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Abstract

Post-translational protein modifications derived from metabolic intermediates,

such as acyl-CoAs, have been shown to regulate mitochondrial function.

Patients with a genetic defect in the propionyl-CoA carboxylase (PCC) gene clin-

ically present symptoms related to mitochondrial disorders and are characterised

by decreased mitochondrial respiration. Since propionyl-CoA accumulates in

PCC deficient patients and protein propionylation can be driven by the level of

propionyl-CoA, we hypothesised that protein propionylation could play a role in

the pathology of the disease. Indeed, we identified increased protein pro-

pionylation due to pathologic propionyl-CoA accumulation in patient-derived

fibroblasts and this was accompanied by defective mitochondrial respiration, as

was shown by a decrease in complex I-driven respiration. To mimic pathological

protein propionylation levels, we exposed cultured fibroblasts, Fao liver cells

and C2C12 muscle myotubes to propionate levels that are typically found in

these patients. This induced a global increase in protein propionylation and his-

tone protein propionylation and was also accompanied by a decrease in mito-

chondrial respiration in liver and fibroblasts. However, in C2C12 myotubes

propionate exposure did not decrease mitochondrial respiration, possibly due to

differences in propionyl-CoA metabolism as compared to the liver. Therefore,

protein propionylation could contribute to the pathology in these patients, espe-

cially in the liver, and could therefore be an interesting target to pursue in the

treatment of this metabolic disease.
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1 | INTRODUCTION

Post-translational protein modifications (PTMs) are an
important regulatory mechanism for protein functional-
ity and localisation. Modification of proteins offers the
cell a rapid and reversible mechanism to respond to
changes in the environment, such as changes in metabo-
lite availability. Protein acylation involves the covalent
binding of acyl-groups to lysine residues of a protein and
directly links metabolism and protein functionality.1 For
example, intermediates of metabolism, such as acetyl-
CoA, drive protein acetylation2 and can serve as a regula-
tory mechanism in fatty acid oxidation by acetylation of
enzymes involved in the breakdown of fatty acids.3

Acetylation is only one type of protein acylation and
other acyl-lysine PTMs have been identified, such as
succinylation,4 glutarylation,5 malonylation,6

crotonylation,7 butyrylation and propionylation.8 Pro-
pionylation is the covalent binding of a propionyl-group to
lysine residues of proteins and although being structurally
fairly similar to acetylation, the propionyl group is slightly
larger and may well be functionally different. Moreover,
propionyl-CoA, the substrate for propionylation, is of spe-
cial interest, since it is a breakdown product of cholesterol,
odd-chain fatty acids and the amino acids isoleucine,
valine, threonine and methionine.9 Additionally, propio-
nate is produced by the microbiota and taken up in the
intestine.10 Propionylation was first identified on histones,
where it was later characterised as a transcriptionally
active PTM in an in vitro system.8,11 Besides histones, pro-
pionylation also occurs on non-histone proteins12 and
increased propionyl-CoA levels were able to propionylate
the propionyl-CoA synthetase enzyme in prokaryotes,
thereby inactivating it.13 This suggests that propionylation
of proteins could have a role in metabolic regulation, for
example during catabolism and fasting.

Inborn errors in propionyl-CoA metabolism, such as
caused by bi-allelic mutations in one of the two propionyl-
CoA carboxylase genes (PCC), leads to an accumulation of
propionyl-CoA, a condition known as propionic acidemia
(PA). PCC catalyses the carboxylation of propionyl-CoA into
methylmalonyl-CoA. Methylmalonyl-CoA can be converted
into succinyl-CoA, which can be used for anaplerosis of the
TCA-cycle.14,15 Clinically, the severe neonatal-onset form of
this disease often presents within the first days or weeks in
life with encephalopathy, metabolic acidosis and
hyperammonaemia and, when left untreated, progresses to
coma or death. When treated, the prognosis remains rather
poor, with patients showing developmental delay, neurologi-
cal complications, liver abnormalities, myopathic features
and cardiomyopathy.16,17 Therefore, more knowledge is
required to amend current treatment strategies to improve
the disease outcome.

Muscle and liver biopsies from PCC patients show defec-
tive mitochondrial respiration, suggesting that mitochondrial
dysfunction contributes to the pathology.18,19 Interestingly, it
is not known how increased levels of propionyl-CoA can
contribute to this. Fibroblasts derived from patients display
increased protein propionylation, showing that pathological
build-up of intermediates of propionyl-CoA metabolism can
alter the protein acylome.20 We hypothesised that the
increased propionylation disrupts normal mitochondrial
function and contributes to the mitochondrial phenotype.
Here, we use control and patient-derived fibroblasts and cul-
tured cells to study the mitochondrial effects of increased
propionylation to explore a possible role of this PTM in
health and disease.

