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Myofibrillogenesis regulator 1 induces hypertrophy
by promoting sarcomere organization in neonatal
rat cardiomyocytes

Xiaoreng Wang1,2, Xiuhua Liu1,2, Song Wang1 and Kang Luan1

Human myofibrillogenesis regulator 1, a novel 17-kDa protein, is closely involved in cardiac hypertrophy. We studied the

molecular mechanism that links MR-1 to hypertrophic response. Hypertrophic hallmarks such as cell size and [3H]-leucine

incorporation were significantly increased when MR-1 was transfected into cardiomyocytes for 48 h. However, sarcomere

organization was promoted when MR-1 was transfected for 8 h. The finding that cardiac hypertrophy was induced long after

increase of sarcomere organization indicates that the promoted sarcomere organization may be one of the crucial factors

causing hypertrophy. Furthermore, when MR-1 was transfected into cardiomyocytes, the nuclear localization of myomesin-1

was shifted to the cytoplasm. Transfection with small ubiquitin-like modifier-1 (SUMO-1) mimicked the effect of MR-1

inducing translocation of myomesin-1. However, transfection with SUMO-1 in MR-1-silenced cardiomyocytes failed to induce

translocation and sarcomere organization, even though SUMO-1 expression was at the same level. Overexpression of MR-1 may

induce cardiomyocyte hypertrophy via myomesin-1-mediated sarcomere organization.
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INTRODUCTION

Human myofibrillogenesis regulator 1 (hMR-1) is a novel character-
ized human functional gene cloned from a human skeletal muscle
complementary DNA (cDNA) library. This 755-bp length gene is
located on the human chromosome 2q35 and encodes a 142-
amino-acid protein. MR-1 is highly expressed in the myocardium,
skeletal muscle, kidney and liver.1 Our previous studies showed
that MR-1 was significantly upregulated in the hypertrophic
myocardium of rats subjected to abdominal aorta stenosis and
in angiotensin II-stimulated neonatal rat cardiomyocytes;2 trans-
fection with siRNA abolished angiotensin II-induced hypertrophy.
These studies suggest that MR-1 is involved in cardiac hypertro-
phy.2,3 However, the specific mechanism involved has not been
clearly demonstrated.

A highly ordered and precise organization process of contractile
proteins is critical for myofibrillogenesis and differentiation of striated
muscle cells.4,5 Sarcomere organization has a direct and profound
influence on cardiac function.6 Therefore, understanding the mechan-
ism of sarcomere organization in cardiac hypertrophy is essential. As
crucial structural and regulatory proteins of sarcomere, myomesin-1
and myosin regulatory light chains (MRLCs) were found to interact
with MR-1 directly in a previous yeast two-hybrid screen assay and
in vitro GST pull-down assay.1

M-line structure has essential roles in sarcomeric assembly and
stabilization.7 Myomesin-1 is thought to be the most prominent
structural component of the sarcomeric M-line. The 185-kDa
myomesin-1 is encoded by MYOM-1 gene and is a member of the
Ig-fibronectin superfamily.8 Myomesin-1 promotes the proper orien-
tation and incorporation of its C-terminus into the developing
M-line9 and directly binds to the thick filament component myosin,
titin, obscurin and MURFs. Myomesin isoforms exhibit an almost
spatio-temporal expression pattern,10 which suggests a regulatory role
in precise targeting of numerous proteins and coordinated sarcomeric
assembly. Myomesin-1 locates in the cytoplasm in adult cardiomyo-
cytes, where it functions in sarcomeric structures, but is distributed in
the nucleus in neonatal cardiomyocytes.11 Modification of myomesin-1
by small ubiquitin-like modifier (SUMO) is critical for the transloca-
tion of myomesin-1 from the nucleus to the cytoplasm.11

We investigated whether MR-1 induces cardiac hypertrophy by
regulating myomesin-1-mediated sarcomere organization through
SUMOylation of myomesin-1.

