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Toxicogenomic Biomarkers for Liver Toxicity
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Abstract:  Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate
the molecular mechanisms of toxicity.  A number of candidate TGx biomarkers have now been identified and are utilized
for both assessing and predicting toxicities.  Further accumulation of novel TGx biomarkers will lead to more efficient,
appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with
a more profound understanding of the molecular mechanisms of drug-induced toxicity.  In this paper, we overview some
practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis.  Since
clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented
target organ for TGx studies to date, and we therefore focused on information from liver TGx studies.  In this review,
we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could
extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment.   (J Toxicol Pathol 2009; 22: 35–
52)
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Introduction

Although the term “toxicogenomics” (TGx) is
relatively new, this method is now widely utilized by
pharmaceutical scientists to investigate the molecular
mechanisms of toxicity.  Although the importance of
functional genomics has been recognized since the
emergence of microarray technology1,2, more attention has
been  focused  on  i t  s ince  the  US Food  and Drug
Administration (FDA) released a whitepaper3 showing that
the number of new molecular entities has been decreasing
since 2000, but that the costs of pharmaceutical companies
for R&D of drugs have increased dramatically since 1993.
One of the major attritions in the drug development process
lies in unexpected adverse effects elicited in the clinical
phase, and therefore the preclinical toxicological evaluation
and the clinical trial steps are called ‘critical path’ of drug
development in the FDA whitepaper.  One estimation
suggests that a 10% improvement in predicting future
failure in the clinical phase would save 100 million dollars
of R&D cost per drug3, and the whitepaper emphasized the
importance of modernizing toxicological methodologies
by applying cutting-edge techniques such as TGx and other
“-omics” techniques.

Received: 18 November 2008, Accepted: 26 November 2008
Mailing address: Naoki Kiyosawa, Medical Safety Research Labs., 
Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, 
Japan
TEL: 81-538-42-4356  FAX: 81-538-42-4350
E-mail: kiyosawa.naoki.wr@daiichisankyo.co.jp
One of the goals of TGx research is to identify novel
biomarkers for evaluating the efficacy or toxicity in either
clinical or preclinical cases, which would be as useful as
such conventional biomarkers such as the blood enzyme
activity of alanine aminotranferase in evaluating liver injury.
The term ‘biomarker’ is defined as a characteristic that is
objectively measured and evaluated as an indicator of
normal biological process, pathogenic process, or
pharmacologic responses to a therapeutic intervention4.  In
principle, any biological parameters that are objectively
measurable and recordable could be potential biomarkers.
One example of a ‘good biomarker’ is single nucleotide
polymorphisms (SNPs) in human CYP2C9 and Vitamin K
epoxide reductase genes, which are used for optimization of
the dosing level of warfarin, an anticoagulant drug with a
great number of serious adverse effects in the US5.  Such
biomarkers are not only useful for efficient drug risk
management but will also lead to the establishment of
promising markets for pharmaceutical companies.  In TGx
research, the term ‘biomarker’ does not always refer to a
single gene, but may consist of sets of genes whose
expression levels are closely associated with certain
toxicological endpoints.

In the TGx research field, the liver has been the
preferred target organ for the following reasons: i) the
clinical manifestation of hepatotoxicity is one of the major
causes of drug development attrition; ii) the exposure level
of the liver is exceptionally high following drug treatment;
and iii) it is relatively easy to collect liver samples due to its
size and homogeneity.  In this paper, we outline the literature
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resources in regard to candidate TGx biomarkers for liver
toxicity and overview their significance, and advantages and
major obstacles in practical use.

Microarray Technique

Microarray is the most mature functional genomics
technique and is now utilized in various fields, including
pharmacology, toxicology and nutritional science.
Compared with traditional gene expression analysis
techniques such as Northern blotting or RT-PCR, microarray
can measure the expression levels of tens of thousands of
genes simultaneously, and accordingly, the data acquisition
is considerably high-throughput (Table 1).  In a microarray
analysis, target samples (i.e., mRNA, cRNA or cDNA) are
labeled with fluorescent dyes (i.e., Cy3, Cy5, phycoerythrin,
etc.) of either one or two colors.  The microarray probes
consist of either cDNA or oligonucleotide and are hybridized
with labeled target samples which have complementary
nucleotide sequences.

