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Abstract

Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the

role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating

endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is

unresolved. We hypothesized that endothelial progenitor cell populations would be decreased

in COPD and emphysema and that circulating endothelial cells would be increased. Associa-

tions with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis

COPD Study recruited smokers with COPD and controls age 50–79 years without clinical car-

diovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR

+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were mea-

sured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema

was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expi-

ratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor

cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in

COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with

emphysema extent. Both endothelial progenitor cell populations were associated inversely

with extent of panlobular emphysema and positively with diffusing capacity. Circulating endo-

thelial cells were not significantly altered in COPD but were inversely associated with pulmo-

nary microvascular blood flow on MRI. There was no consistent association of endothelial

progenitor cells or circulating endothelial cells with measures of gas trapping. These data
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provide evidence that endothelial repair is impaired in COPD and suggest that this pathological

process is specific to emphysema.

Introduction

Chronic obstructive pulmonary disease (COPD), the third leading cause of death in the US

[1], is defined by airflow limitation that is not fully reversible[2], and is comprised of either

chronic bronchitis, emphysema or both. COPD overlaps incompletely with pulmonary

emphysema, which is characterized by destruction of the alveolar walls [3].

Endothelial dysfunction has been noted in COPD and particularly emphysema in various

contexts [4–8]. Endothelial cells lining the pulmonary microvasculature, in response to

injury, are hypothesized to be lost into the circulation due to a “sloughing off” process that

releases endothelial microparticles (EMPs) and circulating endothelial cells (CEC). EMPs

are reported to be elevated in COPD and emphysema[7,9,10]. No studies have reported on

circulating levels of CECs in COPD, of which we are aware, but increased CECs have been

observed in diseases of the vascular circulation [11–18]. This process causes the release of a

variety of angiogenic factors, most notably, vascular endothelial growth factor (VEGF),

which recruits endothelial progenitor cells (EPCs) to the site, presumably to repair the vas-

cular damage [11,19].

The discovery by Asahara et al[20] that EPCs circulate in blood and are capable of

becoming mature endothelial cells in culture spurred interest in the role of these circulating

cells in disease, particularly cancer [19], cardiovascular disease [20–26] and lung disease

[27–31]. Most [6,27,30,32] but not all [33,34] studies in COPD show decreased EPCs com-

pared to controls, although studies to date have been relatively small and the results varied

by the markers used to identify EPC populations [35]. Whether the loss of EPCs is due to

loss of bone marrow cells, the source of EPCs or due to recruitment of EPCs from the circu-

lation remains unclear.

Furthermore, COPD is a heterogeneous disease and studies on EPCs have not, to date, exam-

ined COPD subphenotypes with the exception of one study that showed an association of CD45+

CD34+VEGFR2+ cells but not CD45dimCD34+ cells with quantitatively defined emphysema[34].

The largely absent examination of EPCs and emphysema is notable, as emphysema, and particu-

larly panlobular emphysema, is classically regarded to have a vascular component [36,37]. Con-

sistent with this thinking, we previously demonstrated that EMPs were elevated in emphysema

but were not related to measures of gas trapping suggestive of small airways disease[7].

Much of the work has been complicated by the fact that there is no consensus on the surface

markers required to be considered an endothelial progenitor cell, a hematopoietic progenitor

cell or a circulating endothelial cell. For EPCs we chose CD34, a general stem cell marker;

KDR, also known as VEGFR2, an endothelial cell marker; and CD133, a bone marrow derived

stem cell marker [38,39]. For CECs we chose CD45dim to rule out leukocytes, CD146, an

endothelial cell marker, CD31, an endothelial cell marker and CD133, to rule out progenitor

cells [18]. It is not our goal here to determine the best markers for endothelial progenitor cells

or circulating endothelial cells, but rather to define the role of precisely determined cells in a

well-characterized sample with varying severity of COPD and matched healthy controls. This

work adds to our current knowledge by increasing sample size compared to previous studies,

looking at not only COPD but also emphysema and its subtypes, and evaluating two types of

endothelial progenitor cells and circulating endothelial cells in the same study.
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Materials and methods

Study sample

The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study is a multicenter case-control

study nested within two prospective cohort studies, MESA [40] and the Emphysema and Can-

cer Action Project (EMCAP) [4], in addition to a small number from the community. We

selected all eligible participants in the MESA Lung Study [41] and oversampled participants

with COPD or emphysema from the remainder of MESA and EMCAP, collected from May

2009 through July 2011. Participants were age 50–79 years with greater than 10 pack-year

smoking histories and free of clinical cardiovascular disease, stage IIIb-V kidney disease,

asthma prior to age 45, other lung disease, prior lung resection and cancer.