METHODS

Plasmid constructs
The open reading frame of hMR-1 gene deposited in GenBank database

(accession number AF417001) was cloned from a cDNA library of the human
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heart by PCR with the primers 5¢-GTGGGATCTCACCATGGCGGC-3¢ and

5¢-CGCTCCTCAGGTCTGCAC-3¢. hMR-1 full-length gene was linked by using

pGEM-T Easy (Invitrogen, Carlsbad, CA, USA) and subcloned into pcDNA3.1/

Myc-His(�)B (Invitrogen).

Antibody preparation
Rabbit anti-MR-1 polyclonal antibody was obtained from polypeptide-immu-

nized New Zealand rabbits. Peptides were analyzed and selected by using

TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) and DNAstar

(DNASTAR Inc., Madison, WI, USA). The sequences we selected and synthe-

sized were tkrevdkdrvkqmkarqnmrlsn and tgeyesqrfrassqsapspdvgsgvqt, respec-

tively. This self-prepared antibody detects human original or rat original

antigens, available for western blot or immunocytofluorescent assays.

Cardiomyocyte culture and transfection
All procedures were performed in accordance with the Guide for the Care and

Use of Laboratory Animals published by the US National Institutes of Health

(NIH Publication No. 85-23, revised 1996) and approved by the local animal

care and use committee. Primary cultures of cardiac cardiomyocytes from

1-day-old Sprague–Dawley rats were prepared as described previously.12 Briefly,

ventricular tissue was enzymatically dissociated and the resulting cell suspen-

sion was enriched. The dispersed cells were pre-plated for 1.5 h to minimize

fibroblast contamination. Cells were plated at 2.5–3.0�105 cells ml-1 onto poly-

D-lysine-coated coverslips (Sigma, St Louis, MO, USA), well plates or dishes

and cultured in Dulbecco’s modified Eagle’s medium (Gibco-Invitrogen,

Carlsbad, CA, USA) supplemented with 10% neonatal bovine serum (PAA,

Linz, Austria), 3.7 g sodium bicarbonate and 100mg ml�1 ampicillin.

Cardiomyocytes were randomly divided into the following groups for

treatment: (1) untransfected normal control (control), (2) overexpression by

transfection with pcDNA3.1-hMR1 (MR-1) and (3) vector control transfection

with pcDNA3.1 (vector). (4) The improved duplexed stealth RNAi tech-

nology13,14 was used for silencing assay (RNAi). The sequence of the selected

target against rat MR-1 was 5¢-CGACAGCUAACAAGGCUUCCCAGAA-3¢.
Transient transfection with plasmid pcDNA3.1-hMR1, pcDNA3.1-SUMO-1,

pcDNA3.1 and the interfering siRNA was performed 24 h after plating using

Lipofectamin2000 (Invitrogen) according to the manufacturer’s instructions.

For each transfection sample in 24-well/60-mm dish format, 1.5/15mg plasmid

or 20 pmol/200 pmol stealth siRNA was used. The time course of the experi-

ments is shown in Table 1.

[3H]-Leucine incorporation
Total protein synthesis rate in cardiomyocytes was evaluated by incorporation

of [3H]-Leucine (Amersham, Cambridge, England). Cultured cardiomyocytes

were plated in 24-well plates at 2�104 cm�2. After transfection for 0, 4, 12 and

36 h, cardiomyocytes were incubated with [3H]-Leucine (10mCi per well) for 8,

12, 12 and 12 h. [3H]-Leucine incorporation was determined as described.2

Briefly, cells were washed by pre-cooling 0.01 mol l�1 phosphate buffer saline

three times, and formic acid was added for 30 min at room temperature. The

cell lysis buffer was wholly transferred to a scintillation bottle and incubated

with 2 ml scintillation fluid for 15 min. Radioactivity (calibrated counts�per

min (ccpm)) was determined by using a liquid scintillation counter (PerkinElmer-

wallac1450, Phoenix, AZ, USA).

