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ABSTRACT

GTRD––Gene Transcription Regulation Database
(http://gtrd.biouml.org)––is a database of transcrip-
tion factor binding sites (TFBSs) identified by ChIP-
seq experiments for human and mouse. Raw ChIP-
seq data were obtained from ENCODE and SRA and
uniformly processed: (i) reads were aligned using
Bowtie2; (ii) ChIP-seq peaks were called using peak
callers MACS, SISSRs, GEM and PICS; (iii) peaks for
the same factor and peak callers, but different ex-
periment conditions (cell line, treatment, etc.), were
merged into clusters; (iv) such clusters for different
peak callers were merged into metaclusters that were
considered as non-redundant sets of TFBSs. In ad-
dition to information on location in genome, the sets
contain structured information about cell lines and
experimental conditions extracted from descriptions
of corresponding ChIP-seq experiments. A web in-
terface to access GTRD was developed using the
BioUML platform. It provides: (i) browsing and dis-
playing information; (ii) advanced search possibili-
ties, e.g. search of TFBSs near the specified gene
or search of all genes potentially regulated by a
specified transcription factor; (iii) integrated genome
browser that provides visualization of the GTRD data:
read alignments, peaks, clusters, metaclusters and
information about gene structures from the Ensembl
database and binding sites predicted using position
weight matrices from the HOCOMOCO database.

INTRODUCTION

Recognition of transcription factor (TF) binding sites (TF-
BSs) in genomes has been one of the most important tasks
of modern biology since the introduction of the DNA foot-
print technique in 1978 (1). The progress in that field had

been limited by the absence of massive high-throughput
technology to permit the identification of DNA–protein in-
teractions. The appearance of ChIP-seq technology devel-
oped independently by three research groups in 2007 (2–
4) allowed this hurdle to be overcome. This achievement
resulted in an explosion in the number of freely available
ChIP-seq datasets performed for different species, tissues
and cell lines several years later. The well-known research
project ENCODE selected ChIP-seq as one of the main as-
says to identify functional genomic elements starting from
the phase II period (5). That decision permitted to improve
the technology, related standards and pipelines for data pro-
cessing, and made ChIP-seq popular worldwide. Several
other variants of immunoprecipitation assay are also avail-
able, including ChIP-chip (6), ChIP-exo (7), ChIA-PET (8),
etc., but ChIP-seq remains the most popular.

The accumulation of a large number of ChIP-seq
datasets worldwide has led to the establishment of dedi-
cated databases. There are currently several freely available
databases indexing mainly ChIP-seq data (Table 1) oriented
to TF binding motifs/sites. Only some of them contain data
processed uniformly by their own workflows starting from
raw data and ending with the identification of TFBSs. This
aspect is quite important due to the differing quality of raw
data obtained from various sources, conditions of exper-
iments, abilities of applied algorithms, etc. None of these
reported databases integrates data from different ChIP-seq
experiments to provide non-redundant sets of TFBSs. Tak-
ing into account the shortcomings mentioned above and
having a novel view of how such data and data processing
should be organized, we have established a Gene Transcrip-
tion Regulation Database (GTRD; http://gtrd.biouml.org).
GTRD is integrated with a comprehensive software plat-
form BioUML (http://www.biouml.org) with a wide spec-
trum of implemented methods for bioinformatics and sys-
tems biology. In this article we present the GTRD database
that provides:
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• comprehensive index of human and mouse ChIP-seq data
from third-party sources;

• the most exhaustive catalog of ChIP-seq peaks for 476
human and 257 mouse TFs;

• non-redundant sets of TFBSs produced by a new meta-
cluster approach based on the merging of different ChIP-
seq experiments and results of different peak callers.

MATERIALS AND METHODS

Data collection

ChIP-seq data for GTRD have been collected systemati-
cally from the following well-known public repositories: Se-
quence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/
sra) (9), ENCODE (https://www.encodeproject.org) (5),
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) (10) and literature, as well. Two main types
of data have been collected:

i. raw data in either FASTQ or SRA formats;
ii. metadata describing ChIP-seq experiments––informati

on about target TF, cell source, used antibody, experi-
mental conditions and control experiment.