2 | MATERIALS AND METHODS

2.1 | Cell culture

Human dermal fibroblasts and Fao hepatoma cells were cul-
tured in Dulbecco's Modified Eagle medium (DMEM) sup-
plemented with 10% (vol/vol) fetal calf serum (FCS), 2 mM
glutamine and 1% (vol/vol/vol) pen/strep/fungizone. C2C12
myoblasts were cultured in DMEM supplemented with 10%
(vol/vol) FCS, 2 mM glutamine, 25 mM HEPES pH 7.2 and
1% (vol/vol/vol) pen/strep/amphotericin B. Differentiation
was induced by replacing medium with DMEM sup-
plemented with 2% (vol/vol) horse serum (HS) upon con-
fluency. Medium was replaced every other day for 5 to
7 days. Propionyl-CoA carboxylase deficient fibroblasts were
obtained from the Gaslini Biobank and C2C12 and Fao cells
were obtained from ATCC. Propionate exposure was
induced by culturing cells in growth medium containing
4 mM propionic acid from a 400 mM pH-balanced stock
solution. Medium pH remained within the normal range for
culture medium (pH 7.3-7.5).

2.2 | SDS-PAGE and Western blotting

Cells were harvested and lysed in TRIS-HCL pH 7.4 with
1% triton X-100 containing protease inhibitors and deac-
ylase inhibitors (1 μM trichostatin A and 20 mM
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nicotinamide). Lysates were sonicated 5 times 2 seconds
at 40 kHz amplitude on ice. Protein concentrations were
determined using Pierce BCA protein assay kit
(Thermofisher) and equal protein amounts were loaded
on NuPAGE 4% to 12% gels (Invitrogen), transferred to
nitrocellulose membrane, blocked in 3% BSA in PBS with
0.1% Tween-20 at room temperature and incubated over-
night with antibodies in the same buffer at 4�C. Primary
antibodies used: β-actin (#A5441, Sigma-Aldrich),
propionyllysine (#201, PTM biolabs), succinyllysine
(#401, PTM biolabs), acetyllysine (#9441, Cell Signalling),
histone 3 propionyllysine 23 (#613987, Active Motif), his-
tone 3 acetyllysine 23 (#07-355, Millipore). IR-dye based
secondary antibodies (LICOR) were used to detect anti-
body signals using Odyssey scanner (LICOR).

2.3 | Seahorse mitochondrial respiratory
flux analysis

Seahorse XFe96 analysis was performed according to manu-
facturer's instructions. On the day prior to the analysis, cells
were plated at 10 000 cells per well for fibroblasts, 30 000 for
Fao and 10 000 for C2C12. For myotubes, 20 000 myoblasts
were seeded per well and differentiated in the seahorse plate
for 7 days prior to exposure. Before the assay, medium was
replaced by XF base medium (Agilent) supplemented with
25 mM glucose and 2 mM glutamine. For analysis of mito-
chondrial respiration in permeabilised cells, medium was rep-
laced with MAS buffer (220 mM mannitol, 70 mM sucrose,
10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES pH 7.2, 1 mM
EGTA and 0.6% BSA-fatty acid free) shortly before the assay.
Cells were permeabilised by injection of digitonin with con-
centration of 30 μg/mL for Fao, 37.5 μg/mL for C2C12 and
fibroblasts. Oxygen consumption rates (OCR) were analysed
following a single injection of pyruvate/malate/ADP (complex
I), succinate/rotenone/ADP (complex II), TMPD, ascorbate/
ADP (complex IV). Data were normalised to protein concen-
tration or as ratio of nuclei area over background area using
40,6-diamidino-2-phenylindole (DAPI) staining. For staining:
Cells were fixed in 4% formaldehyde for 15 minutes, washed
with PBS and stained with 1 μg/mL DAPI for 5 minutes. The
BD Pathway 855 microscope (Becton Dickinson; Franklin
Lakes, New Jersey) at 10× magnification and an exposure of
0.02. Calculation DAPI pixels over total area in the Seahorse
well was done using Adobe Photoshop (Adobe Systems; San
Jose, California).