Ethics statement

Protocols were approved by the institutional review boards of the participating institutions

(Columbia University Medical Center, University of Vermont, Johns Hopkins University,

Northwestern Medical Center, University of California at Los Angeles, University of Washing-

ton, University of Iowa and Hannover University) and the National Heart, Lung and Blood

Institute (NHLBI). Written informed consent was obtained from all participants.

Flow cytometry methods: EPCs and CECs

Freshly drawn whole blood was drawn into heparinized tubes and shipped overnight in tem-

perature controlled packages, as detailed in S1 Supporting Information. Peripheral blood

mononuclear cells were prepared and labeled following standardized protocols (see online

supplement). We defined EPCs as cells expressing CD34, a stem cell marker, and KDR (also

known as VEGFR2), an endothelial cell marker; we further defined less differentiated EPCs (a

subset of EPCs) by the additional presence of CD133, a bone marrow derived stem cell marker

[42,43]. For CECs, we chose CD45dim to rule out leukocytes, CD146 and CD31 as endothelial

cell markers and CD133 to rule out progenitor cells. Samples were fixed in 1% paraformalde-

hyde and kept refrigerated in the dark until analyzed by flow cytometry (BD LSR II). Endothe-

lial populations were expressed as percent of PBMCs as gated using forward and side scatter

and a gating strategy is shown in the online supplement (S3 Fig, S4 Fig). Biovariability and

delayed processing impacts were analyzed (S1 Supporting Information, S1 Fig, S2 Fig) and are

acceptable for epidemiology studies.

Spirometry

Spirometry was conducted on a dry-rolling-sealed spirometer (Occupational Marketing, Inc.,

Houston, TX) in accordance with American Thoracic Society/European Respiratory Society

(ATS/ERS) guidelines[44] following the MESA Lung protocol[45].

COPD was defined following the ATS/ERS and GOLD definitions as a post-bronchodilator

ratio of the FEV1 to the forced vital capacity (FVC) < 0.70 [2,3], and COPD severity was classi-

fied as: mild, FEV1� 80% predicted; moderate, 50–80% predicted; and severe, FEV1 < 50%

predicted [3,20].

Emphysema on CT

All participants underwent full-lung CTs on 64-slice helical scanners following the MESA--

Lung/SPIROMICS protocol (0.984 pitch, 0.5 seconds, 120 kVp) [46]. The milliamperes (mA)

were based on body mass index (BMI): 145 for< 20 kg/m2, 180 for 20–30 kg/m2 and 270

for> 30 kg/m2 for participants recruited from MESA and were set at 200 for others.

The MESA COPD study
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The extents of emphysema and emphysema subtypes were assessed qualitatively by experi-

enced chest radiologists following a highly standardized protocol without access to other study

information, as previously described [47]. The inter-rater intraclass correlation coefficient of

extent of emphysema and emphysema subtypes were 0.77 and 0.42–0.93, respectively [47].

The percent of emphysema-like lung (percent emphysema) was defined as the percent of

lung voxels below -950 HU at total lung capacity and gas trapping on CT was defined as voxels

below -856 HU on expiratory scans in a subset, both assessed using Apollo 1.2 software (Vida

Diagnostics)[46].

Magnetic resonance imaging

Pulmonary microvascular blood flow was assessed on MRI at one site using a modified version

of the cardiac MRI protocol of the fifth examination of MESA on a 1.5 Tesla whole-body MR

system (Signa LX, GE Healthcare) with phased-array coil for signal reception using a coronal

Time Resolved Imaging of Contrast Kinetics (TRICKS) sequence and a contrast bolus of 0.1

mmol/kg bodyweight gadolinium diethylenetriaminepentaacetic acid (Magnevist, Berlex,

Wayne, NJ) at an injection rate of 5 mL/s. Mean values of pulmonary microvascular blood

flow and volume were assessed on a coronal slice at the level of the trachea in the peripheral 2

cm of the lung, as previously described[48].

