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Abstract: Automated glaucoma detection using deep learning may increase the diagnostic rate of
glaucoma to prevent blindness, but generalizable models are currently unavailable despite the use
of huge training datasets. This study aims to evaluate the performance of a convolutional neural
network (CNN) classifier trained with a limited number of high-quality fundus images in detecting
glaucoma and methods to improve its performance across different datasets. A CNN classifier was
constructed using EfficientNet B3 and 944 images collected from one medical center (core model) and
externally validated using three datasets. The performance of the core model was compared with
(1) the integrated model constructed by using all training images from the four datasets and (2) the
dataset-specific model built by fine-tuning the core model with training images from the external
datasets. The diagnostic accuracy of the core model was 95.62% but dropped to ranges of 52.5–80.0%
on the external datasets. Dataset-specific models exhibited superior diagnostic performance on the
external datasets compared to other models, with a diagnostic accuracy of 87.50–92.5%. The findings
suggest that dataset-specific tuning of the core CNN classifier effectively improves its applicability
across different datasets when increasing training images fails to achieve generalization.

Keywords: deep learning; diagnosis; fundus photograph; glaucoma

1. Introduction

Glaucoma is one of the leading causes of irreversible blindness, but under-diagnosed
worldwide [1–4]. With the advancement of image capture technology for fundus pho-
tography and artificial-intelligence-assisted image diagnosis [5–7], automated glaucoma
detection using fundus photographs may be an effective approach to increase the diagnos-
tic rate of glaucoma through clinic- or population-based glaucoma screening [8,9]. This
evolution may save the vision of millions of people at risk of glaucoma blindness [1,2].

The thriving development of deep learning (DL) techniques, especially the use of
convolutional neural networks (CNNs), has given rise to new possibilities in medical
image analysis, especially in the field of retinal disorders [6,10,11]. DL-based screening of
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diabetic retinopathy (DR) has been validated clinically and commercially incorporated into
fundus photography [6,11]. Contrarily, DL-assisted glaucoma detection, although having
reached high sensitivity and specificity in detecting glaucomatous optic neuropathy (GON)
using fundus images [12–14], has not been applied in daily clinic because of inadequate
generalizability. Building an automated glaucoma detection algorithm is more challenging
than it is for automated DR screening for two reasons. First, the diagnosis of glaucoma is
more complicated, necessitating additional structural and functional evaluations [15,16].
Therefore, it is costly and difficult to build large image datasets containing fundus images
with comprehensive glaucoma evaluation. Second, detecting glaucoma using fundus im-
ages requires more on the details than DR, such as the clarity of the retinal nerve fiber
layers (RNFL) and optic nerve head (ONH) [15–18]. Therefore, the performance of a DL
classifier for glaucoma can be affected by image quality, layout, and variations related to
ocular characteristics, such as myopia and retinal pigmentation. With the largest number of
images to date—241,032 images from 68,013 patients—available to develop a CNN classifier
for automated GON detection [14], the CNN classifier achieved a high diagnostic accuracy
while predicting internal test images; however, its performance worsened when it was
applied to images from different healthcare systems and subjects of different ethnicities and
images of variable quality, with the area under the receiver operating characteristic (ROC)
curve (AUC) dropping from 0.996 to 0.987, 0.923, and 0.823, respectively (Table S1). There-
fore, expanding image datasets is not an effective approach to increase the applicability of
a CNN classifier for glaucoma detection.

Since expanding image datasets is not an affordable nor an effective strategy to in-
crease the generalizability of glaucoma detection algorithms, we explored the possibility of
constructing a DL-assisted glaucoma detection model that is first trained using a limited
number of fundus images and then fine-tuned to accommodate the variability of image
characteristics across different healthcare systems. This approach is logical and feasible,
but has not been evaluated in the detection of glaucoma. In this study, a CNN classifier was
first developed using high-quality fundus images from one medical center, and then fine-
tuned using external datasets to improve the applicability of the CNN classifier in different
healthcare systems using limited training images from the targeted healthcare systems.