Although microarrays can be manufactured in a lab
using specific instruments, a number of microarray
platforms are now commercially available, including
GeneChip (Affymetrix, Inc.), Illumina (Illumina, Inc.),
Codelink (GE Healthcare) and Agilent oligonucleotide
arrays (Agilent Inc.).  Each microarray platform has its own
advantages and disadvantages.  For example, in the Agilent
2-color (Cy3 and Cy5 dyes) microarray system, the Cy5 dye
is extremely ozone-sensitive, and its signal is rapidly
weakened under a high concentration of ozone6, which
results in extremely poor data quality.  On the other hand, the
Affymetrix GeneChip system requires specific instruments,
and therefore the initial investment is quite high, while the
cost of preparing a cDNA microarray in-house is relatively
low, provided the cDNA clones and spotting instrument are
available.  Organizing and maintaining DNA clones,
however, are tedious and error-prone procedures that can
easily lead to confusion, and the reliability of the obtained
data may sometimes be questionable.  On the other hand,
commercial microarrays usually provide specified kits that

Table 1. Representative Analytical Methods for Gene Expression Studi

Method Sensitivity Specificity Throug

Northern blot

RT-PCR
Real-time PCR

SYBR® Green
TaqMan®

Microarray
cDNA array
Oligonucleotide array
    Expression array
    Exon array

The meanings of the symbols in the table are as follows: , Excellent
contain the entire reagent necessary for all the experimental
processes and, in some cases, are even equipped with
specialized instruments to automate tedious work such as
washing and staining the microarrays after hybridization.
Therefore, commercial microarrays are generally preferred
by pharmaceutical researchers because they regard these
advantages to be more cost-effective in the long term.

Finding Differentially Expressed Genes

Microarray fluorescence is detected with a scanner after
washing the microarray after hybridization with labeled
target samples.  After scanning the microarray fluorescence
signals, the scanned microarray image is subjected to
gridding and assignment of predefined probe information
using image analysis software such as GenePix Pro
(Molecular Devices).  Usually, this step is performed
manually, and it is therefore a tedious procedure.

In the Affymetrix GeneChip system, this process is
highly automated and easy to complete.  After completion of
the gridding, the image data with the fluorescent signals are
converted into numerical data followed by background
subtraction to correct any undesirable bias of the individual
data derived from the experimental conditions, sample,
manufacturing variability or other factors.  A set of probes
comprised of two types of probe per gene are designed in the
GeneChip system, namely the Perfect Match (PM) and
Mismatch (MM) probes (typically 11 MM and 11 PM probes
that are 25-bp nucleotides in length) per gene.  The PM
probe sequence is complimentary to that of the target gene,
while the MM probe sequence contains one mutated
sequence in the middle of the 25 bp sequence, and the MM
probe is used to estimate non-specific bindings to the PM
sequence.  Since multiple probes are designed for one gene,
one needs to evaluate the expression level of the gene by
summarizing multiple probe data sets.  A number of
analytical algorithms have been proposed for this
“summarization” of the probe level data, including MAS5,
dChip, RMA and GCRMA7.  MAS5 is a ‘chip-by-chip’
summarization algorithm, while dChip, RMA and GCRMA

es

hput Notes

Size and alternatively-spliced variants of mRNA detectable
Cross hybridization of the used probe detectable
Need to optimize amplification cycle
Easy to perform
Relatively low cost
Relatively expensive

Moderately expensive
Highly expensive
Relatively high specificity
Detect alternatively-spliced variants

; , Very good; , Good; , Poor.
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are ‘model-based’ or ‘project-based’ summarization
algorithms that require relatively high performance
computers to perform the calculations.  In general, the
project-based summarization algorithm yields better quality
datasets in terms of sensitivity and reproducibility.  On the
other hand, MAS5 calculations are easy to compute, and
there is no need to perform recalculations on whole data sets
when new GeneChip data is added to a project.  Thus, there
is a trade-off in terms of the pros and cons of each method.