Calculation of cell size
Cardiomyocytes were plated into 24-well plates at 1�104 cm�2. After transfec-

tion for 16–48 h, cell morphology was observed under a microscope, and cell

surface area was determined and analyzed by using Image Pro-Plus 4.1 (Media

Cybernetics, Silver Spring, MD, USA) as described.15

Immunocytofluorescence
Cardiomyocytes grown on coverslips and transfected for 8–48 h were fixed in

precooling methanol at �20 1C for 5 min and 4% paraformaldehyde at room

temperature for another 15 min, then blocked by the addition of 10% donkey

serum in phosphate-buffered saline containing 0.1% Triton X-100 for 30 min.

We identified cells by indirect immunofluorescent staining with anti-MR-1

rabbit polyclonal antibody (1:50), anti-myomesin-1 goat polyclonal antibody

(1:100) and anti-a-actinin mouse monoclonal antibody (1:400; Sigma-Aldrich,

St Louis, MO, USA) overnight at 4 1C, then Texas red-conjugated donkey anti-

rabbit (Santa Cruz Biotechnology, Santa Cruz, CA, USA), fluorescein isothio-

cyanate (FITC)-conjugated donkey anti-goat (Santa Cruz Biotechnology) or

Alexa Fluor 488-donkey anti-mouse IgG (Molecular Probes, Eugene, OR, USA).

The coverslips were mounted on glass slides with mounting medium and DAPI

(Vector Laboratories, Burlingame, CA, USA). Images were obtained under a

confocal scanning microscope (Zeiss LSM-510 Meta, Jena, Germany). An �60

oil immersion objective with a numerical aperture of 1.4 was used. Distances

between neighboring Z disks were measured and analyzed using Image Pro-Plus.

Quantification of F/G-actin
Cardiomyocytes were plated in 60-mm dishes at 3�104 cm�2. After transfec-

tion for 16 h, cells were lysed with actin stabilization buffer containing

10 mmol l�1 Tris (pH 7.4), 2 mmol l�1 MgCl2, 1% Triton X-100, 0.2 mmol l�1

dithiothreitol and 15% glycerol. Soluble (G-actin) and insoluble (F-actin)

fractions were separated by centrifugation (12 800 g, 1 min) at 4 1C. Each

fraction was resolved by 10% SDS-PAGE and subjected to western blot analysis

with pan-actin antibody (1:500, Cell Signaling Technology, Beverly, MA, USA).

Reverse transcriptase-PCR
After transfection for 8–24 h, total RNA isolation and RT-PCR involved use of

the EasyScriptFirst-Strand cDNA Synthesis SuperMix Kit (TransGen, Beijing,

China) according to the manufacturer’s instructions. Primers for glyceral-

dehyde phosphate dehydrogenase (GAPDH), atrial natriuretic factor (ANF),

brain natriuretic peptide (BNP), myomesin-1, rMR-1 and homologous original

hMR-1 are in Table 2. The PCR products were separated on 1.5% agarose gel

and photographed for analysis.

Western blot analysis
After transfection for 8–48 h, cardiomyocytes were lysed, and protein extraction

was as described.2 The soluble supernatant of extracts was determined by the

Bradford method.16 Samples of 50mg protein were prepared and separated on

12% and 8% acrylamide gels for characterization of MR-1 (17 kDa), MRLC

(16 kDa) and myomesin-1 (185 kDa). The separated proteins were electro-

phoretically transferred to nitrocellulose membranes, blocked with 5% bovine

serum albumin in Tris-buffered saline Tween 20, containing 20 mmol l�1 Tris-

HCl (pH 7.6), 137 mmol l�1 NaCl and 0.1% Tween 20. The membranes were

incubated with the antibodies anti-MR-1 (1:100), anti-myomesin-1 (1:200),

Table 1 Time course

Time points after transfection (h)