2. Materials and Methods

The workflow is illustrated in Figure 1. In the first phase of this study, a transfer learn-
ing model based on the EfficientNet B3 (https://keras.io/api/applications/efficientnet/,
accessed on 16 April 2022) architecture was used to build a CNN classifier using training
images of Taipei Veterans General Hospital (TVGH) [19,20], called the TVGH model. The
diagnostic accuracies of the TVGH model were evaluated with the TVGH test images and
test images of the three external datasets, including two open-access datasets (DRISHTI-
GS1 and RIM-ONE r2) and one private dataset (the Cheng Hsin General Hospital (CHGH)
dataset) [21,22].

In the second phase of this research, we compared the efficacy of two approaches,
the dataset-specific model and the integrated model in increasing the performance of the
TVGH model on external datasets, which were too small to train a CNN classifier.

https://keras.io/api/applications/efficientnet/
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Figure 1. Study framework. The fundus images were first preprocessed with data augmentation
before being forwarded to the EfficientNet B3 algorithm to build the deep learning classifier. (A) Taipei
Veterans General Hospital (TVGH) model was built using images from TVGH dataset and then fine-
tuned as dataset-specific model using the weight of the TVGH model and new training images from
specific external dataset to improve the diagnostic performance on the specific dataset. (B) Integrated
model was built using combined images from TVGH dataset and all the external datasets.

2.1. Datasets

The TVGH dataset included fundus photographs, in JPEG format, of 465 non-glaucomatous
eyes and 479 eyes with primary open-angle glaucoma (POAG) from the image database of
the Department of Ophthalmology of TVGH. Eyes with POAG were diagnosed based on
characteristic changes in the ONH and associated reproducible visual field (VF) defects in
the presence of a normal open angle on gonioscopy. Glaucomatous ONH changes were
defined as an enlarged cup-to-disc ratio along with generalized neuroretinal rim thinning
or focal notching. All subjects with POAG underwent VF analysis using the 24-2 Swedish
interactive threshold algorithm standard of the Humphrey Field Analyzer 750i (version 4.2,
Zeiss-Humphrey Instruments, Dublin, CA, USA) and RNFL scanning using Cirrus high-
definition optical coherence tomography (Model 4000; CarlZeiss Meditec, Inc., Dublin, CA,
USA). The non-glaucomatous eyes had an intraocular pressure of less than 21 mmHg and
an ONH of normal appearance without RNFL defects.

The image characteristics of the TVGH and external datasets are listed in Table 1.
The ground truth for classification was made based on the majority opinion of experts in
DRISHTI-GS1 and RIN-ONE r2 datasets, and the consensus of two experts after reviewing
detailed clinical information in CHGH dataset (YK and TH) and TVGH dataset (YK and CL).
Different from other datasets, the images of RIM-ONE r2 were pre-cropped and centered at
the ONH as the region of interest [22].
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The images from each dataset were divided into training, validation, and testing
images at a sampling ratio of 4:1:1.

Table 1. Characteristics of the datasets used in this Study.

Dataset Numbers
(Glaucoma)

Image Size
(Pixels)

Field of View
(Center) Camera Origin

TVGH 944 (479) 3888 × 2552 30◦ (macula) Canon CX-1,
CR-2, DGi Taiwan

CHGH 158 (78) 3216 × 2136 30◦ (macula) Topcon
TRC-NW8F Taiwan

DRISHTI-GS1 101 (70) 2047 × 1760 30◦ (disc) Zeiss Visucam
NM/FA India

RIM-ONE r2 455 (200) Not fixed Cropped (disc) Nidek AFC-210 Spain

TVGH, Taipei Veterans General Hospital; CHGH, Cheng Hsin General Hospital.

2.2. Image Classification Based on CNN and Fine-Tuning Process

Fine-tuning is the core of transfer learning, which can be achieved in different schemes
regarding the setting of initial weights [23,24]. The first scheme is to retrain the model with
new datasets but keeping the weights of the pretrained model as the initial weights; the
second is to retrain the model after resetting parts of the weights; and the third is to do so
after clearing the weights of the pretrained model. The TVGH model was built following
the third scheme, in which the pretrained weights of EfficientNet B3 were discarded and the
classifier was retrained by the training images of the TVGH dataset. Thereafter, the TVGH
model was fine-tuned according to the first scheme as the dataset-specific models, in which
the architecture and initial weights of the TVGH model were kept and fine-tuned using the
merged dataset containing the TVGH training set and one of the three external datasets
(Figure 1A), specified as DRISHTI-GS1-specific model, RIM-ONE r2-specific model, and
CHGH-specific model, respectively. This approach extended the feature learning from the
TVGH model to accelerate the convergence of the specific model. Finally, the integrated
model was built using the third scheme by retraining the TVGH model with the merged
dataset containing training images from the 4 datasets (Figure 1B). This approach aimed to
verify whether training set expansion using small external datasets is useful for improving
the generalizability of the classifier.