2.4 | Propionyl-CoA carboxylase activity

Pellets were resuspended in PBS and sonicated. A volume
of 10 μL of protein lysate (1 mg/mL) was added to 40 μL

of the reaction mixture (100 mM TRIS-HCl pH 8.0,
200 mM KHCO3, 10 mM MgCl2, 10 mM ATP, 1 mM
propionyl-CoA) to a final protein concentration of
0.2 mg/mL. After 15-minute incubation at 37�C the reac-
tion was terminated with 10 μL of 2 M HCl. The sample
was neutralised with 2 M KOH/0.6 M MES buffer after
which 30 μL of methanol HPLC grade was added. After
centrifugation at 20 000g for 5 minutes at 4�C the super-
natant was injected on reversed phase HPLC to analyse
the formation of methylmalonyl-CoA.

2.5 | Propionylcarnitine measurement

Cells were harvested by trypsinization and pellets were
resuspended in 0.5 mL demineralised water to 1 mg of
protein homogenate. Internal standard (50 PMol 2H3-
propionylcarnitine) was added to the homogenate,
followed by 500 μL of acetonitrile. The samples were
vortex-mixed and centrifuged at 14 000 rpm 4�C for
10 minutes. The supernatant was transferred to a glass
vial and the solvent was evaporated at 42�C under a
stream of nitrogen. A 100 μL volume of propylation
reagent, a 4:1 (vol/vol) mixture of propan-2-ol and
acetylchloride, was added to the residue, vortex-mixed
and incubated for 10 minutes at 65�C. The propylation
reagent was evaporated at 42�C under a stream of nitro-
gen and the residue was taken up in 100 μL of acetoni-
trile. Propionylcarnitine was quantified by Electrospray
Ionization Tandem Mass Spectrometry (ESI-MS/MS) as
described previously.21

2.6 | Data analysis and statistical testing

Data are presented as mean ± SD. Statistical analyses
were performed using GraphPad Prism v.5 (GraphPad
Software, La Jolla, California). Means between groups
were compared using a Students unpaired t test. Signifi-
cance was accepted at P < .05.

3 | RESULTS

3.1 | Defective mitochondrial respiration
in propionyl-CoA carboxylase
deficient cells

To evaluate propionyl-CoA accumulation and its func-
tional consequences, we used three independent control
cell lines and three independent PCC deficient fibroblast
cell lines, in which PCC activity was reduced to
undetectable levels (Figure 1A). All three patient cell
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lines had a lower mitochondrial spare capacity com-
pared to controls (Figure 1B). To determine if the
decreased OCR was also observed when individual mito-
chondrial complexes were analysed, we measured respi-
ration in digitonin-permeabilised cells. The use of an
optimised amount of digitonin allows permeabilization
of the cell membrane, yet leaving the mitochondrial
membrane intact (Figure 1C). We measured OCR fol-
lowing injection of digitonin, ADP and the substrates
pyruvate and malate, that are linked to the generation
of NADH and complex I respiration. Complex I linked
respiration was lower in all the three patient cell lines
compared to three control cell lines expressed as
increase in OCR after injection of digitonin, ADP and
complex I linked substrates (Figure 1D). When compar-
ing normalised maximal complex I linked respiration,
there was a significant difference between control and
patient cell lines, demonstrating the defective mitochon-
drial respiration in these PCC deficient cells
(Figure 1E).

3.2 | Exposure to propionate provokes a
mitochondrial defect in control fibroblasts

During PA, propionate accumulates in plasma to concen-
trations as high as 5.4 mmol/L, a thousand fold higher
than in healthy individuals.22 To mimic this in vitro, we
exposed control cells to long-term extracellular propio-
nate. Control and patient fibroblasts were cultured in
medium containing 4 mM of propionate for 3 weeks
(Figure 2A). We previously showed that a state of meta-
bolic PA significantly induces protein propionylation.20

Indeed, Protein propionylation was increased in patient
as compared to control cells and after exposure to propio-
nate, propionylation in both the patient and control cells
was increased significantly (Figure 2B). Furthermore,
profiling of mitochondrial respiration showed that expo-
sure to propionate significantly reduced complex I-driven
respiration in five fibroblast control cell lines (Figure 2C,
D). This suggests that long-term propionate exposure
could contribute to mitochondrial pathophysiology in
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PCC deficient cells, possibly via aberrant protein
propionylation.