DLco and plethysmography

DLco and plethysmography were performed in participants at the same site. Single-breath

DLco was measured with a Sensormedics Autobox 220 Series instrument (Viasys Healthcare,

Yorba Linda, CA) following ATS/ERS guidelines[49]. Body plethysmography was performed

using a V6200 Series Autobox (Sensormedics, Yorba Linda, CA) following ATS/ERS recom-

mendations [50].

Covariates

Age, gender, race/ethnicity, educational attainment, smoking status, pack-years, and medical

history were self-reported. Medication use was assessed by medication inventory.[51] Height,

weight, blood pressure, oxygen saturation, glucose, total cholesterol, high-density lipoprotein

(HDL) levels and complete blood counts were measured using standardized approaches.

Smoking status was confirmed by cotinine.

Statistical analysis

EPCs and CECs displayed skewed distributions and were therefore log-transformed. The

association between each of the cellular measures and COPD status and severity was tested

in linear regression models in which categories of COPD status and severity were treated as

independent variables and cellular populations were treated as the dependent variables. A

test of trend across categories of COPD severity was performed, in addition to pairwise

comparisons.

Linear regression models were then used to adjust for potential confounders, which were

selected based on biologic plausibility and correlations with covariates. The base model was

adjusted for age, gender, race/ethnicity and cohort of selection. We then additionally adjusted

for smoking status and pack-years, then additional potential confounders of educational

attainment, diabetes, hypertension, oxygen saturation, sleep apnea, height, BMI, as they are

known confounders for COPD, and statin use, HDL, and white blood cell (WBC) count, as

statins have been implicated in endothelial progenitor cell mobilization [52–54], HDL may

The MESA COPD study
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affect endothelial health and is related to percent emphysema [55], and WBCs to account for

unrelated inflammatory white cell interference. Models for the qualitatively measured percent

emphysema were additionally adjusted for mA. Models for pulmonary perfusion were addi-

tionally adjusted for cardiac output.

The associations of cellular measures with emphysema extent and other continuous out-

comes were assessed using linear regression. Because the study recruited based upon COPD

status, the assumption underlying linear regression of independent observations may not hold.

Analyses of continuous outcomes were therefore weighted according to cohort-specific proba-

bilities of selection and enrollment, with cases recruited from the community assigned the

same weights as those from EMCAP.

The p-values were two-tailed with statistical significance defined as p<0.05. Analyses were

performed in SAS 9.2 (Cary, NC) and R version 2.14.1 (Vienna, Austria).

Results

The flow diagram for the participants with spirometry, CT and endothelial cell populations is

shown in Fig 1. The 257 participants had a mean age of 68.3 +/- 6.9, 28.0% were current smok-

ers, and the race/ethnic distribution was 51.3% white, 36.9% African-American, 14.8% His-

panic and 7.0% Chinese.

Table 1 shows the clinical characteristics of the study sample stratified by COPD severity.

Participants with severe COPD were more likely to be male, white and have greater packyears

of smoking.

EPCs, CECs and COPD severity

The CD34+KDR+ EPC population showed a significant decrease with increasing COPD sever-

ity in minimally adjusted (p = 0.03 for trend), smoking adjusted (p = 0.01 for trend) and fully

Fig 1. Flowchart of study participants. COPD = chronic obstructive pulmonary disease; CT = computed

tomography; EMP = endothelial microparticle; MESA = Multi-Ethnic Study of Atherosclerosis.

https://doi.org/10.1371/journal.pone.0173446.g001
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adjusted (p = 0.02 for trend) models (Table 2). Compared to controls, CD34+KDR+ cells were

significantly lower in moderate and severe COPD. For CD34+KDR+CD133+ cells, only severe

cases were significantly different from controls. There was no evidence that CECs were increased

across categories of COPD severity (Table 2).

Table 1. Clinical characteristics of participants in the MESA COPD Study with measures of endothelial progenitor cells, stratified by COPD

severity.