EfficientNet was chosen in this study because it used the Neural Architecture Search [19,20,25]
technology for optimization of the number of neurons in the neural network, the depth of
the neural network, and the image resolution. Considering the limitation in computing
resources, EfficientNet B3 was selected, which consists of one convolutional layer and seven
MBConv modules, followed by the fully connected layer (Figure 2). The MBConv module
combines residual block, squeeze-and-excitation block, and depthwise convolutions to
reduce computational load and improve accuracy [26–28]. In this study, the architecture
of EfficientNet B3 was maintained, except for replacing the fully connected layer with the
one including two neurons only. Softmax function was used as the activation function for
binary output.

The color fundus images were first preprocessed to crop the region of interest as a
square. As the default resolution of the input images to the EfficientNet B3 is 300 × 300, we
resized the images to match this specification by importing the Python library OpenCV
(Figure S1). Each pixel has three channels, red, green, and blue. Data augmentation was
performed to improve the model performance and avoid overfitting with the following
steps. Images were randomly rotated by 30◦, horizontally or vertically flipped, or shifted
by 10% of the total width or height.

This work was performed based on an open-source DL framework, TensorFlow (Ver-
sion 1.13.1, https://github.com/tensorflow/docs/tree/r1.13/site/en/api_docs, accessed
on 16 April 2022), and Keras (Version 2.2.4, https://keras.io/api/, accessed on 16 April

https://github.com/tensorflow/docs/tree/r1.13/site/en/api_docs
https://keras.io/api/
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2022). An NVIDIA GeForce GTX 1070 Ti GPU (NVIDIA Corporation, Santa Clara, CA,
USA) was used. The training dataset was divided into five nonoverlapping folds during
the training process. Each of the 5-fold was used as a validation dataset, in turn, to select
hyper-parameters and estimate the model’s performance to avoid overfitting. The detailed
hyper-parameters of the networks in the different models are listed in Table 2, which were
adjusted to make sure the loss of the training and validation set had a similar downward
trend. One epoch is when an entire training dataset propagates forward and backward
through the algorithm once. However, with the limitation of computing power, the whole
training images cannot complete one epoch at once, and are therefore divided into batches,
with the number of images used in each batch as batch size. Batch size is adjusted according
to image characteristics to achieve convergence and acceptable performance. The number
of epochs is determined as the point when there was a smallest difference of loss between
the training and the validation set. Learning rate defines the adjustment in the weights of
the network with respect to the loss gradient, which affects the speed and convergence of
the training process. We set the initial learning rate from 6 × 10−5 and adjusted it according
to the loss of validation set.

Figure 2. Model and module architecture diagram. (A) The architecture of EfficientNet B3, consisting
of one convolutional layer and seven MBConv modules. Each MBConv module is followed by a
number 1 or 6, which is the multiplication factor n. The number n means the first 1 × 1 convolutional
layer expands the channels by n times. (B) The architecture of MBConv module. The k × k following
Depwise Conv is the kernel size of Depwise Conv in the MBConv module, and listed in (A) as 3 × 3
or 5 × 5. (C) The architecture of squeeze-and-excitation (SE) block. SE block increases the weight
of essential features and reduces the weight of useless features according to the change of loss in
the training process to improve the prediction performance. (D) Schematic diagram of Depthwise
(Depwise) convolutions. Depthwise Conv performs convolution with different filters for each image
channel to reduce the computation loading. FC: fully connected layer.

Gradient-weighted class activation mapping (Grad-CAM) was applied to identify
features recognized by the proposed CNN classifier. The gradient information from the
last convolutional layer in the CNN classifier determined the importance of each filter.
Grad-CAM represented the area that the model considered essential by combining all the
feature maps from the filters, which was projected back onto the input fundus image to
highlight areas critical to classification [29].
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Table 2. Network hyper-parameters used in different Models.