3.3 | Exposing Fao cells to propionate
induces protein propionylation and causes
decreased mitochondrial respiration

The liver is exposed to propionate that is produced and
taken up from the colon. Levels in the portal vein can
reach concentrations between 17 and 194 μmol/L.10 To
test whether we can induce protein propionylation in the
liver cells, we exposed Fao rat hepatoma liver cells to
4 mM propionate for 5 days. We included 1 day of recov-
ery in regular medium after the exposure, before
harvesting the cells (Figure 3A), to ensure that propionyl-
CoA and propionate levels in the cells were not elevated,
and the effects of increased protein propionylation rather
than increased propionate and/or propionyl-CoA levels
would be analysed. Because propionylcarnitine profiles
accurately reflect cellular propionyl-CoA levels23 and our
propionyl-CoA analysis was not sensitive enough to
determine propionyl-CoA levels in cultured cells, we
monitored propionylcarnitine levels. After 5-day propio-
nate exposure, propionylcarnitine levels were increased.
Notably, after 1 day of recovery, propionylcarnitine levels

decreased and normalised to the same levels as in the
cells that were not exposed to propionate (Figure 3B).
This implies that 1 day of culturing on regular medium is
sufficient to remove excess cellular propionate. Interest-
ingly, 1 day recovery on propionate-free medium did not
lower protein propionylation levels compared to cells
exposed for 5 days without a recovery day (Figure 3C).
Thus, our experimental set-up yields cells with increased
protein propionylation and baseline propionyl-CoA levels
and eliminates any confounding effects of propionate, or
its derived metabolites, on inhibition of mitochondrial
enzymes. Functionally, propionate exposure and
increased propionylation was accompanied by a decrease
in mitochondrial respiration in permeabilised Fao cells
looking at complex I, complex II and complex IV driven
respiration (Figure 3D,E).

Liver perfused with 5 mM propionate show significant
changes in other acyl-CoA species, such as succinyl-
CoA.24 Therefore, we tested whether exposure to pro-
pionate increases other protein acylations, such as
acetylation or succinylation. We observed an increase in
succinylation and acetylation in response to propionate
exposure, yet this increase was limited to histone proteins
(Figure 3F), Additionally, we measured acetylation and
propionylation of histone 3 lysine 23 (H3K23) to verify if
indeed these changes altered acylation on these specific
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sites. Propionylation and acetylation of H3K23 was
increased after exposure to propionate (Figure 3F). This
shows that exposure to propionate can alter other acyla-
tions in the cell, although these acylations are not similar
in every cell compartment.

3.4 | C2C12 myotubes exposed to
propionate show increased propionylation,
but do not display defective mitochondrial
respiration

Apart from neurological, haematological and hepatic
complications, patients with PA may also display myo-
pathic features, including hypotonia and exercise intoler-
ance.16,25 Therefore, we used a murine C2C12 muscle cell
model combined with propionate exposure to test
whether protein propionylation could contribute to these
features. Interestingly, both C2C12 myoblasts and
myotubes exposed for 3 or 5 days to propionate did not
show defective mitochondrial respiration (Figure 4A,B).
Also, complex I (Figure 4C), Complex II (Figure 4D) and
complex IV (Figure 4E) driven respiration were not
reduced. Neither, when accounting basal respiration by
calculating the ratio between basal over maximal respira-
tion (Figure 4F). Myotubes exposed to propionate did
show increased propionylation levels, but to a lesser
extent than we observed in Fao cells. Moreover, a
24-hour recovery period reduced propionylation levels
significantly (Figure 4G), indicating that propionate han-
dling in muscle can be distinct from liver and fibroblasts.
Indeed, propionate and propionyl-CoA handling genes
were differently expressed between muscle and liver tis-
sue, as was analysed using the Genotype-Tissue Expres-
sion (GTEx) portal (Figure 4H).

4 | DISCUSSION

The aim of this study was to assess the role of protein
propionylation in the aetiology of PA and in cultured
cells. We show that fibroblasts of PCC deficient
patients displayed increased propionylation of the of
proteins throughout the cell, including histones. PCC
deficient fibroblasts as well as propionate-exposed
control fibroblasts and Fao cells showed a decreased
mitochondrial respiration. Since propionylation could
impact protein function directly in the mitochondria
or indirectly via histone modification, the observed
mitochondrial dysfunction could be attributed to ele-
vated protein propionylation in PCC deficient patient
cells and could thus play a role in the pathology of
PA. In contrast, propionate exposure in C2C12

myotubes did not affect respiration. C2C12 myotubes
showed propionylation, although to a lesser extent.
Furthermore, there was faster de-propionylation after
propionate exposure was removed in C2C12 myotubes
compared to Fao cells.