After correction of the individual data biases, the
numerical data is subjected to normalization so that one can
perform a comparative analysis among the microarray data
sets.  The easiest normalization is to adjust the global signal
scale of each set of microarray data (global normalization),
usually by setting it to the mean or median of the total signal
data set.  Another method is to use external spikes to get a
standard curve, such as ‘Percellome normalization’8, in order
to quantify the mRNA levels.  This normalization method
has been shown to be effective when the gene expression
changes are extreme, such as in a uterotrophic response
following activation of estrogen receptor or in an in vitro
system using a primary cell culture.

After the normalization, one needs to identify the
differentially expressed genes in the chemical-treated group.
Since microarray analysis measures the expression levels of
a large number of genes simultaneously, a straightforward
pair-wise test, such as a t-test, would yield a considerable
number of false-positives.  (For example, if we set the
significance level as P < 0.01 for Rat 230 2.0 GeneChip data
consisting of > 30,000 probe sets, we may detect more than
300 positives just by chance).  To prevent this multiple
testing problem, P-value correction may be performed using
False Discovery Rate9, or two individual filtering criterions
like fold change and t-value can be used in combination.  A
number of filtering methods are provided in the literature,
such as significance analysis of microarrays (SAM)10, and
there are a great number of sophisticated algorithms
available as library files on the BioConductor project
website (http://www.bioconductor.org/)11 that can be
implemented via the open source statistical software R
(http://www.R-project.org).

Table 2. Representative Multivariate Analysis Methods
Methods Advan

Unsupervised
    Hierarchical clustering

Capture the trend of gen
easilly without losing qu    K-means clustering

    Self-organization map
    Principal component analysis Easy to interpret the res

reduced data dimension
Supervised
    K nearest neighbors (KNN)

The output result is conc    Support vector machine (SVM)
    Prediction analysis of microarray (PAM)
Multivariate Analysis

Since microarray data consist of large amounts of
numerical data, statistical knowledge, computational skills
and infrastructure are required to interpret the results.
Multivariate analysis methods are utilized for both data
mining and pattern recognition (Table 2).  “Unsupervised”
multivariate analysis includes hierarchical clustering12, K-
means clustering12, self-organizing map (SOM)12 and
principal component analysis (PCA)13.  “Supervised”
multivariate analysis, or discriminant analysis, includes
Support Vector Machine (SVM)14, K-Nearest Neighbors
(KNN)15 and Prediction Analysis of Microarray (PAM)16.  In
general, each biomarker gene set requires its own specific
analytical method based on the objective and manner of gene
set identification.

Eisen et al. applied hierarchical clustering to visualize
the trend of gene expression profiles17, and since then the
hierarchical clustering method has been widely preferred by
toxicologists when interpreting microarray data.  In the case
of K-means clustering and SOM, one needs to specify the
number of clusters to be formed before the calculation.  PCA
is utilized to reduce the dimensions of the microarray data
into 2 or 3; this makes it much easier to recognize the gene
expression pattern.

Discriminant analysis, such as SVM, KNN and PAM, is
an application of machine-learning algorithms and is
frequently used for toxicity prediction based on microarray
data.  The sample size and appropriate selection of the
training data set are crucial for establishing reliable
classifiers.  This type of discriminant analysis is also applied
to quality control of microarray data18.

As described above, microarray analysis consists of
multiple steps from in vivo / in vitro studies to microarray
data interpretation (Fig. 1), and each step includes specific
points to be considered in order to avoid misinterpretation of
the obtained results.

Literature Resources for TGx Biomarkers in
Regard to Liver Toxicity

The reports in the literature related to liver toxicity-

tage Disadvantage

e expression profiles
antitative information

The output result is usually inconclusive
and unclear

ult because of highly May lose significant information during
reduction of data dimensions

lusive and clear Inappropriate training data set will generate
a poor-performance discriminator
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relevant gene sets obtained from TGx studies are
summarized in Table 3.  A great number of TGx studies of
the liver have been reported using various animal models,
such as rats, mice, humans, monkeys and canines, and these
studies contain a number of toxicity-relevant gene sets that
could be potential TGx biomarkers for assessing/predicting
liver toxicity.