In GTRD we include ChIP-seqs for sequence-specific
TFs only. Since the definition of TF may vary, we have
restricted GTRD to the factors presented in the TF-
Class database (http://tfclass.bioinf.med.uni-goettingen.de/
tfclass) (11).

The GTRD processing pipeline starts with automatic
querying of GEO and ENCODE for ChIP-seq experiment
information. The GEO database contains ChIP-seq exper-
iment descriptions in human-readable format that imposes
some difficulties for automatic processing of large volumes
of data. GEO was queried for ChIP-seq experiments pro-
grammatically using Entrez Programming Utilities (http://
www.ncbi.nlm.nih.gov/books/NBK25501). Resulting GEO
entries were downloaded in the MINiML format. We have
developed a special program that extracts required meta-
data from MINiML files and provides the user with a choice
of possible metadata values. Each GEO dataset was pro-
cessed using this program. ENCODE provides much more
clean and structured metadata that allows us to collect it
fully automatically. The raw data in the form of FASTQ files
and SRA archives were obtained from the ENCODE and
SRA databases, respectively. To avoid variation in results
obtained from different ChIP-seq datasets, raw sequenced
reads have been processed uniformly by a special workflow.

Data processing workflow

We used the following special workflow for automatic and
uniform processing of collected ChIP-seq data consisting of
six steps:

i. reduction to a common data format––the FASTQ data
format was used for further uniform data processing;
ChIP-seq data extracted from SRA in .sra format were
converted using the SRA toolkit (http://www.ncbi.nlm.
nih.gov/books/NBK158900).

ii. alignment of reads––we used Bowtie2 (version 2.2.3)
(12) to align ChIP-seq reads to the reference human
(GRCh38) and mouse (GRCm38) genomes. Bowtie2 is
a rather fast and memory-efficient tool able to work
with long reference sequences that perfectly suits our
needs. Mostly default parameters were used, except
that we had a fixed random seed (–seed 0) for re-
producibility, used memory mapped I/O (–mm) for
more efficient memory utilization, and employed eight
threads per bowtie2 process (-p 8). The resulting align-
ments were converted to .bam files, then sorted and in-
dexed using SAMtools v1.0 (13).

iii. peak calling––we used four different peak callers to
reveal TF binding regions: MACS (14), SISSRs (15),
GEM (16) and PICS (17). These four callers were used
because they are based on distinct algorithms and take
into consideration different aspects of ChIP-seq data.
Control experiments were used when available.

iv. peak clusters––peaks computed for the same TF and
peak calling method, but different experimental con-
ditions (e.g. cell line, treatment, etc.) were joined into
clusters. Since the width of the peaks reported by dif-
ferent peak callers may vary significantly, we used only
peak centers reported by each peak caller and com-
puted the width of binding site based on its assumed
width and variation of estimated peak centers. Depend-
ing on peak caller, we used different peak centers: for
MACS we used the reported ‘summit’ column; GEM
reports sites of unit length, and we used this coordinate
as the peak center; for PICS and SISSRs, we used the
geometric center of the peak. The peaks with centers
located 50 bp from each other or closer were merged
into one cluster. For each cluster, we found the center by
computing the median of the peak centers. We assumed
that the width of each cluster should reflect both the
actual length of DNA interacting with the protein and
uncertainty in the location of TFBSs. As an estimate
of this length, the length of the position weight matrix
(PWM) for the corresponding TF available from the
HOCOMOCO database (http://hocomoco.autosome.
ru) was used. When such an estimate was not available,
we used the fixed length of 20 bp. The uncertainty in
the location of TFBSs was estimated from the variation
of peak centers inside that cluster. Specifically, we have
computed the standard deviation (SD) of peak centers
inside each cluster and used 4*SD as the uncertainty
factor in cluster width calculation. When a cluster was
supported by only a single peak, the median of SD val-
ues from all other clusters was used instead of SD. So,
the width of such clusters was computed as the esti-
mated length of DNA interacting with protein + an un-
certainty factor.

