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INTRODUCTION 
 

Worldwide, cancer is one of leading mortality causes 

[1]. Most cancers are diagnosed at a progressive stage, 

so the cure rate is quite low. Tumor immunotherapy has 

revolutionized the therapeutic effect of cancer, but the 

treatment is only beneficial to a small number of cancer 

patients [2]. According to current studies, tumor 

microenvironment has a key role in tumor occurrence 

and progression [3–5]. Tumor microenvironment is 

fundamentally consisting of cancerous cells, immune 

cells, various signal molecules, fibroblasts and 

extracellular matrix, where immune cells are a critical 

part [6]. Tumor cells secrete immunosuppressive 

cytokines and reprogram immune cells in the tumor 

microenvironment; as a result, tumor immune 

microenvironment is inhibited, so as to escape immune 

recognition and finally escape immune surveillance [7]. 

Tumor immunosuppressive microenvironment will not 

only promote tumor progression, but also weaken  

the effect of immunotherapy [8]. Hence, it is critical  

to find innovative biomarkers for identifying tumor 

immunosuppressive microenvironment to improve the 

effectiveness of tumor immunotherapy. 

 

As an important component of the centrosome, in 

biological processes, POC1A (POC1 centriolar protein 

homolog A, also known as WDR51A, plays a critical 

role for centrioles formation and steady-state [9]. 

Numerous studies confirmed the link between POC1A 

and facial dysmorphism and hypotrichosis (SOFT) 

syndrome, onychodysplasia, short stature, all of which 

are associated with abnormal cell mitosis [10, 11]. 

POC1A may have a crucial role in cell proliferation, 

based on these studies. Therefore, POC1A is considered 

to be a cell cycle-regulating factor [12]. At the moment, 
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ABSTRACT 
 

POC1 centriolar protein A (POC1A) effect in pan-cancer remains uncertain. The POC1A expression in normal and 
tumor tissues underwent analysis in this study utilizing data from the Genotype-Tissue Expression (GTEx) 
project and the Cancer Genome Atlas (TCGA) database. POC1A prognostic value and clinicopathological 
features were assessed utilizing the TCGA cohort. The relationship between immunological cell infiltration and 
POC1A of TCGA samples downloaded from TIMER2 and ImmuCellAI databases were observed. The relation 
between POC1A and immunological checkpoints genes, microsatellite instability (MSI) as well as tumor 
mutation burden (TMB) was also evaluated. Additionally, gene set enrichment analysis (GSEA) was utilized for 
exploring POC1A potential molecular mechanism in pan-cancer. In almost all 33 tumors, POCA1 showed a high 
expression. In most cases, high POC1A expression was linked significantly with a poor prognosis. Additionally, 
Tumor immune infiltration and tumors microenvironment were correlated with the expression of POC1A. In 
addition, TMB and MSI, as well as immune checkpoint genes in pan-cancer, were related to POC1A expression. 
In GSEA analysis, POC1A is implicated in cell cycle and immune-related pathways. These results might elucidate 
the crucial roles of POC1A in pan-cancer as a prognostic biomarker and immunotherapy target. 
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some studies have explored the POC1A’s role in 

tumors. Wada et al. revealed that POC1A was a 

biomarker for predicting the recurrence of intrahepatic 

cholangiocarcinoma [13]. Dastsooz et al. suggested that 

POC1A gene might be the new target for cancers 

therapies [14]. Even so, POC1A’s role in pan-cancer is 

still uncertain. 

 

Using TCGA database, this is the initial study to 

accomplish pan-cancer analysis of POC1A. The 

relationship of POC1A expression with prognosis, 

tumour immunity microenvironment, DNA methylation, 

immune checkpoint gene, microsatellite instability 

(MSI), drug sensitivity and tumour mutation burden 

(TMB) was systematically observed to elucidate POC1A 

clinical role and potential molecular mechanism in  

pan-cancer. 

 

MATERIALS AND METHODS 
 

Analysis of gene expression 

 

The tumor immune estimation resource version 2 

(TIMER2) database (http://timer.cistrome.org) was 

utilized for exploring the variations between POC1A 

expression across different tumor tissues or tissue 

subtypes as well as adjacent normal tissues acquired 

from the TCGA project [15]. In the form of a box plot, 

gene expression levels distributions were represented. 