COPD

Controls Mild Moderate Severe/Very Severe

n = 141 n = 49 n = 54 n = 13

Age, mean (SD), years 69.08 (6.49) 68.78 (7.32) 68.33 (7.62) 67.85 (6.89)

Sex, male, No. (%) 77 (54.61) 36 (73.47) 32 (59.26) 9 (69.23)

Race/ethnicity

White, No. (%) 62 (43.97) 31 (63.27) 30 (55.56) 9 (69.23)

African American, No. (%) 36 (25.53) 12 (24.49) 17 (12.96) 4 (30.77)

Other, No. (%) 43 (30.5) 6 (12.25) 7 (12.96) 0 (0.0)

Educational Attainment

High School Degree or Less, No. (%) 37 (26.24) 11 (22.45) 13 (24.07) 2 (15.38)

Some College but no 4yr degree, No. (%) 44 (31.21) 12 (24.49) 10 (18.52) 4 (30.77)

College Degree or higher, No. (%) 60 (42.55) 26 (53.06) 31 (57.41) 7 (43.85)

Height, mean (SD), cm 166.9 (9.41) 171.6 (8.83) 170.10 (9.04) 169.38 (10.24)

Weight, mean (SD). kg 80.71 (18.90) 79.62 (16.41) 79.39 (20.70) 78.82 (18.58)

Body Mass Index, mean (SD), kg/m2 28.86 (5.86) 26.89 (4.25) 27.18 (5.81) 27.35 (5.35)

Cigarette Smoking Status

Former, No. (%) 109 (77.30) 35 (71.43) 31 (57.41) 10 (76.92)

Current, No. (%) 32 (22.70) 14 (28.57) 23 (42.59) 3 (23.08)

Pack-years of smoking, median (IQR) 28.5 (18.0, 40.5) 33.2 (25.0, 58.0) 39.8 (25.5, 54.7) 40.0 (25.0,70.7)

LDL, mean (SD), mg/dL 111.07 (31.93) 108.35 (31.75) 97.04 (29.85) 106.38 (30.15)

HDL, mean (SD), mg/dL 56.06 (18.21) 57.98 (15.88) 59.02 (20.07) 55.54 (15.45)

Triglycerides, mean (SD), mg/dL 111.63 (52.56) 104.06 (15.90) 110.46 (51.33) 125.31 (67.15)

Cholesterol, mean (SD), mg/dL 189.48 (39.56) 187.08 (36.14) 178.11 (34.07) 186.85 (41.22)

Systolic Blood Pressure, mean (SD), mmHg 122.16 (19.65) 122.59 (15.58) 124.61 (15.29) 128.12 (12.31)

Diastolic Blood Pressure, mean (SD), mmHg 69.28 (9.82) 71.44 (9.73) 72.27 (9.26) 75.96 (9.95)

Hypertension, No. (%) 61 (43.26) 22 (44.90) 25 (46.30) 5 (38.46)

Fasting Glucose, median (IQR), mg/dL 97.0 (91.0,106.0) 98.0 (88.0, 108.0) 100.0 (95.0,109.0) 100.0 (92.0,106.0)

Diabetes Mellitus, No. (%) 23 (16.31) 5 (10.20) 9 (16.67) 3 (23.08)

Statin, No. (%) 50 (35.46) 22 (44.90) 26 (48.15) 4 (30.77)

DLco VA % predicted, mean (SD), n = 118 79.86 (13.14) 70.84 (14.92) 71.33 (19.64) 63.68 (16.74)

RV % predicted, mean (SD), n = 118 68.75 (18.63) 82.94 (18.59) 94.04 (25.57) 138.09 (32.79)

TLC % predicted, mean (SD), n = 118 88.82 (12.48) 99.94 (11.64) 92.55 (12.21) 101.96 (11.06)

RV/TLC ratio, mean (SD), n = 118 0.31 (0.07) 0.31 (0.06) 0.39 (0.08) 0.50 (0.08)

Percent Emphysema-910, median (IQR) 14.38 (6.87, 25.50) 25.96 (15.47,35.39) 21.64 (11.52,33.81) 36.82 (32.99,51.48)

Oxygenation Saturation, mean (SD), % 97.29 (1.57) 96.78 (1.87) 96.96 (1.75) 95.75 (2.12)

Home Oxygen Therapy, No. (%) 1 (0.71) 0 (0.0) 1 (1.85) 5 (68.46)

Sleep Apnea, self-reported, No. (%) 10 (7.09) 3 (6.12) 6 (11.11) 3 (23.08)

Cells, median (IQR)

CD34+KDR+ (%PBMCs [x10-3]) 111 (48, 266) 74 (43, 231) 90 (40, 148) 38 (33,94)

CD34+KDR+CD133+ (%PBMCs [x10-3]) 26 (11,55) 18 (8,36) 22 (10,48) 14 (9,28)

CD45dimCD31+CD146+CD133- (%PBMCs) 0.8 (0.3, 2.0) 0.9 (0.5, 2.0) 0.7 (0.4, 1.4) 0.7 (0.3. 1.0)

https://doi.org/10.1371/journal.pone.0173446.t001
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EPCs, CECs and Emphysema

Whereas there was little-to-no evidence that CD34+KDR+ EPCs were reduced with greater

extent of emphysema, CD34+KDR+CD133+ EPCs were significantly lower with total emphy-

sema (Table 3).