Models 1
Network Hyper-Parameters

Batch Size Epoch Initial Learning Rate

TVGH 20 20 0.00006
Integrated 16 25 0.00004

DRISHTI-GS1-specific 16 20 0.00001
RIM-ONE r2-specific 16 20 0.00005

CHGH-specific 20 20 0.00006
1 Each model was named after the training dataset(s) used for training. TVGH model is the core model of this
study built with the architecture of EfficientNet B3 and TVGH training images. Integrated model was built with
the architecture of EfficientNet B3 and the training images from all datasets. Dataset-specific model used specific
dataset to fine-tune the TVGH model, for example, DRISHTI-GS1-specific model used training images from
DRISHTI-GS1 dataset to fine-tune TVGH model. TVGH, Taipei Veterans General Hospital; CHGH, Cheng Hsin
General Hospita.

2.3. Statistical Analysis

The performance of the CNN classifiers was evaluated along the indices of sensitivity,
specificity, and accuracy. The ROC curve was plotted using the matplotlib package in
Python. A nonparametric test, the Mann—Whitney U test, was used to compare the clinical
characteristics of correctly and incorrectly predicted images, because most measurements
of the test images were not normally distributed. The analysis was conducted using SPSS
(version 18.0.0, SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Diagnostic Performance of the CNN Classifiers

The TVGH model had a diagnostic accuracy of 95.62% on TVGH test images, with
a sensitivity, specificity, and AUC of 93.75%, 97.50%, and 0.991, respectively (Table 2).
However, the diagnostic accuracy of the TVGH model on DRISHTI-GS1, RIM-ONE r2, and
CHGH test images dropped to 55.0%, 52.50%, and 80.00%, with AUCs of 0.770, 0.624, and
0.910, respectively (Table 3 and Figure 3A).

Table 3. Diagnostic performance of the deep learning models built with different training datasets on
test images across different datasets.

Models 1 Training Datasets Test Datasets Accuracy Specificity Sensitivity AUC (95% CI)

TVGH TVGH TVGH 95.62% 97.50% 93.75% 0.991 (0.982–1.000)
TVGH TVGH DRISHTI-GS1 55.00% 100% 10.00% 0.770 (0.558–0.982)
TVGH TVGH RIM-ONE r2 52.50% 90.00% 15.00% 0.624 (0.501–0.748)
TVGH TVGH CHGH 80.00% 95.00% 65.00% 0.910 (0.798–1.000)

DRISHTI-GS1-specific TVGH + DRISHTI-GS1 TVGH 88.75% 92.50% 85.00% 0.969 (0.945–0.993)
DRISHTI-GS1-specific TVGH + DRISHTI-GS1 DRISHTI-GS1 95.00% 90.00% 100.00% 0.990 (0.958–1.000)
RIM-ONE r2-specific TVGH + RIM-ONE r2 TVGH 94.38% 98.75% 90.00% 0.986 (0.969–1.000)
RIM-ONE r2-specific TVGH + RIM-ONE r2 RIM-ONE r2 87.50% 92.50% 82.50% 0.922 (0.859–0.985)

CHGH-specific TVGH + CHGH TVGH 92.50% 93.75% 91.25% 0.988 (0.977–1.000)
CHGH-specific TVGH + CHGH CHGH 92.50% 95.00% 90.00% 0.963 (0.901–1.000)

Integrated All TVGH 91.88% 91.25% 92.50% 0.981 (0.965–0.998)
Integrated All DRISHTI-GS1 50.00% 20.00% 80.00% 0.840 (0.651–1.0)
Integrated All RIM-ONE r2 82.50% 87.50% 77.50% 0.930 (0.875–0.985)
Integrated All CHGH 85.00% 75.00% 95.00% 0.960 (0.906–1.0)

1 All the model architectures are adopted from the model architecture of EfficientNet B3. Model weights are
different due to the various training data and hyperparameters. Each model was named after the training
dataset(s) used for training. TVGH model is the core model of this study built with the architecture of EfficientNet
B3 and TVGH training images. Dataset-specific model used specific dataset to fine-tune the TVGH model, for
example, DRISHTI-GS1-specific model used training images from DRISHTI-GS1 and TVGH datasets to fine-tune
TVGH model. Integrated model was built with the architecture of EfficientNet B3 and the training images from
all datasets. TVGH, Taipei Veterans General Hospital; CHGH, Cheng Hsin General Hospital; AUC, area under
receiver operating characteristic curve; CI: confidence interval.

