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Abstract: The synthesis and photoluminescence properties of crystal crosslinked gels (CCGs) with
an aggregation-induced emission (AIE) active crosslinker derived from tetraphenylethene (TPE)
is discussed in this article. The CCG was prepared from a metal organic framework (MOF) with
large pore aperture to allow the penetration of TPE crosslinker. The obtained CCG possessed a
rectangular shape originated from the parent MOF, KUMOF. The CCG showed stimuli-responsive
photoluminescence behavior depending on the swelling degree, thus the photoluminescence intensity
was higher at higher swelling degree. By changing the solvent, water content, or ionic strength,
the photoluminescence intensity was controllable, accompanying the change of swelling degree.
Moreover, emission color tuning was also achieved by the introduction of luminescent rare earth ions
to form a coordination bonding with residual carboxylate inside the CCG.

Keywords: aggregation-induced emission (AIE); crystal crosslinking; metal-organic framework;
polymer gel

1. Introduction

Aggregation-induced emission (AIE) dyes have recently become a new class of functional
luminescent materials, because of their useful and attractive property wherein strong luminescence is
observed in aggregated or solid states, while no or weak luminescence is observed in the dissolved
state [1–6]. Compared to conventional luminescent dyes exhibiting concentration quenching, this
property of AIE dyes offers great potential for practical use in fluorescent sensors [7–9], biological
probes [10–12], or light emitting devices [13–15]. The restriction of intramolecular motion (RIM) process
of densely packed aromatic rings is widely accepted to be a predominant cause of the AIE property.

The most common way to express the AIE property is to form an aggregation in a poor solvent
via a reprecipitation process. However, aggregate formation is not always necessary to express AIE,
and we can deduce that aggregate formation is not a requirement for AIE, but rather a sufficient
condition. Therefore, other ways of providing the RIM process can also trigger AIE, other than
aggregate formation. Recently, this idea has been realized by designing supramolecular interaction
to suppress the molecular motion of AIE dye [16–18]. Shinkai et al. reported cyclization-induced
emission driven by complexation between dicarboxylic acid and a tetraphenylethene (TPE) derivative,
tethering zinc-dipicolylamine groups in homogeneous buffer solution [16]. Song et al. reported the
occurrence of monomeric fluorescence via complexation between a TPE derivative and γ-cyclodextrin
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(γ-CD) in homogeneous solution [17]. Wu et al. reported fluorescence emergence induced by anion
coordination of a TPE derivative having bisurea moieties [18].

As the environment to facilitate the RIM process of an AIE dye without aggregate formation,
we focused on the use of a polymer gel and an elastomer consisting of network polymers crosslinked
by an AIE dye [19–22]. Therein, the emission from AIE dye is feasibly controlled by interaction of the
randomly-dispersed crosslinking point and the polymer chain, resulting in stimuli-responsive emission
behavior of AIE dye toward swelling degree, salt concentration, solvent, temperature, or rigidity. As an
unexplored network polymer matrix to control AIE, we conceived of the use of a crystal crosslinked
gel (CCG), which is prepared via crystal crosslinking (CC)—a crosslinking reaction between porous
crystal and an included crosslinker [23,24]. The method relies on the post synthetic method (PSM) of
metal–organic frameworks [25,26], and the obtained crystal crosslinking gels possessed polyhedral
shape derived from the original MOF crystals. Although CCG showed no apparent diffraction peaks
on X-ray diffraction measurement, it should have higher molecular arrangement than conventional
polymer gels, as illustrated its polyhedral shape. In this article, a TPE crosslinker suitable for the CC
method was synthesized, and the environment-responsive AIE property was investigated. Our idea
introduced herein has the potential to become a new strategy for the incorporation of dyes in polymer
gels [27].