Treatment or measurement 8 16 24 48

Overexpression MR-1 (WB) O O O O

Hypertrophy effect

ANF/BNP transcription (RT-PCR) O O O O
[3H]-Leucine incorporation O O O O
Calculation of cell size O O O O

F-/G-actin assays

F/G-actin fractionation — O — —

F-actin organization O O O —

Myomesin-1 and MRLC

Subcellular localization (ICF) O O O O
Expression at protein level (WB) — — O —

Expression at mRNA level (RT-PCR) — — — O

Abbreviations: ANF, atrial natriuretic factor; BNP, brain natriuretic peptide; ICF,
immunocytofluorescence; MRLC, myosin regulatory light chain; RT-PCR, reverse transcriptase
polymerase; WB, western blot.
‘O’ means the time points at which measurements were taken.
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anti-SUMO-1 (1:500; Cell Signaling Technology) and anti-GAPDH (1:500;

Santa Cruz Biotechnology) overnight at 4 1C. After incubation for 2 h with

horseradish peroxidase-conjugated secondary antibodies, the reaction

was visualized by using an enhanced chemiluminescence kit (Santa Cruz

Biotechnology). The integrated optical density (IOD¼mean intensity � area)

of proteins was quantified by using Image-Pro Plus. The relative level of

analyzed protein expression was normalized to that of GAPDH.

Statistical analysis
Each experiment was performed at least in triplicate. Cardiomyocytes were

pooled from three to four different rat litters, and data from three to four

experiments were pooled and analyzed by using SPSS v13.0 (SPSS Inc.,

Chicago, IL, USA); data are presented as mean±s.d. Differences between

two groups were analyzed by two-sample t-test for independent samples and

among groups by one-way analysis of variance with Newman–Keuls post-test

analysis. Po0.05 was considered statistically significant.

RESULTS

Overexpression of MR-1 is sufficient for hypertrophy in
cardiomyocytes
We first examined the effect of the MR-1-overexpression model and
found successful overexpression of MR-1 in MR-1-transfected cardio-
myocytes, with an increase in expression by 1.6-fold at 8 h, 2.8-fold at
16 h, 3.4-fold at 24 h and 3.4-fold at 48 h as compared with pcDNA3.1
(vector)-transfected cultures (Figure 1a, *Po0.05). In determining
hypertrophy, three hypertrophic hallmarks, that is, [3H]-leucine
incorporation, mean area of cell surface and expression levels of
ANF and BNP, were used. Compared with the vector control with
MR-1 transfection for 24 h, ANF and BNP mRNA expression was
increased by 1.1- and 0.9-fold, respectively (Po0.05) (Figure 1b). At
48 h of transfection, protein-synthesis velocity, as determined by [3H]-
Leucine incorporation, was increased 0.9-fold (3333.5±106.1 vs.
1789.3±83.0 ccpm; Po0.05) (Figure 1c) and cell size was significantly
increased by 1.0-fold that of the vector control (18 487.9±3804.9 vs.
8998.2±1427.7mm2, Po0.05) (Figure 1d).

MR-1 is incorporated into sarcomeres and is involved in sarcomere
organization
To directly assess whether MR-1 is involved in sarcomere organization,
MR-1 and sarcomere A-band marker MRLC and Z-line marker
a-actinin were double stained, respectively, in the 48-h-normal-

Table 2 Primer sequences for RT-PCR

Sequences (forward and reverse) Product length (bp)