v. metaclusters––clusters for the same TF revealed by dif-
ferent peak calling methods were joined into metaclus-
ters. For this purpose, cluster centers located 50 bp from
each other or closer were grouped, and one of them was
selected based on priority of peak caller. The priority of
peak callers was assigned based on the median SD of
peak centers inside clusters in the preliminary analysis.
Peak callers showing lower median SD have higher pri-
ority. According to analysis results, peak callers were
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Table 1. Comparison of databases that are based on ChIP-seq data

Database, URL
Source of human
and mouse data

Number of
samples
(TF-related)* Number of TFs

Number of
ChIP-seq peak
callers used

Metaclus-ter
approach

Uniform data
processing Genome browser

ChIPBase
(http://rna.sysu.
edu.cn/chipbase)

GEO, ENCODE total 3549
human 2498
mouse 1036
rat 15

252 TFs and
non-TFs for 10
species

>10 in total, but
no uniform
pipeline, each
ChIP-seq is
processed by
different peak
caller

No No Self-developed:
deepView
genomeView

Cistrome DB
(http://dc2.
cistrome.org/#/)

GEO, SRA,
ENA, ENCODE

total 10 276
(TF+non-TF)
human 5774
mouse 4502
rat 0

260 TFs and
non-TFs

1 (MACS2) No Yes UCSC genome
browser

ENCODE
(https://www.
encodeproject.
org)

ENCODE total 1448
human 1254
mouse 194
rat 0

295 TFs and
non-TFs for
human, 52 TFs
and non-TFs for
mouse

5 (SPP, GEM,
PeakSeq, MACS,
Hotspot/Hotspot2)

No Yes Self-developed:
UCSC genome
browser and WashU
epigenome browser

Factorbook
(http://www.
factorbook.org)

ENCODE total 1007
human 837
mouse 170
rat 0

167 TFs,
co-factors and
chromatin
remodeling
factors for
human, 51––for
mouse

None No No No

GTRD (http://
gtrd.biouml.org)

GEO, SRA,
ENCODE

total 5078
human 2955
mouse 2107
rat 16

476 human and
257 mouse
sequence specific
TFs,
corresponding to
542 TFClass
classes.

4 (MACS,
SISSRs, GEM,
PICS)

Yes Yes Self-developed

ChIP-Atlas (http:
//chip-atlas.org)

SRA total 10 774
human 5914
mouse 4860
rat 0

699 human and
502 mouse TFs
and others.

1(MACS2) No Yes IGV

GeneProf
(http://www.
geneprof.org)

SRA, ENCODE,
literature

total 1692 human
693 mouse 999
rat 0

133 human and
131 mouse TFs

1(MACS) No Yes Self-developed: based
on GenomeGraphs

NGS-QC (http://
www.ngs-qc.org)

GEO total 6672 human
4234 mouse 2438
rat 0

unknown None No Yes No

*The number of ChIP-seq samples cannot be directly compared between databases as definition of sample may be distinct.

arranged as follows: GEM > PICS > MACS > SIS-
SRs. Metaclusters supported by only one peak caller
were filtered out.

vi. Metaclusters were considered as non-redundant set of
TFBSs. Besides information on location in the human
or mouse genomes, they contain structured informa-
tion about cell lines and experimental conditions ex-
tracted from the descriptions of corresponding ChIP-
seq experiments.

vii. predicted sites––PWMs from the HOCOMOCO
database were also used to predict TFBSs. Further, we
plan to use this information for forming clusters and
metaclusters. The corresponding algorithm is under
development and should be tested for various classes
of TFs.

Figure 1 demonstrates steps 1–6 for building of one meta-
cluster for TF USF1.

Database content and statistics

Supplementary Table S1 summarizes GTRD content and
statistics arranged according to the workflow described
above.

Most ChIP-seq experiments (61%) have a corresponding
control experiment. On average, each TF has been mea-

sured in 9.37 ChIP-seq experiments and 291 (∼54%) TFs
have been measured in more than one experiment. The most
studied TF, CTCF, has been represented by 282 experi-
ments.