2. Materials and Methods

The azide-functionalized biphenyl dicarboxylic acid (Azbpdc) [28], azide-functionalized terphenyl
dicarboxylic acid (Aztpdc) [25], and TPE-derived tetrapropargyl crosslinker (TPE-CL4) [29] (Figure 1)
were synthesized via the procedures outlined in the associated literature. Other reagents and solvents
were purchased from commercial sources and used without further purification. All experiments
were carried out under ambient atmosphere, unless mentioned. 1H NMR spectra were measured on a
Bruker (Billerica, MA, USA) AVANCE DRX500 apparatus, using 0.05% tetramethylsilane (TMS) as an
internal standard. Attenuated total reflection infrared (ATR-IR) spectra were obtained on a JASCO
(Tokyo, Japan) FT/IR-4100 spectrometer with a diamond prism kit. X-ray diffraction (XRD) patterns
were obtained by using a Bruker (Billerica, MA, USA) D8Advance with Cu Kα radiation source (40 kV,
40 mA). Optical/Polarization micrographs were obtained by using a Nikon instruments (Tokyo, Japan)
SNZ1000 stereoscopic zoom microscope. Emission spectra were obtained with a Shimadzu (Kyoto,
Japan) RF5300PC spectrofluorometer. The absolute photoluminescence quantum yield (ΦF) was
measured by a Hamamatsu (Shizuoka, Japan) C9920-02 absolute photoluminescence quantum yield
measurement system equipped with an integrating sphere apparatus and a 150 W continuous-wave
xenon light source.

2.1. Preparation of AzKU (Azide-Functionalized KUMOF)

Azbpdc (25 mg, 0.071 mmol) and Cu(NO3)2·3H2O (25 mg, 0.10 mmol) were dissolved in 5 mL of
N,N-diethylformamide (DEF) in a screw vial, and 0.1 mL DMSO was added to the solution. The vial
was kept standing at 80 ◦C for 4 days. The solution was decanted, and green rectangular crystals were
repeatedly washed with DEF.

2.2. Preparation of CLKU(TPE) (Crosslinked KUMOF with TPE-CL4)

AzKU was immersed in 5 mL of crosslinker solution of TPE-CL4 (0.1 M) in DEF and 25 µL of
saturated Cu(I)Br solution of DEF, and stand for 5 days at 80 ◦C. The supernatant was decanted, and
moss green rectangular crystals were repeatedly washed with DEF.

2.3. Preparation of KUCCG(TPE) (Crystal Crosslinked Gel from KUMOF)

CLKU(TPE) was immersed in a mixed solvent of conc. HCl/DMF (1/5, v/v) in a screw vial. The
vial was kept standing at room temperature for 3 h. The supernatant was decanted, and brown cubic
crystals were repeatedly washed with DEF after drying in an oven at 40 ◦C for 5 h.
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2.4. Preparation of AzIR15 (Azide-Functionalized IRMOF-15)

Aztpdc (28 mg, 0.065 mmol) and Zn(NO3)2 6H2O (57 mg, 0.19 mmol) were dissolved in 5 mL of
DEF in a screw vial. The vial was kept standing at 80 ◦C for 3 days. The solution was decanted, and
yellow cubic crystals were repeatedly washed with DEF.

2.5. Preparation of CLIR15(TPE) (Crosslinked IRMOF15 with TPE-CL4)

AzIR15 was immersed in 5 mL of crosslinker solution of TPE-CL4 (0.1 M) in DEF and 25 µL of
saturated Cu(I)Br solution of DEF, and left for 5 days at 80 ◦C. The supernatant was decanted, and
yellow cubic crystals were repeatedly washed with DEF.