The dataset-specific models, fine-tuned with one specific external dataset had signif-
icantly improved diagnostic accuracies on the corresponding test datasets (Table 3 and
Figure 3B). For example, the DRISHTI-GS1-specific model had diagnostic AUCs of 0.969
and 0.990 on the TVGH and DRISHTI-GS1 test images, respectively, compared to AUCs of
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0.991 and 0.770 when the TVGH model was applied on the TVGH and DRISHTI-GS1 test
images, respectively.

Figure 3. Receiver operating characteristic (ROC) curves of the TVGH model, dataset-specific models,
and integrated model to differentiate between normal and glaucomatous fundus images on different
test datasets. (A) The TVGH model is a CNN classifier constructed with the training images of the
TVGH dataset. Different colored lines indicate the results obtained upon using the TVGH model to
classify the test images of the TVGH, DRISHTI-GS1, RIM ONE r2, and CHGH datasets. (B) ROC
curves of the dataset-specific models in predicting test images from the corresponding datasets. The
line corresponding to the T + D model D test refers to the predictive result of DRISHTI-GS1-specific
model trained with mixed training images from the TVGH and DRISHITI-GS1 datasets on DRISHTI-
GS1 test images. T: TVGH; D: DRISHTI-GS1; R: RIM-ONE r2; C: CHGH. (C) ROC curves of the
integrated model constructed with combined training images from all datasets in detecting glaucoma
using various test datasets.

The integrated model, constructed by training images from the four datasets, had a
diagnostic accuracy on TVGH, DRISHTI-GS1, RIM-ONE r2, and CHGH test images of
91.88%, 50.0%, 82.50%, and 85.0%, with AUCs of 0.981, 0.840, 0.930 and 0.960, respectively
(Table 3 and Figure 3C).

Figure S2 revealed the training curves of the TVGH, integrated, and dataset-specific
models. The loss of the training and validation datasets decreased with each epoch, without
a gap between the two datasets, indicating that the models were stable without overfitting.

Grad-CAM revealed that features critical for classification in the TVGH model, marked
in red, were located primarily at the ONH and peripapillary nerve fiber bundles (Figure 4).

Figure 4. Gradient-weighted class activation mapping (Grad-CAM) identifying features extracted for
classification in the Taipei Veterans General Hospital (TVGH) model. The hot spots (red color) were
localized at the optic nerve head, with some extending to the peripapillary nerve fiber bundles in
both glaucoma (A,B) and healthy eyes (C,D).
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3.2. Factors Affecting the Detection of POAG with the CNN Classifier

To understand whether disease severity affects the performance of the CNN classifier
in detecting GON, we compared the clinical and demographic characteristics of the TVGH
test images with correct and incorrect classifications of GON (Table 4). There were only
two control images misclassified as glaucoma with cup-to-disc ratios of 0.4 and 0.6. The
GON images misclassified as normal were from patients with a less severe disease, with an
average mean deviation (MD) of −2.43 dB and RNFL thickness of 85.40 µm compared to
values of −5.62 dB and 71.96 µm for correctly classified images, respectively. Moreover,
all the images misclassified as normal had an early disease with an MD better than −6 dB,
ranging from −5.34 to −0.6 dB.

Table 4. Clinical characteristics and prediction accuracy of the TVGH model in images with primary
open angle glaucoma.

CNN Prediction

Correct (n = 75) Incorrect (n = 5) p Value

Age (years) 58.00 ± 14.71 58.00 ± 19.20 0.91
Cup-to-disc ratio 0.79 ± 0.12 0.72 ± 0.11 0.16

Visual field
MD (dB) −5.62 ± 5.26 −2.43 ± 2.04 0.09
PSD (dB) 5.71 ± 3.59 3.73 ± 2.25 0.37

Average RNFL thickness (µm) 71.96 ± 10.86 85.40 ± 13.70 0.04
Values are presented as mean ± SD. TVGH, Taipei Veterans General Hospital; CNN, convolutional neural network;
dB, decibel; MD, mean deviation; PSD, pattern standard deviation; RNFL, retinal nerve fiber layer.

