g for 10 min at 4 °C, The RNA pellet was rinsed in 1 ml 75% ethanol, then dissolved
in 100 µl deionized water by incubating at 55 °C for 5 min. 500 ng total RNA was
reverse-transcribed to cDNA in a 20 µl reaction with 4 µl iScript reverse tran-
scription supermix (Bio-Rad #1708841) at 25 °C for 5 min, 46 °C for 20 min, and
95 °C for 1 min. The mixture was then 1:5 diluted with deionized water. Target
sequences in cDNA library were amplified in 10 µl qPCR reaction (5 µl SYBR
Green supermix (Bio-Rad #1725121), 0.675 µl 2.5 µM primer mix and 0.45 µl
diluted cDNA) at 95 °C 10 s, 60 °C 30 s, for 40 cycles. All procedures were per-
formed under RNase-free conditions unless specified. For data analysis, the median
was taken from triplicates, normalized by Ct values of control gene PPIA, expo-
nentiated with base 2 then divided by the median of parental samples. Primer
sequences are provided in Supplementary Table 1.

Study approval. The protocol of collecting human SCLC tumor tissue for research
was approved by the Ethics Committee of Tianjin Medical University General
Hospital. Written informed consent was received from participants prior to
inclusion in the study. Specimen collection did not interfere with standard diag-
nostic and therapeutic procedures. All mouse procedures were performed with the
approval of the University of Texas Southwestern Medical Center Institutional
Animal Care and Use Committee.

Statistics and reproducibility. All statistical analyses were performed with R101.
Pearson correlation was used to assess the association between continuous vari-
ables. t-test was used for group comparison. Pearson’s chi-squared test was used to
test for association between categorical variables. Statistical significance was set at
p ≤ 0.05. Benjamini–Hochberg procedures were used for generating p-values
adjusted for multiple comparisons.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-seq gene expression data from UTSW SCLC has been added to dbGaP
(accession phs001823.v1.p1)102. SCLC tumor microarray data used in this study have
been deposited to GEO with accession id GSE149507. Source data used for the figures
presented in this manuscript have been deposited in the Dryad Digital Repository (https://
datadryad.org/stash/share/BkmPdMrwhae1VxhkkSLIG_532FLCqcYiMFUpY1yKmGA).
All other data are presented in Supplementary Data 1–5 or available from the
corresponding authors upon reasonable request.

Code availability
Scripts and input data used for this manuscript have been deposited in the Dryad Digital
Repository (https://datadryad.org/stash/share/BkmPdMrwhae1VxhkkSLIG_532FLC
qcYiMFUpY1yKmGA).
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