The Wilcoxon test was utilized for assessment of 

statistical significance of differential expression. For 

tumors without normal control, such as CESC, DLBC, 

GBM, OV, PAAD, PCPG, SARC, UCS, THYM, LGG, 

etc., Genotype-Tissue Expression (GTEx) and TCGA 

databases were utilized to acquire POC1A expression 

profile data of tumor tissues and matched normal 

tissues. The R language was employed for analyses and 

graphics. Subsequently, the tumor stage information of 

the TCGA database has been utilized for exploring  

the POC1A expression in various tumor stages.  

UCSC Xena was utilized to download the TCGA and 

GTEx expression profiles and clinical information 

(https://xenabrowser.net/datapages/). 

 

Gene alteration analysis 

 

The cBioPortal database was utilized for downloading 

mutation and copy number variation (CNV) data of 

POC1A(https://www.cbioportal.org/) [16]. 

 

Survival prognosis analysis 

 

For exploring the POC1A expression effect on  

pan-cancer prognosis, we utilized Kaplan-Meier and 

Univariate Cox regression (UniCox). The optimal cutoff 

value was utilized to differentiate the groups of POC1A 

with low and high expression. Survival analyses 

(overall, disease-specific, progression-free, and disease-

free) were assessed. The R packages “survminer” and 

“survival” were utilized to analyse the data. 

 

Immune infiltration analysis 

 

The immunosuppressive microenvironment is one of  

the reasons contributing to tumor patients’ poor 

prognosis; therefore, the correlation between POC1A 

and the immune microenvironment was further 

explored. The TIMER2 and ImmuCellAI databases 

were utilized for downloading data of immune cell 

infiltration of TCGA (http://timer.comp-genomics.org/) 

(http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/) [17]. 

The correlation between POC1A and immune cell 

infiltration was calculated. The R language “estimate” 

package was utilized to calculate StromalScore, 

ImmuneScore, and ESTIMATEScore (Sum of 

StromalScore and ImmuneScore). The correlation 

between POC1A expression and these scores was 

evaluated. 

 

Immune checkpoints genes analysis 

 

Tumor immune regulation is tightly linked to immune 

checkpoint-related genes. The association between 

immune checkpoint gene expression and POC1A 

expression underwent analysis. Additionally, the 

correlation of POC1A with immune regulatory genes 

was explored. 

 

TMB and MSI analysis 

 

Tumor mutation burden (TMB) is linked to 

immunotherapy effectiveness in various cancers. TMB 

was computed for each tumor sample, and the relation 

between TMB and POC1A expression was assessed 

utilizing Spearman’s correlation. The relationship 

between MSI and POC1A expression was also 

analyzed. 

 

Gene set enrichment analysis (GSEA) of POC1A in 

pan-cancer 

 

For POC1A expression profile assessment in pan-

cancer, the GSEA was utilized relying on the Reactome 

database. The analysis was implemented in the R 

package “clusterprofiler”. The top 20 results of each 

tumor identified by GSEA analysis were displayed. 

 

POC1A correlation with drug sensitivity analysis in 

pan-cancer 

 

The Genomics of Drug Sensitivity in Cancer database 

was utilized for downloading 192 medications IC50 

http://timer.cistrome.org/
https://xenabrowser.net/datapages/
https://www.cbioportal.org/
http://timer.comp-genomics.org/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
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values as well as 809 cell lines’ gene expression profiles 

(GDSC: https://www.cancerrxgene.org/). The analysis 

of POC1A correlation with 192 medications IC50 

values was done. 

 

RESULTS 
 

POC1A is highly expressed in pan-cancer 

 

POC1A expression in pan-cancer was observed through 

TIMER2 webserver usage. As listed in Figure 1A, 

POC1A expression levels were significantly elevated in 

tumor tissues of BLCA, BRCA, HNSC, HNSC-HPV, 

LUAD, CHOL, LUSC, PRAD, STAD, ESCA, THCA, 

COAD, LIHC, UCEC (P<0.001), READ (P<0.01), and 

KIRP (P<0.05) than adjacent normal tissues. POC1A 

expression was assessed using TCGA and GTEx  

data for tumors without normal control. POC1A 

overexpression was detected in 27 of 33 types of cancer, 

comprising ACC, BLCA, BRCA, CESC, CHOL, 

COAD, DLBC, ESCA, GBM, HNSC, KICH, KIRP, 

LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, 

READ, SARC, SKCM, STAD, THCA, THYM, UCEC, 

and UCS. Even so, POC1A under-expression was 

detected in three tumors, comprising LAML, PCPG, 

and TGCT (Figure 1B). The correlation of POC1A 

expression with pathological tumor staging in the 

TCGA cohort was done, and it was raised as tumor 

stages increased in ACC, BRCA, KICH, KIRC, LUAD, 

LUSC, HNSC, PAAD and KIRP (Figure 2A–2I). 