hMR-1 Pr1: 5¢-GTGGGATCTCACCATGGCGGC-3¢ 755

Pr2: 5¢- CCTCAGGTCTGCAC-3¢
GAPDH Pr3: 5¢-TGCTGAGTATGTCGTGGAG-3¢ 288

Pr4: 5¢-AAAGAGGAAAGGCTGTGAAAC-3¢
ANF Pr7: 5¢- AGGCTCCTTCTCCATCACCAA-3¢ 346

Pr8: 5¢-CGCCCTCAGTATGCTTTTCA-3¢
BNP Pr9: 5¢-TTTGGGCAGAAGATAGACCG-3¢ 239

Pr10: 5¢-TGGCAAGTTTGTGCTGGAAG-3¢
Myomesin-1 Pr11: 5¢-AGTTAACTGGTCCCACAATGGG-3¢ 366

Pr12: 5¢-GAGTGGGCTCGTTGATCTGC-3¢
MLC-2 Pr13: 5¢-GCGAAAGACAAAGATGACTGA-3¢ 364

Abbreviations: ANF, atrial natriuretic factor; BNP, brain natriuretic peptide; GAPDH,
glyceraldehyde phosphate dehydrogenase; hMR-1, human myofibrillogenesis regulator 1;
MLC-2, myosin regulatory light chains.

Figure 1 The relative amounts of MR-1 expression levels and assessment of hypertrophic hallmarks in cardiomyocytes transfected with MR-1. (a) MR-1 was
overexpressed in neonatal rat ventricular cardiomyocytes at 16–48h when transfected with pcDNA3.1-hMR1 plasmid (MR-1) compared with the culture

transfected with pcDNA3.1 (vector). *Po0.05 vs. vector. (b) mRNA levels of atrial natriuretic factor (ANF) and brain natriuretic protein (BNP) normalized to

that of glyceraldehyde phosphate dehydrogenase (GAPDH) after 24-h transfection with MR-1. (c) Incorporation of [3H]-Leucine reflecting the velocity of

protein synthesis after up to 48-h transfection with MR-1. *Po0.05 vs. vector. (d) Mean area of cell surface with MR-1 transfected for 24 and 48 h.
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cultured cardiomyocytes. The staining of MR-1 mainly existed in the
area with negative staining for a-actinin (Figure 2a) but positive staining
for MRLC (Figure 2b). MR-1 was co-located with MRLC. A dark zone
was observed in the middle of the brightly stained MR-1 band
(Figure 2b, arrow), clearly indicating the H-zone of a sarcomere. Thus,
MR-1 could be incorporated into sarcomere A-bands between Z-lines.

Next, we observed the spatial–temporal features of subcellular dis-
tribution of MR-1 by staining with MR-1 antibody. In cardiomyocytes
cultured for 1 to 3 days, most of the cells maintained an intact
myofibrillar structure or punctated, thin, rudimentary filaments
(Figure 2c—control). With prolonged time, the distribution pattern
of MR-1 changed regularly. Most of the cardiomyocytes contained
well-arranged striated bundles composed of regular-repeat positive-
stained units. Transfection of MR-1 caused a rapid organization of
MR-1. A cardiomyocyte cultured for 1 day and transfected for another
16 h exhibited a highly ordered, striated MR-1 pattern (Figure 2c—
MR-1). These two main patterns of MR-1 may also be found in one
cardiomyocyte; for example, a cardiomyocyte transfected with vector
plasmid for 16 h showed the combination of MR-1 structures
(Figure 2c—vector), which suggests an unfinished process of myofi-
brillogenesis in that cell.

Overexpression of MR-1 promotes rapid organization of
sarcomeres
We previously found that MR-1 is involved in sarcomere organization;
therefore, to determine whether MR-1 affects sarcomere organization,

1-day-cultured cardiomyocytes that were cultured or transfected for
another 8–24 h were stained for polymerized actin by phalloidin-FITC
and the ratios of myocytes containing well-organized sarcomeres were
semi-quantified. The normal control displayed a stress fiber-like
structure, which is similar to the vector control (Figure 3A). Transfec-
tion with MR-1 caused rapid sarcomere organization from 8 h. More
than two-thirds of the cell area showed well-organized sarcomeres
after MR-1 transfection as compared with the vector control. The ratio
was increased by 0.6-fold at 8 h (34.5±5.5 vs. 21.6±7.6% in vector;
P40.05), 1.0-fold at 16 h (58.1±4.3 vs. 29.1±5.3%; Po0.01) and
1.3-fold at 24 h (62.1±5.4 vs. 26.4±4.8%; Po0.01).