Evaluation by emphysema subtypes demonstrated that CD34+KDR+ and particularly CD34+

KDR+CD133+ EPCs were significantly decreased with increasing extent of panlobular emphysema

(Table 3). CD34+KDR+CD133+ EPCs only were (weakly) associated with centrilobular emphy-

sema and there was no evidence for associations with paraseptal emphysema. Fig 2 illustrates the

association of CD34+KDR+ and CD34+KDR+CD133+ populations with major emphysema sub-

types. CEC cells showed no association with any qualitative emphysema measure (Table 3). There

was no evidence for an association of either EPC population or CECs with percent emphysema

when assessed qualitatively (adjusted P = 0.24, P = 0.92 and P = 0.39, respectively).

Diffusing capacity and pulmonary microvascular perfusion

Lower levels of CD34+KDR+ and CD34+KDR+CD133+ EPCs were significantly associated

with lower diffusion capacity and lower diffusing capacity corrected for alveolar volume in fully

adjusted models (S1 Table). CECs were positively associated with diffusion capacity in the fully

adjusted model but not in minimally adjusted models or when corrected for alveolar volume.

There were no statistically significant associations between EPCs and pulmonary microvas-

cular blood flow on MRI in fully adjusted models (Online Supplement Table 1). Higher levels

of CECs were significantly associated with reduced pulmonary microvascular blood volume in

both the minimally and fully adjusted models.

Gas trapping

None of the endothelial cell populations were associated with increased residual volume (RV)

or RV/total lung capacity on plethysmography. Gas trapping on CT was associated with a

Table 2. Mean difference in endothelial progenitor cells and circulating endothelial cells by COPD severity.

Controls Mild Moderate Severe P-trend

n = 141 n = 49 n = 54 n = 13

CD34+KDR+ (as % PBMCs [x10-3])

Model 1,† log mean difference Reference -0.36 -0.56* -1.36* 0.03

Model 2,‡ log mean difference Reference -0.38 -0.60* -1.51* 0.01

Model 3,§ log mean difference Reference -0.43 -0.62* -1.50* 0.02

CD34+KDR+CD133+ (as % PBMCs [x10-3])

Model 1,† log mean difference Reference -0.20 -0.13 -0.87* 0.05

Model 2,‡ log mean difference Reference -0.20 -0.11 -0.90 0.04

Model 3,§ log mean difference Reference -0.26 -0.18 -0.88* 0.07

CD45dimCD31+CD146+CD133- (as % PBMCs)

Model 1,† log mean difference Reference 0.03 -0.27 -0.48 0.29

Model 2,‡ log mean difference Reference -0.03 -0.27 -0.53 0.90

Model 3,§ log mean difference Reference -0.06 -0.16 -0.28 0.61

* P-value < 0.05

† Model 1 adjusted for age, gender, race/ethnicity and cohort.

‡ Model 2 adjusted for variables in model 1 in addition to smoking status, and pack-years.

§ Model 3 adjusted for variables in model 2 in addition to educational attainment, body mass index, height, diabetes mellitus, hypertension, oxygen

saturation, white blood cell count, sleep apnea, HDL, statin use and high mAs.

https://doi.org/10.1371/journal.pone.0173446.t002
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small but significant decrease in the CD34+KDR+ endothelial progenitor cells but otherwise

associations were non-significant (S2 Table).

Discussion

EPC populations were reduced in COPD, with CD34+KDR+ EPCs in particular being lower

in both moderate and severe COPD compared to controls. CD34+KDR+CD133+ EPCs were

preferentially lower with greater emphysema on CT and both EPC populations were lower

with greater panlobular emphysema and reduced diffusing capacity. CECs were inversely

related to pulmonary microvascular blood flow. In contrast, there was little evidence to sup-

port a definitive role for endothelial cell populations and measures of gas trapping. These

apparent discrepancies in gas trapping results with respect to cellular measures may be

Table 3. Mean differences in endothelial progenitor cells and circulating endothelial cells according to the extent of emphysema and emphysema

subtypes on radiologist interpretation.