 

POC1A gene alteration in pan-cancer 

 

Copy number alteration (CNA) and mutation influence 

gene expression. Hence, we evaluated the POC1A 

mutations and CNA. We observed the highest frequency 

of POC1A alterations (>7%) in patients with 

undifferentiated stomach adenocarcinoma, where 

“Mutation” was the major type (Figure 3A). POC1A 

expression was negatively correlated with KIRP but 

positively correlated with can in 23 of 33 tumors 

(Figure 3B), suggesting that high CNA was among the 

major reasons for high POC1A expression in pan-

cancer. 

 

 
 

Figure 1. Pan-cancer POC1A expression. (A) POC1A expression analysis in pan-cancer through TIMER2 database utilization.  

(B) Expression of POC1A in normal and tumor tissues from the GTEx and TCGA cohorts. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

https://www.cancerrxgene.org/
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POC1A high expression in pan-cancer is related to 

poor prognosis 

 

The UniCox and Kaplan-Meier survival analyses were 

utilized for exploring POC1A prognostic value in pan-

cancer. POC1A low and high expressions were 

differentiated using the optimal cut-off value. 

According to Kaplan-Meier, worse overall survival was 

related to elevated POC1A expression in ACC, BLCA, 

CHOL, KICH, KIRC, KIRP, LAML, LGG, LIHC, 

LUAD, MESO, PAAD, PCPG, PRAD, SARC, and 

SKCM (Figure 4). POC1A was considered to be a risk 

factor for OS, according to UniCox analysis in ACC, 

DLBC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, 

MESO, PAAD, PCPG, PRAD, READ, SKCM, and 

THYM (Figure 5A). POC1A prognostic value in pan-

cancer for DSS, DFI, and PFI was also analyzed, and 

the results are illustrated in Figure 5B–5D. Based on 

these findings, elevated POC1A expression in pan-

cancer was linked to a poor prognosis and might be a 

potential prognostic biomarker. 

 

POC1A correlation in pan-cancer with 

microenvironment and tumor immune infiltration 

 

The tumor-infiltrating lymphocytes amount is an 

essential predictor of prognosis in cancer patients  

and their responsiveness to immunotherapy. The 

StromalScore, ImmuneScore, and ESTIMATEScore of 

the tumor tissue were calculated using the R language 

“estimate” package, and their correlation with POC1A 

expression was evaluated. The findings revealed that 

 

 
 

Figure 2. POC1A expression at various stages of tumor. (A–I) Expression of POC1A at various stages of tumor in indicated tumors. 
*P<0.05, **P<0.01, ***P<0.001, **** <0.0001. 
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Figure 3. POC1A gene alteration. (A) POC1A mutation and CNA status in TCGA pan-cancer. (B) Correlation of POC1A expression with 

CNA. 
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POC1A was shown to be negatively correlated with 

StromalScore and ImmuneScore in most tumors and 

positively correlated with tumor purity. (Figure 6A). By 

exploring the correlation of POC1A expression with 

immune cell infiltration utilizing ImmuCellAI database, 

it was noticed that POC1A was positively associated 

with nTreg cells in most tumors while negatively 

correlated with immune killer cells as CD4 and CD8 T 

cells and activated natural killer (NK) cells (Figure 6B). 

Similarly, according to TIMER2 database results, a 

negative correlation of POC1A with NK and CD8 T 

cells was noted in most tumors (Figure 7). 

 

POC1A expression is associated with immune 

checkpoint genes 

 

The important targets of immunotherapy are immune 

checkpoints genes. Five immune checkpoint genes 

were recognized. In pan-cancer, POC1A relation  

with immune checkpoint gene expression was 

assessed. The findings showed a positive correlation of 

POC1A expression with immune checkpoints in 

several tumors (Figure 8A–8I), suggesting that 

immune cells are inhibited. The correlation of POC1A 

with expression and immune regulatory genes was 

further analyzed. The results showed that the POC1A 

gene has a potential immunomodulatory effect in most 

tumors (Figure 9A–9D). 