Hepatotoxicity animal models using prototypical
toxicants such as acetaminophen or carbon tetrachloride
have been widely tested in TGx studies, and a number of
gene sets associated with liver injury have been reported.
Since these gene sets consist of a mixture of primary
responses associated with cell death as well as secondary or
more downstream responses such as inflammation caused by
Kupffer cells or infiltrated lympocytes, one needs to dissect
the stimulated biological pathways carefully to interpret the
biological significance associated with gene expression
changes.

Waring et al. reported that the hepatic gene expression
profiles in rats following treatments with various chemicals
showed clear chemical-specific patterns19.  Based on this
result, one can assume that such chemical-specific changes
in the transcriptome profile would lead to changes in the
proteome profile, the metabolome profile and eventually the
histopathological phenotypes at later time points.  This
concept led toxicologists to expect that one might be able to
utilize microarray data to predict later histopathological
changes that are not detectable at earlier time points.  As

Fig. 1. General flow of a TGx study.  The general flow of a TGx study i
weights, histopathological findings, blood chemistry and toxi
microarray data, are collected.  The genomics data sets are huge a
the genomics data depends on the quality of the database, an
knowledge and skills in biology, toxicology, statistics and com
establish a standard operating procedure (SOP) for the public, inc
analysis to be performed for genomics data, etc.  All the informa
be exchangeable across laboratories.
stated previously, such chemical-specific gene expression
profiles, or ‘chemical fingerprints’, contain mixed molecular
events that result from complicated interactions between
biological pathways, such as xenobiotic metabolism, stress
response,  energy metabolism, protein synthesis  /
degradation, mRNA transcription / degradation, DNA repair
/ replication and cell growth / cell death control.  By
comparison with data for prototypical chemicals whose
molecular mechanisms of toxicity have been well
investigated, one may be able to identify the key gene sets, or
TGx biomarkers whose expression levels are highly
associated with specific toxicological events, by dissecting
the specific molecular pathway from the mixed molecular
events.  These TGx biomarkers can then be utilized for the
evaluation, diagnosis or prediction of toxicity based on their
expression changes.  For example, carcinogenicity tests in
the preclinical stage of drug development require highly
time- and labor-consuming tasks, and thus the identification
of TGx biomarker genes for carcinogenicity prediction
would dramatically reduce R&D time and costs for
pharmaceutical companies.

Utilization of TGx Biomarkers

One of the practical applications of TGx biomarkers is
to prioritize the drug candidates according to their toxicity
profiles based on microarray data.  An example is presented
in Fig. 2 in which six TGx biomarkers for assessing the

s presented.  Conventional toxicologic parameters, such as body / organ
co / pharmacokinetics, and functional genomics information, such as
nd need to be organized into a well-designed database.  Interpretation of
d analytical tools and an experienced researchers’ interdisciplinary
putational sciences.  A number of issues are yet to be determined to

luding the content / format of the final report, recording items, statistical
tion should be appropriately recorded so that the obtained TGx data can
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Table 3. TGx Biomarkers for Liver Toxicity

Focused toxixity
(tissue or cultured cells) Species Reference

Gene expression signature Rat 19 – 32

Drug metabolizing enzymes Rat 33 – 37

Cell injury (multiple mechanisms) Rat 38 – 58
Mouse 48, 59 – 63
Human 39, 64 – 67