Database maintenance

To maintain GTRD as up-to-date, we have developed a
semi-automatic procedure for data mining, processing, ac-
cumulation and releasing. A GTRD update is released ev-
ery 6 months. During this period, new metadata is accumu-
lated automatically or manually from different data sources
(GEO, SRA and ENCODE). Finally, new data is automat-
ically processed and merged with the previous release.

Web interface

We have developed the GTRD web interface (Figure 2) that
provides easy access to data for the most frequent use cases
(queries) related to gene expression regulation:

• to find all TFBSs located in regulatory regions of the
specified gene;

• to find all the genes that have binding sites for the speci-
fied TF;

http://rna.sysu.edu.cn/chipbase
http://dc2.cistrome.org/#/
https://www.encodeproject.org
http://www.factorbook.org
http://gtrd.biouml.org
http://chip-atlas.org
http://www.geneprof.org
http://www.ngs-qc.org
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Figure 1. Reconstruction of the human USF1 TFBS in the neighborhood of the PIGR gene by using the GTRD six-step workflow. From the bottom
to the top: Step 1: reduction of raw data to FASTQ format; Step 2: read alignment for nine datasets (from a to i; reads of the last one are depicted for
demonstration purpose); Step 3: ChIP-seq peaks (with denoted centers) identified by four peak callers for nine datasets a-i; Step 4: peak clusters calculated
for each peak caller result; Step 5: metacluster calculated on the base of four clusters; Step 6: USF1 TFBS identified by using respective PWM from the
HOCOMOCO database; K. USF1 TFBS known from literature (26,27); G. A part of the PIGR gene structure.
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Figure 2. Infocard for the reconstructed USF1 TFBS from Figure 1. Such information is reachable by clicking on a metacluster in the genome browser.

• to identify cell lines (tissues) and experimental conditions
with evidence of binding of the specified TF with a cor-
responding site;

• to visualize tracks for TFBSs (revealed peaks, clusters,
and metaclusters) in the genome browser (Figure 1).

The GTRD landing page (http://gtrd.biouml.org) de-
scribes these use cases in detail.

The web interface also provides tools for browsing and
displaying information as tables (Supplementary Figures S1
and 2) or as a tree using classification of TF from the TF-
Class database. It is also possible to download peaks, clus-
ters and metaclusters data in flat files.

The GTRD web interface is developed using the Bi-
oUML platform––an open-source integrated Java platform
that spans a comprehensive range of capabilities including
access to biological databases, tools for visual modelling,
parameter fitting and analyses of complex biological sys-
tems. It provides powerful possibilities for analyses of high-
throughput data with the help of scripting languages (R
and JavaScript) and workflows. It also provides a powerful
genome browser (18).

We have developed a GTRD plug-in for the BioUML
platform that provides necessary analyses:

• searching TFBSs near the specified gene;
• searching genes regulated by the specified TF.

To customize the web interface provided by the BioUML
platform for GTRD-specific use cases, we created a GTRD
perspective. On the BioUML platform, a perspective is a
visual container for a set of views and editors for task-
oriented interaction with resources on the platform. Each
perspective has a start page with predefined BioUML web
components (e.g. specialized forms with input parameters
for a data analysis or data query). Like a page within a
book, only one perspective is visible at any time. A user can
switch between perspectives for solving particular tasks. For
example, a user can switch to the HOCOMOCO perspec-
tive (http://micro.biouml.org/bioumlweb/hocomoco.html/)
for working with the HOCOMOCO database (19) that con-
tains PWMs built on the base of ChIP-seq peaks extracted
from the GTRD content. In turn, GTRD contains an ex-

perimental track (see step 6 of the GTRD workflow, Figure
1) with TFBSs predicted using PWMs from HOCOMOCO.

DISCUSSION

Table 1 provides comparison of GTRD with other
databases for ChIP-seq experiments.

In the early stages of ChIP-seq technology, the ENCODE
project (5) was developed; its aim is to identify all func-
tional genomic elements, and it served as the main source
of ChIP-seq data. The ENCODE consortium provides re-
sults of data analysis in the form of ChIP-seq peaks for
each dataset. As compared with ENCODE, we signifi-
cantly expanded the collection of ChIP-seq experiments (see
database statistics in Table 1) using GEO (10) and SRA (9)
databases, and took another step forward in the analysis by
merging peaks from different experiments on the same TF
into clusters and metaclusters.