 

POC1A correlation with TMB and MSI in pan-cancer 

 

Each tumor sample’s TMB was calculated, and 

correlation was assessed between POC1A expression 

and TMB. The results are illustrated in Figure 10A. The 

expression levels of POC1A showed a significant 

positive correlation with TMB in BLCA, BRCA, 

 

 
 

Figure 4. POC1A prognostic value. POC1A overall survival analysis via Kaplan-Meier in TCGA pan-cancer in indicated tumors. 
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Figure 5. POC1A UniCox analysis. (A) POC1A overall survival (OS) analysis utilizing the UniCox in TCGA pan-cancer. (B) POC1A disease-

specific survival (DSS) analysis in TCGA pan-cancer utilizing the UniCox. (C) POC1A disease-free interval (DFI) analysis in TCGA pan-cancer 
utilizing UniCox. (D) POC1A progression-free interval (PFI) analysis in TCGA pan-cancer utilizing UniCox. Red color indicates statistical 
significance. 
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COAD, GBM, KICH, LGG, LIHC, LUAD, LUSC, 

PAAD, PRAD, SKCM, SARC, STAD, UCEC, UCS, 

and UVM, and a negative correlation with TMB in 

THYM. The correlation of POC1A expression with 

MSI was assessed, and the results are illustrated in 

Figure 10B. Notably, POC1A expression levels had a 

significant positive correlation with MSI in BLCA, 

COAD, ESCA, HNSC, KIRC, LIHC, MESO, SARC, 

STAD, and UCEC, and a significant negative 

correlation with MSI in READ. 

 

 
 

Figure 6. Immune infiltration analysis according to the ImmuCellAI database. (A) Correlation of POC1A expression with immune cell 

infiltration in LUAD. (B) Relation of POC1A expression with tumor purity, ImmuneScore, ESTIMATEscore and StromalScore. Red and blue 
colors indicate positive and negative correlations, respectively; deeper color indicates a strong correlation *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001. 



www.aging-us.com 5203 AGING 

 
 

Figure 7. Immune infiltration analysis according to the TIMER2 database. In pan-cancer, immune cell infiltration levels are 

associated with POC1A expression. Red and green colors indicate positive and negative correlation, respectively; deeper color indicates a 
strong correlation *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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GSEA analysis of POC1A 

 

Based on the Reactome database, genes correlating with 

POC1A (P <0.05) were ranked and underwent GSEA 

analysis in pan-cancer. The R package “clusterProfiler” 

was utilized to perform the analysis. The top 20 results 

of each tumor identified by this analysis are shown  

in Figure 11. POC1A was positively correlated with 

immune-related and cell cycle-related pathways in 

various tumors, which is compatible with the previous 

conclusion that POC1A has an immune regulatory 

function. 

 

 
 

Figure 8. Correlation of POC1A expression with immune checkpoint genes. (A–I) POC1A expression is positively correlated with 
immune checkpoints in several tumors. Red and green lines indicate positive and negative correlations, respectively. Deeper color indicates a 
strong correlation. 
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Figure 9. POC1A correlation with immunomodulatory genes. (A) POC1A correlation with MHC genes is represented utilizing 
Heatmap. (B) Heatmap of the POC1A correlation with immunosuppressive status-related genes. (C) POC1A correlation with chemokine genes 
is represented utilizing Heatmap. (D) POC1A correlation with chemokine receptor genes is represented utilizing Heatmap. R software was 
utilized for calculating Pearson’s correlation coefficient. 
 

 
 

Figure 10. POC1A correlation with tumor mutation burden (TMB) and microsatellite instability (MSI). (A, B) POC1A correlation 

with TMB (A) and MSI (B) of Radar plots in pan-cancer. Red dots indicate the correlation coefficient. *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001. 
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Drug sensitivity analysis 

 

POC1A1 correlation with IC50 of 192 anticancer 

medications was evaluated. It was discovered that 

patients who express elevated POC1A expression 

might be resistant to most anticancer medications  

like vincristine, oxaliplatin, carmustine, etc. (Figure 

12A–12D). 

 

DISCUSSION 
 

The centrosome is an organelle plays a key role in cell 

division process and can regulate cell cycle process 

[18]. Several studies have affirmed that centrosome 

amplification is existed in practically all cancer types 

and has been correlated with tumorigenesis and 

chromosomal instability (CIN) [19–21]. Thus, abnormal 

centrosome regulation is a hallmark of cancer [22]. 