Quantification of F/G-actin was employed further. The ratio of
polymerized actin to total actin was significantly increased at 16 h by
3.3-fold in MR-1-overexpressed cardiomyocytes (Figure 3B; *Po0.05,
n¼3) as measured by F/G-actin fractionation and western blot
analysis, which indicates that MR-1 induces polymerization of actin
monomers and assembly of actin filament.

As key structural and regulatory proteins of sarcomere, myomesin-1
and MRLC mRNA expression was significantly increased by 6.7- and
3.2-fold, respectively, with MR-1 transfection at 24 h as compared with
vector transfection (Figure 3Ca, Po0.01). Similarly, transfection with
MR-1 at 24 h significantly increased the protein expression of myo-
mesin-1 and MRLC by 24.4- and 3.0-fold, respectively (Figure 3Cb
and c, both Po0.01).

The distance between Z-lines increases gradually during maturation
of myofibrils.17 Therefore, we measured the distance between two
neighboring Z-lines to determine whether MR-1 promotes sarcomer-
ogenesis. We found that transfection with MR-1 enlarged the average
distance between neighboring Z-lines as compared with the vector
control, from 1.62±0.06 vs. 1.47±0.04mm at 8 h to 1.79±0.07 vs.
1.53±0.06mm at 16 h to 1.93±0.08 vs. 1.72±0.04mm at 24 h
(Po0.05), which indicates that MR-1 induces a rapid organization
of sarcomeres.

Molecular mechanism of MR-1-promoted sarcomere organization
The exact mechanism of MR-1-promoted sarcomere organization was
asked. Myomesin-1, which was thought to be a cytoskeletal protein, is
also present in the nucleus of myocytes of newborn pups, resulting in
differential regulation of several gene products. The shuttling of
myomesin-1 suggests that myomesin-1 may have special roles in the
differentiation of striated muscle in addition to regulating its
contractile functions.11 Overexpression of MR-1 induces translocation
of myomesin-1. Myomesin-1 is exclusively cytoplasmic in adult
cardiomyocytes but was predominantly localized in the nucleus
when expressed in primary cultured neonatal rat cardiomyocytes
(Figure 4a—control). Transfection with vector did not affect the
nuclear localization (Figure 4a—vector). Immunostaining revealed
that in cardiomyocytes transfected with MR-1 for 24 h, myomesin-1
located in the nucleus shifted to the cytoplasm (Figure 4a—MR1),
where it functions in myofibrillogenesis.

SUMOylation is involved in MR-1-regulated myomesin-1 translo-
cation. The SUMOylation status of myomesin-1 is important.11

To determine whether SUMO causes translocation of myomesin-1
and sarcomere organization, pcDNA3.1-SUMO-1 was transfected into
cardiomyocytes for 24 h. Similar to the effect of MR-1, translocation of
myomesin-1 was detected (Figure 4a-SUMO-1). We next transfected
the interfering stealth siRNA into cardiomyocytes to silence the
original rMR-1 and found that most of the myomesin-1
signals were still localized in the nucleus (Figure 4a—RNAi). Further-
more, on co-transfecting rMR-1-stealth siRNA and SUMO-1
into cardiomyocytes, myomesin-1 signals were distributed in the

Figure 2 Subcellular localization and organization of MR-1 in cardiac

myofibrils indicated by antibody of MR-1, a-actinin and MLC-2. (a) Double

immunofluorescent staining of MR-1 (red) with a-actinin (green) showing

regular striated pattern of MR-1 (red) in the areas where a-actinin (green) is

negatively stained. (b) MR-1 is co-localized with MLC-2 and merged in

A-band. (c) Staining of MR-1 in neonatal rat cardiomyocytes. Control: the

punctated, thin, rudimentary filaments of MR-1 are shown in the normal

cultured cardiomyocytes. MR-1: striated pattern of MR-1 staining shown in a
cardiomyocyte transfected with MR-1. Vector: both nonstriated and striated