Total Emphysema

(per log unit increase)

Centrilobular

Emphysema (per log

unit increase)

Panlobular

Emphysema (per log

unit increase)

Paraseptal

Emphysema (per log

unit increase)
n = 243 p-

value

p-

value

p-

value

p-

value

CD34+KDR+ (as % PBMCs [x10-3])

Model 1† -0.05 0.79 0.03 0.85 -0.39 0.03 0.02 0.94

log mean

difference

(-0.27, 0.18) (-0.26, 0.31) (-0.74, -0.04) (-034, 0.37)

Model 2‡ -0.10 0.36 -0.05 0.36 -0.42 0.02 -0.03 0.88

log mean

difference

(-0.32, 0.12) (-0.32, 0.22) (-0.77, -0.06) (-0.39, 0.33)

Model 3§ -0.11 0.42 -0.06 0.68 -0.45 0.03 0.04 0.84

log mean

difference

(-0.36, 0.15) (-0.34, 0.23) (-0.86, -0.04) (-0.39, 0.48)

CD34+KDR+CD133+ (as % PBMCs [x10-3])

Model 1† -0.16 <0.001 -0.17 0.04 -0.32 0.009 -0.20 0.25

log mean

difference

(-0.32, -0.01) (-0.33, -0.01) (-0.56, -0.08) (-0.53, 0.14)

Model 2‡ -0.18 0.03 -0.19 0.04 -0.32 0.008 -2.1 0.20

log mean

difference

(-0.34, -0.02) (-0.37, -0.01) (-0.56, -0.08) (-0.54, 0.11)

Model 3§ -0.19 0.03 -0.18 0.06 -0.33 0.009 -0.25 0.13

log mean

difference

(-0.37, -0.02) (-0.37, 0.01) (-0.57, -0.08) (-0.57, 0.07)

CEC (CD45dimCD31+CD146+CD133- as % PBMCs)

Model 1† -0.01 0.91 -0.01 0.97 -0.04 0.40 -0.04 0.81

log mean

difference

(-0.21, 0.19) (-0.25,0.24) (-0.46, 0.18) (-.036, 0.28)

Model 2‡ -0.04 0.68 -0.06 0.65 -0.15 0.39 -0.06 0.71

log mean

difference

(-0.25, 0.16) (-0.31, 0.19) (-0.49, 0.19) (-0.38, 0.26)

Model 3§ 0.02 0.86 -0.03 0.85 -0.13 0.50 0.14 0.51

log mean

difference

(-0.21, 0.25) (-0.07, 0.24) (-0.51, 0.25) (-0.27, 0.54)

† Model 1 adjusted for age, gender, race/ethnicity and cohort.

‡ Model 2 adjusted for variables in model 1 in addition to smoking status, and pack-years.

§ Model 3 adjusted for variables in model 2 in addition to educational attainment, body mass index, height, diabetes mellitus, hypertension, oxygen

saturation, white blood cell count, sleep apnea, HDL, and statin use.

https://doi.org/10.1371/journal.pone.0173446.t003
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explained, in part, by the fact that not all measures of hyperinflation are created equal [56],

where gas trapping was associated with smaller airway lumen diameter, greater dyspnea and

chronic bronchitis, and hyper-expansion was associated with percent emphysema, lower BMI

and higher hemoglobin levels.

To our knowledge, this is the largest study of endothelial cell populations in COPD and the

only one to look at more than one EPC population and COPD subphenotypes. The two mech-

anisms for reduced circulating cell populations are increased utilization, decreased supply or a

combination of both. Since the less mature progenitors (CD34+KDR+CD133+) were signifi-

cantly reduced only in severe COPD, while the CD34+KDR+ cells were highly significant even

after adjustment, these findings support the hypothesis that CD34+KDR+ cells were being

preferentially drawn from the circulation during mild and moderate COPD (increased utiliza-

tion) and it is not until severe COPD that the more bone marrow derived cells (CD34+KDR

+CD133+) become depleted (decreased supply). Consistent with this thinking, a study by

Peinado et al[57] examining lung tissue from persons with COPD and controls showed an

increase in CD34+KDR+ cells in the lung tissue of COPD patients. Additionally, EPCs from