Carcinogenicity Rat 68 – 82
Mouse 83 – 92
Human 93, 94

Steatosis / fatty liver Rat 95 – 97
Mouse 98 – 101
Human 102, 103

Oxidative stress Rat 104
Mouse 105 – 108
Human 109

Phospholipidosis Rat 110
Human 111 – 112

Glutathione depletion Rat 113 – 115
Mouse 115
Canine 115

Fibrosis Rat 116 – 122
Mouse 123 – 125
Human 126 – 132

ER stress Rat 133
Mouse 134, 135
Human 136

Mitochondrial function Rat 137
Mouse 138 – 140
Human 137

PPARα-mediated response Rat 76, 141 – 145
Mouse 146 – 148
Canine 144

Estrogen receptor signaling Rat 76, 149 – 151
Mouse 152

AhR signalling Rat 153 – 157
Mouse 156, 158 – 162
Human 163

Immune-related response Rat 164, 165
Mouse 166 – 168
Canine 169

Anemia Rat 170

Transporters Rat, Mouse, 
Human, Monkey, 171
Canine

Baseline gene expression information Rat 172, 173

Abbreviations: ER, endoplasmic reticulum; PPAR, peroxisome
proliferator-activated receptor; Ahr, aryl hydrocarbon receptor.
induction of drug metabolizing enzymes, PPARα activation,
cell proliferation, glutathione depletion, inflammation or
oxidative stress were used to evaluate chemical-induced
toxicities in the rat liver.  The general trend of the gene
expression changes in each biomarker gene set was
estimated using the TGP1 score174.  The TGP1 score profile
for each chemical is visualized by hierarchical clustering in
Fig. 2, which demonstrates that each chemical shows
characteristic changes in their gene expression levels that are
associated with specific toxicity endpoints.  Ideally,
chemicals showing weaker effects in all the toxicity
categories would be promising drug candidates.

In Fig. 3, a model case is presented for identifying a
candidate TGx biomarker gene set associated with
glutathione depletion, which is known to play a crucial role
in acetaminophen (APAP)-type liver injury175.  Male F344
rats were treated with the glutathione depletor L-buthionine
(S, R)-sulfoximine (BSO), and microarray analysis was
conducted on the liver using RG U34A GeneChip.  A total of
69 probe sets were identified with signal levels that were
inversely correlated with the hepatic glutathione content
(Fig. 3A).  The validity of the gene set was tested using time-
course microarray data for rat livers treated with APAP.  As
demonstrated in Fig. 3B, 69 probe sets clearly classified the
animal groups following APAP treatment and showed that
the 24 h APAP group was clustered together with the BSO-
treated rats113; this indicates that the gene expression profiles
of the APAP-treated (24 h) and BSO-treated rats are very
similar and therefore that the 69 gene sets used are associated
with glutathione depletion.  In another experiment, more
detailed TGx data were collected using another the
glutathione depleting agent phorone114, and the results of that
experiment showed that the ‘glutathione depletion-
responsive genes’ maintain a high expression level even
after the hepatic glutathione content recovered from acute
glutathione depletion immediately after the phorone
treatment.  Accordingly, it may be better to call these genes
‘glutathione homeostasis-associated genes’ rather than
‘glutathione depletion-responsive genes’ in order to prevent
misinterpretation of the microarray results.

Although hierarchical clustering (Fig. 2) and PCA (Fig.
3) are easy to implement, the obtained results are sometimes
not conclusive, and the interpretation of the results requires a
certain level of proficiency.  On the other hand, discriminant
analysis, such as SVM, generates conclusive results, such as
‘toxic’ or ‘non-toxic’.  The general procedure for SVM
analysis is presented in Fig. 4.  The first step is to prepare
training data sets, such as microarray data for “carcinogenic
compounds (positive)” and “non-carcinogenic compounds
(negative)”.  Next, one develops a ‘classifier’ with these
training data sets using the machine learning algorithm of
SVM.  Once the classifier is developed, a positive / negative
outcome can be predicted for a test compound with a known
toxicological profile.  Although the results produced by a
discriminant analysis are conclusive, they are not reliable if
the training sets are not selected properly.  Furthermore,
even when the cross-validation of the established classifier
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Fig. 2. Characterization of hepatic toxicity profile.  An example of characterizing the hepatic toxicity profile is presented.  In this figure, six TGx
biomarker gene sets associated with a) phase I drug metabolizing enzyme (DME), b) PPARα-regulated genes, c) cell proliferation, d)
glutathione depletion, e) inflammation and f) oxidative stress are used to assess toxicity profiles based on the microarray data for rat livers
treated with one of 90 chemicals.  The microarray data was retrieved from TG-GATEs, a TGx database developed by the Toxicogenomics
Project in Japan (TGP), after obtaining permission.  The expression changes for each biomarker set were summarized and estimated using
the TGP1 score174, and the TGP1 score was subjected to hierarchical clustering.  The red and blue colors indicate that the genes included
in the TGx biomarker were generally up- or down-regulated, respectively, and the black color indicates that the expression level of the
TGx biomarker gene sets did not show characteristic changes as a whole.  Ideally, chemicals that do not affect the expression levels of
genes included in the TGx biomarker would be desirable drug candidates.  This strategy is applied to rank the chemicals based on the
toxicity profiling.
Fig. 3. Identification and application of TGx biomarkers for assessing glutathione depletion.  A model case for identifying the candidate TGx
biomarkers associated with glutathione depletion-type (acetaminophen-type) liver injury is presented.  Rats were treated with a
glutathione depletor L-buthionine (S, R)-sulfoximine (BSO), and GeneChip analysis was conducted on the liver.  (A) A total of 69 probe
sets were identified whose signal values were inversely correlated with the hepatic glutathione content.  (B) The validity of the 69 probe
sets as candidate TGx biomarkers for evaluation of glutathione depletion was evaluated by PCA using time-course microarray data for rat
livers treated with acetaminophen.  The 69 probe sets clearly classified the animal groups following acetaminophen treatment, and the
acetaminophen group was clustered for 24 h together with the BSO-treated rats, suggesting that glutathione homeostasis was highly
affected at this time point.  Reprinted from Reference113, with permission from Elsevier.
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certifies good performance for the training data sets used, it
may not work if the test compound induces a toxicity whose
mechanism is rare or new and has not been considered in the
training data sets.  For all these reasons, the classifiers
should be continuously updated to improve the classification
performance.