4. Discussion

In this study, the CNN classifier trained with a single dataset (TVGH model) had a
diagnostic AUC of 0.991 on test images of the same origin, which is much higher than the
AUCs of 0.624 to 0.910 on test images of different origins. Both the integrated model and
dataset-specific models had improved diagnostic performance on an external dataset than
the TVGH model. The dataset-specific model, a fine-tuned TVGH model by including
training images from the targeted external dataset had significantly improved diagnostic
accuracy on the specific dataset. The integrated model, which was constructed by combined
training images from all different datasets, did not achieve equal performance on each
external dataset. The diagnostic AUC of our dataset-specific models on local independent
validation dataset, external clinic-based dataset, and public/population datasets of different
ethnicity were 0.991, 0.963, and 0.969–0.986, respectively, which were compatible with
the AUC values of 0.996, 0.987–0.995, and 0.923–0.964, respectively, in Liu et al.’s DL
algorithm trained with 274,413 images. In a recently published meta-analysis including
180,534 fundus images of 67 studies, the pooled mean sensitivity, specificity, and AUC
of the glaucoma detection neural networks were 91%, 91%, and 0.96, respectively [30]
(Table S1). These findings suggested that, even with limited training images, specifically
fine-tuning a core model to accommodate potential variations in the targeted testing
population may be an effective approach to increase the applicability of the DL model to
assist glaucoma detection.

Generalizability is a critical issue for the further application of DL-assisted detection
of disease using images [31], especially in the detection of GON. We used an ensemble
approach by incorporating a support vector machine to identify discs with enlarged cup-to-
disc ratio when the confidence score of the CNN classifier was less than 0.85. However,
this approach is still limited by the overlapped distribution of cup-to-disc ratio among the
healthy and glaucoma subjects [32]. Increasing the number and variability of the training
images is a potential way to increase the generalizability of a DL model, but its effect reached
plateau when using 60,000 or more training images in the DR model, and is suboptimal
in glaucoma models [14,33]. Furthermore, this approach is often not accessible for most
researchers and may not be cost-effective when the classifier is designed for glaucoma
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screening on targeted populations of the same ethnicity or images of controllable layout
and quality. Several studies have demonstrated the feasibility of building a CNN classifier
for glaucoma using limited training images, and the importance of including images from
the targeted dataset for training to improve the diagnostic accuracy on the target. Gómez-
Valverde et al. demonstrated that a CNN classifier constructed using a relatively small
number of training images can achieve a diagnostic AUC of 0.94 in identifying GON. The
training images comprised 370 glaucomatous and 1364 normal images gathered from three
datasets. By evaluating various combinations of the three training datasets, they found
that the diagnostic performance of the CNN classifier on mixed testing images improved
proportionally with the number of additional datasets added during training [34]. However,
the performance of the CNN classifier on the specific dataset was not evaluated. Diaz-Pinto
et al. used five public datasets with 1707 images to verify the generalizability of their
CNN classifier for GON. The AUC of the CNN classifier achieved a value of 0.9605 when
training images from all five datasets were included in building the model, but dropped
to the range of 0.8575 to 0.7678 when the training images from the desired test dataset
were removed [35] (Table S1). The above approaches, as our integrated model, may not
increase the diagnostic performance of the model equally across different datasets when the
number of images from specific datasets were limited. Contrarily, our study demonstrated
another cost-effective approach by building a core CNN classifier using a limited number of
high-quality images to extract critical features for glaucoma detection and then fine-tuning
the model to improve its applicability in different datasets, as the data-specific model.

Several studies have proposed different approaches to increase the diagnostic power
of DL-assisted glaucoma detection using a limited number of training images, which is a
universal predicament encountered by researchers. Gheisari et al. [36] and Xu et al. [37]
used a limited number of training images, as with the current study, being 1810, 1882,
and 944, respectively. Gheisari et al. used serial fundus images of one subject to increase
the diagnostic rate; Xu et al. used fundus images taken from cataract patients (Similar
Ophthalmic Database, SOD) to replace the ImageNet dataset to improve general feature
extraction in transfer learning and used transfer-induced attention network (TIA-Net)
to detect specific features of glaucoma. Although the approach used by Gheisari et al.
improved the F score significantly from 79.2% to 96.2%, their approach is of less clinical
utility because the value of DL is to assist glaucoma screening, in which it is difficult to have
serial fundus images taken as a cohort. While the approach by Xu et al. is sound, it does not
lead to significant improvement of the diagnostic accuracy: 85.7% using TIA-Net with SOD,
compared with 84.1% using ImageNet dataset with CNN. Furthermore, the approach by
Xu et al. did not improve the generalizability because the diagnostic accuracy of TIA-Net
with SOD dropped a lot when it was applied to an open-access dataset compared with
their own dataset, 76.6% vs. 85.7%, respectively (Table S1). Contrarily, the diagnostic
accuracy improved from 52–80% to 87.5–95.0% on the external dataset by adopting the
dataset-specific model in this study. Considering further verification and application of our
approach, we prepared a website based on the TVGH model of this study for researchers
who want to upload their own images for verification, http://140.113.114.104/vght_demo/
demo-biomedicines, accessed on 16 April 2022. However, further co-operation may be
needed to find-tune the TVGH model with images from the external dataset to improve its
performance. On the other hand, federated learning may be an alternative to fine-tuning
the TVGH model, considering data protection and privacy [38,39].