COPD patients have been shown to be dysfunctional in proliferation and migration assays

in response to specific chemotactic factors (i.e. SDF-1α) [58–61], which may be responsible

for a change in circulating EPCs. Together, these data suggest that with increasing severity of

COPD, CD34+KDR+ cells are drawn into damaged lung tissue, thus decreasing the number

circulating in the peripheral blood. A recent study in mice showed a decrease in circulating

CD34+KDR+ cells within 1 day of lps challenge and ~5% of the proliferating pulmonary vas-

cular endothelial cells were of BM-derived cells[62]. They also noted that the resident prolifer-

ating vascular endothelial cells were expressing CD34 and KDR on their surface during the

reparative process.

Interestingly, a different situation may occur in emphysema, where the extent of emphy-

sema was related to less mature progenitors (CD34+KDR+CD133+) and particularly in pan-

lobular emphysema. These findings suggest that while COPD is recruiting from the circulating

CD34+KDR+ EPC pool, emphysema repair relates to the less differentiated CD34+KDR+

CD133+ EPCs, the exact mechanism of which remains unclear, emphasizing the differences

in this phenotype. The strong association of the EPCs with the panlobular emphysema, which

is a more vascular-related emphysema [36,37], is also consistent with recent work showing

effects of alpha1 antitrypsin on pulmonary endothelial health [63,64]. This notion is further

supported by results for diffusing capacity, which provides an indirect vascular measure,

although direct measures of microvascular structure and function on MRI were non-signifi-

cant for EPCs and only revealed an association for CECs.

In contrast, there was little to no association between endothelial cell populations and mea-

sures of gas trapping, which suggests that the biology of endothelial damage and repair may be

specific to emphysematous changes in COPD. This data, taken together, illustrates some of the

differences in the pathology of COPD and supports further study of sub-phenotypes of COPD

and emphysema to better direct future treatment options.

These results suggest that the definition of EPCs and selection of COPD patients and sub-

phenotypes may explain some of the controversy in the literature regarding the role of EPC’s

in COPD. Many studies [6,27,35,61,65–67] have used CD34+KDR+ or CD34+KDR+CD133

+ cells to study COPD, coming to different conclusions based on the characterization of the

EPCs, and few have examined COPD subphenotypes. CD133 has been shown to be a marker

of early EPC differentiation that is lost as the progenitor differentiates [68]. Thus, studies that

utilize CD133 as a marker are looking at less differentiated EPCs, while those that use just

CD34+KDR+ are examining both early and late EPC. Our results suggest that the two cell
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types behave differently, dependent on the phenotype, suggesting increased uptake of EPCs in

COPD but loss of bone-marrow derived cells in panlobular emphysema.

One surprising result was the lack of increase in CECs in COPD or emphysema. We

hypothesized that damage to pulmonary vasculature would cause an increase in the “sloughing

off” of endothelial cells thus increasing the CEC based, in part, on prior findings for EMPs in

this study[7] and the reports of elevated CECs in cardiovascular disease[69]. It is possible these

negative results may be due, at least in part, to apoptosis of the endothelial cells in the pulmo-

nary vessels, either on the vessel surface, or shortly after the “sloughing off” process. We and

others have previously found evidence for pulmonary vascular endothelial cell apoptosis based

Fig 2. Representation of EPCs levels with extent of emphysema on log-log scale by emphysema

subtype. Lines represent modelling results after adjustment for age, gender, race/ethnicity, cohort, smoking

status, pack-years, educational attainment, body mass index, height, diabetes mellitus, hypertension, oxygen

saturation, white blood cell count, sleep apnea, HDL, and statin use. Panel A: CD34+KDR+. Panel B: CD34

+KDR+CD133+. PLE is panlobular emphysema, CLE is centrilobular emphysema and PSE is paraseptal

emphysema.

https://doi.org/10.1371/journal.pone.0173446.g002
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on elevated apoptotic EMPs in mild, moderate and severe COPD [7,9,10], consistent with ani-

mal[70,71] and human studies implicating apoptosis in emphysema and COPD [72–75]. Fur-

ther, the study by Boos et al[76] showed that CEC levels correlate with damage markers but

not with apoptosis. Additionally, a recent study demonstrating that smoking [77] alters the

alpha-1 antitrypsin interaction with caspases causing an increase in endothelial apoptosis sup-

ports an apoptotic mechanism in emphysema. And lastly, CECs, as we have defined them, may

not be a good indicator of what is happening at the local level.