Microarray Database for TGx Research

To interpret the microarray data appropriately, it is
desirable to perform comparative analysis with data
obtained from prototypical toxicants.  Developing a large-
scale  reference database,  however,  is  not easy to
accomplish, and therefore public databases, such as Gene
Expression Ominibus (GEO)176, ArrayExpress177, Chemical
Effects in Biological Systems (CEBS)178, Comparative
Toxicogenomics Database (CTD)179 or EDGE180, can be
used to obtain reference microarray data.  In addition to
public microarray databases, large-scale TGx databases
have been developed by collaborative consortiums such as
t h e  T o x i c o g e n o m i c s  P r o j e c t  i n  J a p a n  ( h t t p : / /
wwwtgp.nibio.go.jp/index.html) and the InnoMed PredTox
Consortium (http://www.innomed-predtox.com/), both of
which contain microarray datasets for prototypical
chemicals as well as proprietary drugs using both in vivo and
in vitro systems.  Animal and study information as well as
microarray data can be retrieved from such databases
provided that the TGx datasets were submitted with
MIAME-compliant information, a guideline proposed by
the Microarray and the Gene Expression Data (MGED)
Society181 to facilitate microarray data sharing.  Recently, a
number of major scientific journals have begun to require
invest igators  to deposi t  MIAME-compliant s tudy
information as well as microarray datasets at the time of or
prior to the submission of manuscripts to their respective
journals.  This trend will continue because one cannot
interpret microarray data appropriately without detailed
study information.

Consistency of Microarray Data

C o n c e r n s  h a v e  b ee n  r a i s e d  r e g a r d i n g  t h e
reproducibility of microarray datasets across laboratories
and microarray platforms.  Some papers have reported about
the inconsistency of interlaboratory / inter-platform
microarray results182,183, while others have reported good
concordance among laboratories184–186 or inconclusive
results for this48,187.  In addition to such laboratory-specific
biases, a number of factors cause fluctuations in baseline
animal data, such as gender, organ section, strain and fasting
state before chemical dosing173.  Furthermore, the vehicle
substance used for animal dosing affects the baseline gene
expression profile172, and therefore it is not appropriate to
analyze the microarray data sets  directly without
consideration of the animal study conditions.  In this sense,
even the MIAME guidelines may not be sufficient for
standardizing the TGx study conditions, and additional
practical standards may be required to overcome this
problem188.

Even within the same GeneChip platform, the baseline
microarray data fluctuates among laboratories.  This
inconsistency of microarray data is evident among the
different generations of rat GeneChips, namely the RG
U34A and RAE 230A arrays (Fig. 5A).  Practically, we may
avoid such inconsistency between two sets of array data by
adjusting the median of the signal value between the two
datasets (Fig. 5B)189, and ‘legacy TGx datasets’ can thereby
be used together with new datasets.