The TVGH model had a higher diagnostic accuracy on test images from CHGH
than those from DRISHTI-GS1 and RIM-ONE r2. The similarity in image layout between
TVGH and CHGH datasets, macula-centered 30◦ fundus images, may be the explanation.
Contrarily, images from DRISHTI-GS1 and RIM-ONE r2 are disc-centered, the latter being
cropped with limited information from other parts of the retina [21,22]. However, the
dataset-specific model retrained with limited training images from the targeted dataset
overcame these differences. Grad-CAM of the TVGH model revealed the features critical
for classification centered on the ONH. This may explain why the TVGH model can

http://140.113.114.104/vght_demo/demo-biomedicines
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be effectively fine-tuned to fit the DRISHTI-GS1 and RIM-ONE r2 datasets with images
centered on the ONH.

Another advantage of our approach is that we can evaluate the diagnostic accuracy
of the CNN classifiers on images of different disease severities by using training fundus
images with comprehensive clinical information. This is contrary to the approaches which
adopted a large number of fundus images without clinical information and identified GON
based solely on ONH and RNFL appearance [13,14]. We found that our model correctly
classified all images with moderate to severe disease severity, not only for the TVGH test
images, but also in the fine-tuned model applied to CHGH test images (data not shown).
The issue of the diagnostic accuracy of the DL algorithm on images with different disease
severities has not been thoroughly evaluated because most studies used fundus images
without clinical information as their training images [13,14]. Similar to our findings, and as
is the case for most diagnostic tools for glaucoma, Christopher et al. revealed that the CNN
classifier had a better diagnostic performance in eyes with moderate to severe functional
loss than those with mild loss [12].

This study has some limitations. First, the images with poor quality were excluded
in the datasets. Therefore, the effect of image quality on the performance of our model
was not counted in this study. Second, cases with anomalous or extreme disc appearance,
such as extremely tilted discs and retinopathies except for drusen, were excluded from the
dataset; hence, our model may not be applicable to such cases. Third, different diagnostic
criteria across different datasets may affect the performance of the CNN classifier. In TVGH
and CHGH datasets, complete clinical assessments, including VF and optical coherence
tomography evaluation, were reviewed to achieve the classification. Nevertheless, in
DRISHTI-GS1 and RIN-ONE r2 datasets, it is not clear how the diagnosis was made by
the experts and whether VF defects were the prerequisite for the diagnosis of glaucoma.
Lastly, our centralized approach needs to obtain external training images to fine-tune the
TVGH model, which may encounter critical concerns regarding patient privacy and data
protection. The next step of this study would be adopting a framework of federated learning
to fine-tune the TVGH model across multiple medical institutions without exchange or
centralize datasets [38–40].

In conclusion, we proposed an effective approach to increase the applicability of a
CNN classifier for GON detection. A CNN classifier can be built using a limited number
of high-quality fundus images and then fine-tuned using a small number of images from
the targeted testing dataset to improve its diagnostic performance on the specific dataset.
This approach may be a feasible alternative when a large image database of GON is
not accessible, given that a generalizable CNN classifier for GON detection is currently
unavailable.

Supplementary Materials: The following are available online at ’https://www.mdpi.com/article/
10.3390/biomedicines10061314/s1, Table S1 Performance of deep learning models in detecting
glaucoma using large training datasets or specific approaches to improve accuracy. Figure S1. The
preprocessing process to crop the region of interest as a square. Figure S2. Training curves of the deep
leaning models.
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