Factorbook (20) is based on data from the ENCODE
project only and contains a significantly lower number of
ChIP-seq experiments.

The CistromeMap/Cistrome DB project (21) achieves
high-quality data by manually curating metadata for the
large collection of publicly available ChIP-seq experiments.
This database uses only one peak caller and does not ag-
gregate peaks from different experiments. We plan to use
CistromeMap as an additional source of metainformation
in future GTRD releases.

ChIPBase (22) contains significantly fewer ChIP-seq ex-
periments, and these data were not processed uniformly as
we do in GTRD. More than 10 different peak callers are
used in total, but application of a metacluster approach or
similar technique was not observed.

TRANSFAC (23) is a well-known commercial compre-
hensive database for regulation of gene expression. As of
2016, it contains 23 277 factors, 47 775 TFBSs identified
by classical in vitro and in vivo methods, more than 14 mil-
lion TFBSs identified by using ChIP technologies and more
than 6000 PWMs (https://portal.biobase-international.
com/archive/documents/transfacstats.pdf). We could not
find exact statistics on the number of ChIP-seq experiments
collected there.

http://gtrd.biouml.org
http://micro.biouml.org/bioumlweb/hocomoco.html/
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ChIP-Atlas (http://chip-atlas.org) has a similar proce-
dure to GTRD for semi-automatic ChIP-seq metadata cu-
ration and considers more species than GTRD. However,
ChIP-Atlas did not annotate links to corresponding control
ChIP-seq experiments that prevents the use of this informa-
tion in the peak calling procedure. Also, ChIP-Atlas calcu-
lates ChIP-seq peaks starting from the raw data and uses a
workflow similar to CistromeDB. It provides functions for
querying ChIP-seq peaks and target genes similar to GTRD
as well as unique functions to search for TF colocalization
and enrichment. Unlike GTRD, ChIP-Atlas did not inte-
grate different experiments to provide non-redundant sets
of TFBSs.

NGS-QC (24) is a database of quality indicators for the
large collection of NGS experiments including ChIP-seq. It
has a different purpose than GTRD, but contains similar
metadata for ChIP-seq experiments.

GeneProf (25) is a resource of curated, integrated, and
reusable high-throughput genomics experiments, including
ChIP-seq experiments. Similarly to GTRD, all data were re-
analyzed starting from the raw sequencing reads and pro-
cessed using a consistent workflow. GeneProf contains sig-
nificantly fewer ChIP-seq experiments than GTRD. And,
unlike GTRD, it provides only the results of analyses from
individual experiments.

Thus main advantages of GTRD in comparison to other
databases for ChIP-seq experiments are the following:

• it contains the most comprehensive (excluding ChIP-
Atlas) collection of ChIP-seq data in regards to coverage
of different TFs for human and mouse;

• ChIP-seq data were uniformly processed using the work-
flow described above;

• peaks from different experiments to the same TF were
merged into clusters and metaclusters. On the one hand,
this allows this information to be made more compact
and convenient for a user: on the level of metacluster, the
user can see merged results from many ChIP-seq exper-
iments and structured metainformation about these ex-
periments is also available. On the other hand, merging
results from many ChIP-seq experiments facilitates more
reliable identification of corresponding TFBSs.

The GTRD database is an integral part of a workflow
system “From genome to target” which is currently being
developed by BIOSOFT.RU, LLC. This workflow system
will perform integrated analysis of various omics data and
eventually find mechanism-based therapeutic targets and
biomarkers referring to the studied disease.

Recently, the ENCODE-DREAM in vivo TF Binding
Site Prediction Challenge (http://dreamchallenges.org/
project/home-open/encode-dream-in-vivo-transcription-
factor-binding-site-prediction-challenge/) has been an-
nounced. Its main goal is to identify the best-performing
model for predicting positional in vivo TF binding maps
across cell types and tissues. The results of the challenge will
also represent a systematic benchmarking and comparison
of such computational methods. We plan to use the results
of this challenge for further GTRD development.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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