The MicroArray Quality Control (MAQC) Consortium
performed a detailed data comparison in regard to inter /
intra-platform microarrays across several laboratories and
reported that microarray data shows generally high
interlaboratory and inter-platform compatibility if fold-
change ranking plus a less stringent statistical cutoff (such as
a t-test) are used to filter the criteria, provided that the
expression levels of the filtered genes are relatively high190.
However, other reports have pointed out that the analytical
procedure in the MAQC report was inadequate, and
therefore the conclusion drawn is questionable191.  In
general, however, the reproducibility of interlaboratory
microarray data tends to be high when the genes are filtered
by fold-change values192 rather than by stringent P-values in
the statistical analysis.

Species Difference Issues

Because experimental animals are used in preclinical
toxicology studies, species differences are always major
concerns.  A number of papers have reported significant
species-specific responses against chemical treatments,
even among the rodents.  For instance, 1,4-bis-[2-(3,5,-
dichloropyridyloxy)] benzene (TCPOBOP) acts as a potent
phenobarbital-type enzyme inducer in mouse liver but not in
the rat or human liver.  This species-specific response is
associated with the substitution of Thr350 in the mouse
constitutive androstane receptor (CAR), a nuclear receptor
activated by TCPOBOP, with Met in rat and human
CAR193–195.  On the other hand, the phenobarbital-type
enzyme inducer 2,4,6-triphenyldioxane-1,3 induces hepatic
CYP2B in rats but not in mice196.  Since CAR regulates
hepatic drug metabolism enzymes and transporters197, such
differential regulation may affect these dramatic species
differences in drug metabolism and disposition.

In the case of the estrogenic environmental contaminant
o,p’-DDT, hepatic Cyp17a1 is preferentially upregulated in
mice198 but not in rats199, even though the majority of
orthologous genes exhibit similar gene expression profiles in
mice and rats following o,p’-DDT treatment (Fig. 6).  Since
CYP17A1 is one of the key steroidogenic enzymes, the
mouse-specific upregulation of Cyp17a1  may alter
endocrine sex hormone homeostasis.  As expected, the blood
level of DHEA-S, a precursor of sex hormones produced by
CYP17A1, is elevated only in mice198, and this may lead to
endocrine perturbation in addition to the direct estrogenic
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Fig. 4. Toxicity prediction by Support Vector Machine algorithm.
Support Vector Machine is a popular discriminant analysis
algorithm.  The first step in this algorithm is to prepare a
training data set, such as microarray data for a “carcinogenic
compound (positive)” and “non-carcinogenic compound
(negative)”.  Next, a classifier is developed with the training
data using the machine learning algorithm.  By using the
developed classifier, one can predict a positive / negative
outcome (carcinogenic / non-carcinogenic outcome in the
figure) for a test compound with an unknown toxicological
profile.  The accuracy of the prediction by the classifier can be
estimated by cross-validation using the training data set.  Gray
and green indicate ‘Positive’ and ‘Negative’ classification
areas, respectively.  Red spots indicate the support vectors
used for the classification of the test data set.
Fig. 5. Overcoming the discrepancy between old and new GeneChip data.  Even within the same GeneChip platform, the inconsistency in
microarray data is evident among the different generations of rat GeneChips, namely RG U34A and RAE 230A arrays, and this hinders
utilization of ‘legacy TGx knowledge’ obtained from older microarrays.  (A) The median signal values of the vehicle-treated rats were
adjusted between the RG U34A and RAE 230A GeneChip data.  The results for 4 representative genes are presented.  (B) Principal
component analysis using baseline-corrected RG U34A and RAE 230A GeneChip data was performed using the glutathione depletion-
associated genes presented in Fig. 3.  Adjustment of the baseline signal levels considerably improved the data compatibility between the
RG U34A and RAE 230A GeneChip data; the spots for each treated chemical moved closer together (cf. inside area of the dashed circles).
Reprinted from Reference189, with permission from Elsevier.
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activity of o,p’-DDT.  Furthermore, the hepatic CAR mRNA
level is decreased in mice but is increased in rats199, and this
could result in differential xenobiotic metabolism and
disposition in the liver, considering CAR’s role in regulating
cassettes of hepatic drug metabolizing enzymes.  Thus,
marked species differences in hepatic response against
chemical treatment have been observed even among rodents,
and these phenomena confound the extrapolation of toxicity
data  f rom animals  to  humans.   Nevertheless ,  the
identification of potential modes of action as well as species-
specific responses may assist in the development or selection
of more appropriate models for assessing the toxicity of
xenobiotics.