The observed differences in the effects of propionate
exposure on mitochondrial respiration between our liver
and muscle model may be explained by the intrinsic dif-
ferences in propionate handling. The liver is exposed to
higher physiological concentrations of propionate com-
pared to the rest of the body.10 While in muscle,
propionyl-CoA is not primarily derived from propionate,
but instead comes mainly from the breakdown of amino
acids.15 This is in line with differences in transcriptional
regulation of enzymes involved in acyl-CoA metabolism
in muscle and liver. The only known specific propionyl-
CoA synthetase, acyl-CoA synthetase short chain family
member 3 (ACSS3), was lower expressed in muscle than
in liver, suggesting a higher activity to convert propionate
into propionyl-CoA.27,28 Although ACSS3 is specific for
propionate, at higher concentrations the mitochondrial
acetyl-coenzyme A synthetase 2-like (ACSS1) also has
some affinity for propionate.29 On the other hand, the
major mitochondrial propionyl-CoA degrading enzyme,
acyl-CoA thioesterase 9 (ACOT9),28,30 is higher expressed
in muscle than in liver, whereas the cytosolic acyl-CoA
thioesterase 12 (ACOT12) that primarily hydrolyses
acetyl-CoA, but also has some activity towards propionyl-
CoA,31 is expressed lower in muscle compared to in liver.
Finally, carnitine acetyltransferase (CRAT) has the
highest affinity for propionyl-CoA32 and is higher
expressed in muscle than in liver. This could indicate that
the muscle is likely more capable of lowering mitochon-
drial propionyl-CoA levels by conjugation with carnitine
and is possibly geared towards propionyl-CoA elimina-
tion. Indeed, Matsuishi et al33 showed that exposure of
isolated liver mitochondria to 5 mM propionate increased
the levels of propionyl-CoA, which concomitantly
decreased the respiratory control ratio, whereas exposure
of muscle mitochondria to propionate did not increase
propionyl-CoA and did not affect respiration.33 These dif-
ferences in propionyl-CoA handling could explain that
C2C12 myotube mitochondrial respiration is not affected
by propionate exposure, while liver cell mitochondria are
more sensitive to propionate exposure, possibly due
increased propionyl-CoA levels and consequent aberrant
propionylation.

De Keyzer et al19 showed multiple mitochondrial
defects in muscle, liver and heart tissues from PA
patients and Schwab et al18 observed mitochondrial
defects in muscle biopsies of two young PA patients,
showing a decreased enzyme activity of all mitochondrial
complexes. Since we did not observe propionylation-
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related defects in mitochondrial respiration in myotubes
in vitro, the mitochondrial defects in PA patients in vivo
could be unrelated to propionyl-CoA accumulation and
propionylation in muscle mitochondria. Alternatively, it

could be that the mitochondrial defects observed in PA
patients could be secondary, due to, for example, ham-
pered muscle innervation, leading to muscular hypotonia
and physical inactivity.16,34
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Additionally, it must be noted that our liver and
muscle PA model do not truly reflect the metabolic sit-
uation in PCC patients. First, using the current model,
propionyl-CoA does not build up inside the mitochon-
dria specifically, as is the case in PCC patients. Second,
exposure to propionate in an intact cell system will
result in anaplerosis of the TCA cycle at succinyl-
CoA.24,35 Therefore, the consequent increase in
downstream metabolites might exert its effects on
respiration beyond the increase in protein pro-
pionylation. For example, exposure to propionate
increases levels of methylcitrate, which can inhibit
TCA enzymes such as isocitrate dehydrogenase, possi-
bly affecting respiration measurements.36 Yet, after
infusion of rat liver with 5 mM propionate, levels of
methylcitrate did not reach levels close to the inhibi-
tion constant, possibly minimising the inhibitory role
of this metabolite on cellular respiration.24 Other
metabolites that are known to accumulate in PA
patients, such as 3-hydroxypropionic acid, have been
shown to directly cause respiratory defects in isolated
heart mitochondria.37 Therefore, although it is cur-
rently unknown if these metabolites also accumulate
in the current PA model used in liver and muscle,
these metabolites could have directly influenced respi-
ration in our models.