3. Results

The synthesis of CCG was carried out by using KUMOF [30] and IRMOF-15 [31] as the
parent metal organic framework (MOF) (Figure 1). At first, azide-functionalized KUMOF (AzKU)
and IRMOF-15 (AzIR15) were synthesized by mixing Cu(II) and Azbpdc in a mixed solvent of
N,N-diethylformamide (DEF) and DMSO for AzKU, or Zn(II) and Aztpdc in DEF for AzIR15 (Figure 1).
The crosslinker TPE-CL4 was obtained via facile Williamson ether synthesis according to the literature
process (Figure 1) [29]. The obtained rectangular crystal (AzKU) or cubic crystal (AzIR15) was then
subjected to a crosslinking reaction withTPE-CL4 via Huisgen cyclization catalyzed by Cu(I) to afford
CLKU(TPE) and CLIR15(TPE). After the crosslinking reaction of AzKU, the appearance was not
changed; however, Fourier transform infrared (FT-IR) spectroscopy showed complete consumption
of the peak at 2090 cm−1 attributed to azide stretching vibration (νN3) (Figure 2a). On the other
hand, FT-IR spectra of CLIR15(TPE) indicated the existence of persisting azide groups (Figure S1),
probably due to the small pore aperture of IRMOF15 (12.3 Å) compared to that of KUMOF (24.7 Å).
The X-ray diffraction (XRD) of AzKU and CLKU(TPE) indicated that the crosslinking reaction did
not affect the crystallinity (Figure 2b). In a mixed hydrolyzing solution of conc. HCl/DMF (v/v =
1/5), CLKU(TPE) was hydrolyzed to yield KUCCG(TPE). The time-course observation of hydrolysis is
shown in Figure 1d. From the outside of the green rectangular crystal, the hydrolyzing solution was
penetrated with decoloration due to the extraction of Cu(II) ion from the secondary building unit (SBU)
of KUMOF, while the rectangular shape and right angle remained, even after the hydrolysis. After
30 min immersion in the hydrolyzing solution, the green color completely faded, and FT-IR spectra
of KUCCG(TPE) demonstrated the disappearance of carboxylate stretching vibration peak (νCOO-) at
1380 cm−1 observed for AzKU and CLKU(TPE) and the appearance of a carboxylic acid stretching
vibration peak (νCOOH) at 1710 cm−1 (Figure 2a), indicating the successful hydrolysis of CLKU(TPE)
to obtain KUCCG(TPE). The KUCCG(TPE) showed no diffraction pattern, indicating its amorphous
nature (Figure 2b). Hydrolyzing CLIR15(TPE) resulted in the production of a spherical gel (Figure
S2); thus, it lost its original polyhedral shape upon hydrolysis. The insufficient crosslinking density
derived from a lack of crosslinker caused the result, due to the small aperture of IRMOF15.
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Figure 1. (a) Chemical structures of organic ligands, azide-functionalized biphenyl dicarboxylic acid 
(Azbpdc) and azide-functionalized terphenyl dicarboxylic acid (Aztpdc), and TPE-derived 
tetrapropargyl crosslinker (TPE-CL4); (b) Pore aperture of KUMOF from single crystal data [30]; (c) 
Schematic representation of crystal crosslinking method to obtain crystal crosslinked gel from azide-
functionalized KUMOF (AzKU) (KUCCG(TPE)) and from azide-functionalized IRMOF-15 (AzIR15) 
(IR15CCG(TPE)) via crosslinked AzKU and AzIR15 with TPE-CL4 denoted as CLKU(TPE) and 
CLIR15(TPE); (d) Time-course observation of hydrolysis of CLKU(TPE) to obtain KUCCG(TPE) in 
conc. HCl/DMF = 1/5 (v/v). 

 
Figure 2. (a) Fourier transform infrared (FT-IR) spectra of AzKU, CLKU(TPE), KUCCG(TPE), and 
KUCCG(TPE)-Na; (b) XRD patterns of AzKU, CLKU(TPE), and KUCCG(TPE), and simulated pattern 
of KUMOF from single crystal data. 

Figure 1. (a) Chemical structures of organic ligands, azide-functionalized biphenyl dicarboxylic
acid (Azbpdc) and azide-functionalized terphenyl dicarboxylic acid (Aztpdc), and TPE-derived
tetrapropargyl crosslinker (TPE-CL4); (b) Pore aperture of KUMOF from single crystal data [30];
(c) Schematic representation of crystal crosslinking method to obtain crystal crosslinked gel from
azide-functionalized KUMOF (AzKU) (KUCCG(TPE)) and from azide-functionalized IRMOF-15
(AzIR15) (IR15CCG(TPE)) via crosslinked AzKU and AzIR15 with TPE-CL4 denoted as CLKU(TPE)
and CLIR15(TPE); (d) Time-course observation of hydrolysis of CLKU(TPE) to obtain KUCCG(TPE) in
conc. HCl/DMF = 1/5 (v/v).
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The swelling degree of obtained KUCCG(TPE) was investigated in various solvents, as shown in
Figure 3. The equilibrium swelling degrees (Q) of the cubic gels were defined by the following equation:

Q = (Lwet/Lcryst)
3

where Lwet and Lcryst are average lengths of one side of CCG in wet and crystalline (before hydrolysis)
state, respectively.
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the excitation light.

In aprotic polar solvents such as DMSO, DMF, or DEF, KUCCG(TPE) showed high Q value
(e.g., 1.74 in DMSO, 1.84 in DMF, and 1.99 in DEF) due to suppression of hydrogen bonds among the
carboxylic acid groups and good compatibility of phenyl rings of the organic ligands and crosslinkers.
In other solvents, such as chloroform, dichloromethane, and water, KUCCG(TPE) was collapsed, and
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the Q values were found to be around 1:0.86 in water, 0.77 in dichloromethane, and 1.02 in chloroform.
Therefore, the Q values depend on the compatibility between KUCCG(TPE) and the solvents, rather
than the permittivity.