Future Perspectives

As the number of TGx biomarkers rapidly increases,
some of them will be promising biomarkers that will lead to
better understanding of the molecular mechanisms and
prediction of toxicity in humans based on preclinical data.
However, many of the candidate TGx biomarkers are
applicable only to animals, and their feasibility as clinical
biomarkers remains unclear.  Idiosyncratic drug-induced
hepatotoxicity200, which is not detectable in conventional
preclinical toxicity studies, is one of the major causes of
failure in drug development after the onset of clinical trials,
and therefore novel TGx biomarkers which can detect signs
of idiosyncratic hepatotoxicity are eagerly awaited.

Recently, seven new renal toxicity biomarkers,

Fig. 6. Species-specific regulation of the hepatic Cyp17a1 gene elicited b
using differentially expressed orthologous genes in the liver elici
liver198 and those of the o,p’-DDT-treated rat liver199 were co
expression (fold change) and significance (p1[t] value by em
comparison are presented as a scatter plot.  Correlations of gene e
the orthologous genes are similar and would fall within the upper
right quadrants, indicating that the temporal gene expression chan
poor correlations between the temporal p1(t) values and gene exp
one of the poor-correlation genes, fell into this quadrant, suggesti
expression profiles.  (B) The hepatic Cyp17a1 gene expression 
mice by QRT-PCR.  Significant species-specific regulation of h
followed by pairwise comparisons using Tukey’s test.
including Kim-1, β2-microglobulin and Cystatin C, were
officially qualified for particular uses in regulatory decision-
making by the US FDA and European Medicines Agency
(EMEA)201.  These biomarkers were submitted by the
Predictive Safety Testing Consortium (PSTC) led by the
non-profit Critical Path Institute (C-Path; http://www.c-
path.org/).  In addition to these novel renal biomarkers, TGx
biomarkers for hepatotoxicity wil l  need a similar
qualification (or validation) process through collaborative
research like that of C-Path.

Identification of TGx biomarkers may lead to the
discovery of other biomarkers (genes,  proteins or
metabolites), the detection of which is easier than measuring
hepatic mRNA levels.  For example, renal Kim-1 gene
expression is upregulated in response to renal injury202, and
therefore the Kim-1 mRNA level can be a renal toxicity
biomarker.  However, Kim-1 protein is also detectable in
urine203, and thus the urine Kim-1 protein is a much more
convenient biomarker to measure compared with the renal
Kim-1 mRNA level.  As well, new surrogate hepatotoxicity
biomarkers, which are more convenient to detect than
hepatic mRNA, could be discovered through a profound
understanding of the molecular mechanisms of toxicity by
utilizing TGx mRNA biomarkers.  ‘Ideal’ TGx biomarkers
for hepatotoxicity will be those that are sensitive, specific,
predictive and, above all, ‘extrapolatable’ to humans, and it
is the responsibility of pharmaceutical toxicologists to
discover/establish novel biomarkers to assist in the
improvement of risk assessment in humans.

y o,p’-DDT.  Correlation analysis between mice and rats was performed
ted by o,p’-DDT.  The temporal profiles of the o,p’-DDT-treated mouse
mpared by determining the Pearson’s correlation of the temporal gene
pirical Bayesian analysis) between orthologs, and the results of this
xpression and significance approaching 1.0 indicate that the behaviors of
 right quadrant.  (A) Orthologs tended to localize in the upper- or lower-
ges for o,p’-DDT-treated mouse and rat liver are comparable.  However,
ression fold changes would fall within the lower left quadrant.  Cyp17a1,
ng that significant differences exist between the rat and mouse othologue
levels following o,p’-DDT treatment were compared between rats and
epatic CYP17a1 gene was observed. * P < 0.05 by a two-way ANOVA
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