It was also somewhat unusual that the associations for emphysema were specific to radiolo-

gist-defined emphysema and non-significant for quantitatively assessed percent emphysema.

The latter null result may have been due to the inability of quantitatively assessed emphysema

to define subtypes of emphysema.

The strengths of this study are the precisely defined cellular measures, the relative size of

the study and the detailed EPC and COPD subphenotyping. Weaknesses include the delayed

sample processing, which we attempted to minimize with strict adherence to timing protocols

[78–80] and which is mitigated by the observed correlation between results from fresh and

delayed processing among volunteers. Circulating cellular levels may not be reflective of local-

ized events, yet they provide one of the best methods for evaluating cells in living persons. The

choice of cellular markers is, to some degree, subjective but was based on best information

available at the inception of this project. Finally selection bias can affect case-control studies

but this was minimized by using a nested design with known sampling probabilities within

MESA and EMCAP.

In conclusion, CD34+KDR+ cells were significantly decreased with increasing COPD

severity. The less differentiated EPC phenotype, CD34+KDR+CD133+ cells, was also lower in

severe COPD. These results support the hypothesis that the CD34+KDR+ EPC are being pref-

erentially recruited into the lung for vascular repair and the exhaustion of bone marrow

derived cells does not appear to occur until spirometry defined COPD has reached severe lev-

els. In contrast, CD34+KDR+ and CD34+KDR+CD133+ cells were reduced in panlobular

emphysema and with reduced diffusing capacity, possibly suggesting a loss of bone-marrow-

derived EPCs in that form of the disease. This would suggest that the lung vascular injury/

repair mechanism for emphysema subtypes varies greatly and requires further evaluation.

Supporting information

S1 Supporting Information. Contains detailed flow cytometry Methods and Assay Valida-

tion.

(DOCX)

S1 Fig. Biovariability. Biovariability data on 13 volunteers, measured over 18 months for

CD34+KDR+ EPCs, expressed as # of CD34+KDR+ EPCs per 10,000 lymphocytes.

(TIF)

S2 Fig. Plot of freshly processed CD34+KDR+ EPCs versus whole-blood that was stored at

controlled room temperature for 24-hours prior to processing and labeling.

(TIF)

S3 Fig. Representative flow cytometry plots for EPCs. PBMCs were gated based on forward

and side scatter properties. A) Forward vs. side scatter to set PBMC gate. B) FITC isotype gate

of the gated PBMCs. C) PE Isotype gate of the gated PBMCs. D) APC Isotype gate of the gated

PBMCs. E) FITC-CD34+ gated on PBMCs. F) PE-VEGFR2 (KDR)+ gated on the FITC-CD34

+cells. G) APC-CD133+ gated on FITC-CD34+PE-VEGFR2(KDR)+ cells. Region F is used as

the CD34+KDR+ EPCs and Region G is the CD34+KDR+CD133+ EPCs, both expressed as %
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PBMCs.

(TIF)

S4 Fig. Representative flow cytometry plots for CECs. Gating strategy utilizes both quad sta-

tistics and single color histograms to determine gate placement. A) PBMCs are gated using for-

ward and side scatter; B) PeCy5.5 Isotype gate of the gated PBMCs; C) FITC isotype gate of the

gated PBMCs; D) PE Isotype of the gated PBMCs; E) APC isotype of the gated PBMCs; F)

PE-Cy5.5 CD45dim gate of the gated PBMCs; G) FITC-CD146+ of the PE-Cy5.5CD45dim

gate; H) PE-CD31+ of the PE-Cy5.5 CD45dim FITC-CD146+ cells; I) CD133- of the PE-Cy5.5

CD45dim FITC-CD146+PE-CD31+ cells (This CD133- population is the CECs); J) Plot of

PE-CD31 vs FITC-CD146 of the gated PBMCs using quad stats; K) PeCY5.5CD45dim vs

APC-CD133 plot of the PE-CD31+FITC-CD146+ cells (The PE-Cy5.5CD45dimAPC-CD133-

population is the CECs).

(PDF)

S1 Table. Mean differences in endothelial progenitor cells and circulating endothelial cells

according to related to pulmonary perfusion on MRI and diffusing capacity

(DOCX)

S2 Table. Association between EPCs, CECs and air trapping.

(DOCX)
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