Lopes et al. studied Barrett’s esophagus patients  

and found that before the cells began to transform  

into cancer cells, they initially accumulated in the 

centrosomes, and centrosome expansion promoted the 

occurrence of esophageal cancer [23]. POC1A, an 

essential component of the centrosome, is known to be a 

cell cycle regulator. Lu et al. found that POC1A could 

be a potential biomarker for gastric cancer with a poor 

prognosis [24]. Even so, POC1A role in pan-cancer is 

uncertain. Therefore, the present study systematically 

 

 
 

Figure 11. GSEA analysis of POC1A in pan-cancer. (A–D) GSEA detected the top twenty genes of indicated tumors (NES ≥ 1.5, adjusted 
P < 0.05). Red implies immune regulation-related or cell cycle-related pathways. 
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Figure 12. POC1A correlation with anticancer drugs IC50 values. (A–D) The correlation between POC1A expression and IC50 values of 
indicated anti-cancer drugs. 
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analyzed the relation of POC1A expression with 

prognosis, tumor mutation burden (TMB), tumor 

immunity microenvironment, immune checkpoint gene, 

microsatellite instability (MSI) and drug sensitivity in 

33 different tumors using the TCGA database. 

 

The findings showed that POC1A was significantly 

highly expressed in 27 of 33 cancer types, while 

observed only in LAML, PCPG, and TGCT that 

POC1A expression was reduced. It was also found that 

the expression of POC1A elevated with the increase of 

tumor stage in nine tumor types (Figure 2A–2I). 

Furthermore, elevated expression of POC1A was 

significantly related to poor overall survival, DFI, DSS 

and PFI in various tumors. All of these findings imply 

that POC1A is an important oncogene and a potential 

biomarker for pan-cancer poor prognosis. Furthermore, 

positive correlation of POC1A mRNA expression with 

POC1A high CNA. Chromosome deletion of POC1A 

was the most marked in gastric cancer, and 

chromosome amplification was the most significant in 

seminoma. These results suggest a low level of POC1A 

mutation in pan-cancer and a high correlation between 

CNV and POC1A expression. 

 

Current studies have illustrated that one of the causes 

for the poor prognosis in tumor patients is the 

immunosuppressive microenvironment [25–28]. Thus, 

we observed POC1A correlation with the immune 

microenvironment in pan-cancer utilizing two different 

immune cell infiltration data. It was noticed that 

POC1A expression was negatively correlated with 

ImmuneScore and StromalScore while positively 

correlated with tumor purity in majority of tumors. 

Besides, the infiltration levels of immune killer cells, 

including CD4 T and CD8 T cells and activated NK 

cells, were inversely correlated with POC1A expression 

in pan-cancer. Even so, two different analytical  

methods revealed a positive correlation between 

immunosuppressive cells, including nTregs and iTregs, 

and POC1A expression. POC1A correlation with the 

immune checkpoint gene was further evaluated. The 

findings revealed POC1A positive correlation with an 

immune checkpoint in various tumors, suggesting that 

immune cells were inhibited. Moreover, the correlation 

of POC1A expression with immunomodulatory genes 

was scrutinized, and the findings revealed that  

POC1A had potential immunomodulatory effects in 

most tumors (Figure 9A–9D). Collectively, these 

findings imply that elevated POC1A expression is 

related to immunosuppressive tumor microenvironment. 

Expression of POC1A was also significantly positively 

correlated with TMB and MSI in most tumors, implying 
that patients with elevated POC1A expression might be 

more susceptible to immunotherapy. Given POC1A’s 

role and prognostic value in pan-cancer, the possible 

biological function and associated signal pathway of 

POC1A in pan-cancer were further predicted using 

GSEA analysis. According to our GSEA results, 

POC1A was positively correlated with cell cycle and 

immune-related pathways in a variety of tumors. Taken 

together, these findings imply that the POC1A gene 

might have immunomodulatory functions and that 

tumor patients with elevated POC1A expression might 

be in an immunosuppressive condition. 
 

In addition, the correlation of POC1A1 expression with 

the IC50 of 192 anticancer medications was carried out, 

and patients with elevated POC1A expression are 

resistant to most anticancer medications, including 

vincristine, oxaliplatin, carmustine, introduces a novel 

idea and direction for studying the mechanism of 

chemoresistance. 
 

CONCLUSIONS 
 

This is the initial study which performed a more 

comprehensive POC1A bioinformatics analysis in pan-

cancer. POC1A is a potential prognostic biomarker  

and therapeutic target in pan-cancer. Importantly, 

immunosuppressive tumor microenvironment and 

immune checkpoint genes were noticed to be related to 

elevated POC1A expression. We speculated that 

POC1A might be a novel potential biomarker during 

screening of immunotherapy sensitive patients. 
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