Another effect of exposure to propionate is the deple-
tion of free cellular CoA due to the formation of
propionyl-CoA and methylmalonyl-CoA, also known as
CoA trapping.24 Incubation with propionate and carnitine
increased free cellular CoA and propionylcarnitine,
resulting in less accumulation of propionyl-CoA in heart35

and partially reversed mitochondrial defect in liver.33 Less
accumulation of propionyl-CoA increases the cellular CoA
pool but at the same time could likewise result in lower
propionylation of the proteome. Nevertheless, in order to
minimise the direct effects CoA trapping and inhibitory
effects of products of propionate metabolism on respira-
tion, we incorporated a washout period in our experimen-
tal set-up. This washout allowed propionylcarnitine levels,
as a proxy for propionyl-CoA, to return to control values,
while propionylation remained elevated, presumably all-
owing for the measurement of respiration with little inter-
ferences of these metabolites and CoA trapping.

The PCC enzyme is a mitochondrial enzyme and
therefore propionyl-CoA was expected to primarily
effect the mitochondrial proteome. However, we show
that propionylation in fibroblasts of PCC patients also
occurs outside of the mitochondria, since we see
increased propionylation on histone proteins. This is
accordance with an in vivo Pcca−/− mouse model,
that showed increased histone propionylation.11 More-
over, in Fao cells increased histone propionylation, as

well as increase in histone acetylation was observed
when exposed to extracellular propionate. Histone
proteins can be subjected to various acyl-modifica-
tions, hereby distinctly regulating chromatin structure
and transcription.38 This could possibly contribute to
the pathology of PCC patients and to the phenotype
observed in our PA models. Yet, increased histone pro-
pionylation does not seem to cause respiratory defects
per se, as histone propionylation was increased in
myotubes in absence of decreased respiration. None-
theless, the effect of propionylation on histone pro-
teins is not yet fully understood. Acetyltransferases,
previously identified to primarily acetylate histones,
also show propionylation activity39,40 and histone acet-
ylation and propionylation appear to be functionally
similar as both marks are associated with transcrip-
tional activation.11 However, whether histone pro-
pionylation is merely an additional transcriptional
activator or if there are physiological and pathological
situations, such as in PA, in which histone pro-
pionylation may have distinct regulatory roles on gene
expression is yet to be explored.

We show that increased global protein propionylation
and specific histone protein propionylation in liver might
contribute to the respiratory defects observed in PA and
therefore therapies that aim to reduce or reverse pro-
pionylation could be beneficial in the treatment of
PA. Liver complications, including hepatomegaly and
hyperechoic liver, belong to the most common complica-
tions in PA16 and mitochondrial defects are thought to
contribute to these pathologies, at least in part. In current
treatment strategies, PA patients may benefit from liver
transplantation, which may even reverse frequent com-
plications, such as cardiomyopathy.41 However, the
transplantation is associated with high mortality due to
complications.42 Other treatment strategies include: car-
nitine supplementation to decrease intracellular
propionyl-CoA levels,33,43 restriction of dietary factors
that end up as propionyl-CoA, such as propiogenic amino
acids, and the use of an antibiotics to reduce propionate
production by gut bacteria. Despite these strategies, the
outcome for PCC patients remains poor with significant
clinical impairment, such as delayed mental development
and episodes of acute metabolic decompensations.44-46

One explanation for the poor outcome could be that
propionyl-CoA levels are still elevated or elevate acutely
due to the endogenous production of propionyl-CoA.9

Therefore, it is of interest to explore alternative strategies
that might alleviate the underlying causes that could con-
tribute to the liver pathology, such as aberrant protein
propionylation. However, targeting the enzymatic pro-
pionylation by acyltransferases would possibly be an inef-
fective strategy, as much of the propionylation is likely
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non-enzymatic.20 Hence, to decrease aberrant pro-
pionylation we propose to increase de-propionylation
activity in PA patients. Although it is not clear which
enzymes regulate de-propionylation, possibly sirtuins
1-3 hold some de-propionylation activity, at least
in vitro.47,48 In particular activation of sirtuin
3 (SIRT3) could be an interesting strategy due to its
cellular localisation within the mitochondria and mul-
tiple metabolic targets, including mitochondrial com-
plexes.49 SIRT1 could be of interest as a potential
strategy to remove aberrant propionylation on histone
proteins, as this enzyme has been shown to de-
propionylate proteins, at least in vitro.12 Therefore,
efforts are required to identify how proteins are de-
propionylated to alleviate aberrant propionylation and
its consequences. These efforts could help to improve
the treatment of PCC patients and hereby improve the
health outcome and quality of life.
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