The photoluminescence property of KUCCG(TPE) was then investigated after immersing it in
various solvents (Figure 4a). The excitation wavelength (280 nm) was selected to mainly excite the
biphenyl moiety in the organic ligand. In a swollen state in good solvents such as DMSO, DMF, or DEF,
KUCCG(TPE) showed a strong emission, mainly derived from the crosslinking TPE moiety at around
470–480 nm, indicating efficient energy transfer from biphenyl to TPE. On the other hand, in poor
solvents, the emission from TPE moiety was largely suppressed. In other words, the photoluminescence
intensity is governed by the swelling degree of the surrounding network polymer, due to the increase
of scattering in the collapsed state of KUCCG(TPE), as can also be seen in Figure 3a. The measurement
of absolute photoluminescence quantum yield (ΦF) reflected the photoluminescence spectroscopy data;
thus, higher ΦF was observed in DMF (3.0%, Table 1), and lower ΦF was observed in water (0.7%).
In our previous study, emission from TPE crosslinker in a conventional gel or elastomer was decreased
in the swollen state in good solvents due to intramolecular motion of the TPE moiety [20–22]; however,
in CCG, the confined and organized nature of the crystal crosslinked network polymer should be
enough to achieve the RIM process, even in the swollen state.

To obtain deep insight into the swelling degree-dependent emission property, KUCCG(TPE)
was immersed in mixed solvent of DMF and water with various ratios (v/v = 0/10–10/0, Figure 4b).
Analogously to the above experiment, KUCCG(TPE) in swollen state in pure DMF showed large
emission from the TPE moiety. An increase of water content strikingly diminished the emission from
the TPE moiety, accompanying the decrease of swelling degree (1.84 to 0.86). This behavior is also
derived from the increase of scattering in the collapsed state of KUCCG(TPE). From this point of view,
a further increase of photoluminescence intensity was attempted via neutralization of carboxylic acid
by 1 M NaOH aq. to obtain polyelectrolyte type CCG (KUCCG(TPE)-Na) having sodium carboxylate
groups inside. After the neutralization, the FT-IR signal of νCOOH at 1710 cm−1 disappeared, the
swelling degree in water was improved to 3.17, and ΦF also increased to 8.4% (Table 1).

Table 1. Summary of photoluminescence quantum yield (ΦF) and swelling degree (Q).

Sample Solvent ΦF (%) Q

KUCCG(TPE)
water 0.7 0.86
DMF 3.0 1.84

KUCCG(TPE)-Na
water 8.4 3.17
DMF 14.8 3.64

The addition of a common salt experiment was carried out by immersion of KUCCG(TPE)-Na
in 5 M NaCl aq., and upon the increase of salt concentration, the photoluminescence intensity was
decreased in the common salt solution (Figure S3). These data suggested that the neutralization of
carboxylic acid group provided an efficient improvement of photoluminescence intensity by increasing
the swelling degree.

In order to finely control the emission color, we attested the introduction of photoluminescent
rare earth ions to KUCCG(TPE)-Na. Because of the abundant carboxylate groups in KUCCG(TPE)-Na,
it should be able to capture the added metal ions via coordination bonding. To prove this idea,
KUCCG(TPE)-Na was immersed in 50 mM Eu(III) or Tb(III) aqueous solution to replace the metal ion.
Additionally, a mixed metal ion solution of Eu(III) and Tb(III) (1/1, mol) was employed to tune the
emission color. As a result, the obtained polymer gel showed a mixed photoluminescence derived from
TPE moiety and the respective metal ion (Figure 5). The emission maximum of the TPE moiety was
observed at around 480 nm, while that of rare earth ions was 620 nm for Eu(III), and 492 and 546 nm
for Tb(III). This result indicated a balanced energy transfer from the biphenyl moiety to the TPE moiety
and the rare earth ion. Both emission from Eu(III) and Tb(III) were exhibited for KUCCG(TPE)-Eu/Tb.
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Thus, the emission color was readily controlled by the kind of rare earth ion or the composition, as
revealed by the illustration in the CIE diagram in Figure 5b.Polymers 2017, 9, 19  7 of 9 
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