MR-1 filaments shown in one cardiomyocyte transfected with vector plasmid.
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nuclear and peri-nuclear areas (Figure 4a—SUMO-1+RNAi),
which reveals an attenuated translocation of myomesin-1. We
also determined whether the SUMO-1-promoted sarcomere organiza-
tion, as well as this ordered assembly, could be affected by
silencing MR-1. The ratio of cardiomyocytes with well-organized
sarcomeres was reduced from 59.8±6.9% in the SUMO-1 group
to 22.1±6.4% with RNAi silencing (Figure 4b, *Po0.05), which
suggests that MR-1 is necessary for myomesin-1-mediated sarcomere
organization.

MR-1 promotes SUMOylation without any increase in SUMO-1
level. To clarify whether MR-1 promoted SUMOylation of myomesin-1
by increasing the SUMO peptide expression, we measured SUMO-1
expression after MR-1 transfection for 24 h. Both mRNA and protein
levels of SUMO-1 in MR-1-transfected cells were not increased as

compared with the vector control (P40.05), which indicates that MR-1
may regulate myomesin-1 by promoting its conjugation with SUMO
peptides rather than by new synthesis of SUMO.

DISCUSSION

This study of the novel cloned MR-1, involved in cardiac hypertrophy,
showed for the first time that overexpression of MR-1 directly induced
hypertrophy in neonatal rat cardiomyocytes, with an upregulation of
ANF and BNP, an increase in protein synthesis concomitant with an
increase in cell size and increased organization of sarcomeres. Thus,
MR-1 is necessary for cardiomyocyte hypertrophy. FITC-annexin V,
which binds phosphatidyl serine on apoptotic cells, was measured by
flow cytometry. It did not show any significant difference of live-cell
ratio between MR-1-transfected myocytes and untransfected myocytes

Figure 3 Transfection with MR-1 causes rapid sarcomere organization in neonatal rat cardiomyocytes. (A) 1-d cultured cardiomyocytes were transfected or

normally cultured for another 24 h, fixed and specifically labeled with phalloidin-FITC. The figure shows the ratio of well-organized cardiomyocytes when

MR-1 was transfected in cardiomyocytes for 16–24 h. *Po0.01 vs. vector. (B) The ratio of polymerized actin to G-actin in MR-1-transfected cardiomyocytes

at 16 h as measured by F/G-actin fractionation and then western blot analysis. *Po0.05 vs. vector. (C) RT-PCR and western blot analysis of mRNA and

protein levels of myomesin-1 and MLC-2 normalized to that of glyceraldehyde phosphate dehydrogenase (GAPDH) at 16h (a) and western blot results (b, c).

*Po0.01 vs. vector. A full color version of this figure is available at the Hypertension Research journal online.
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until 48 h. During the same time course, the striated-like myofibril
organization in MR-1-transfected myocytes did not differ from that in
the untransfected cells (data not shown). These results suggested that
MR-1 induces adaptive hypertrophy within 48 h. MR-1 is highly
expressed in angiotensin II-induced hypertrophic rat cardiomyo-
cytes.6 Whether other hypertrophic stimuli such as endothelin or
epinephrine induce MR-1 expression is still unclear and will be
studied further.

Previous immunohistochemistry verified that MR-1 was localized
in cardiac myofibrils and interacted with several sarcomeric contractile
proteins1 and provided evidence that MR-1 might induce cardiac
hypertrophy by promoting myofibrillogenesis. We first detected MR-1
incorporated into the sarcomere A-band, colocalized with MRLC.
Thus, MR-1 was involved in sarcomere assembly and cardiomyocyte
differentiation by serving a structural role. For more understanding,
we measured the hallmarks of myofibrillogenesis, such as F/G-actin
ratio, ratio of well-organized cardiomyocytes, and levels of myomesin-1
and MRLC. In addition, the periodicities of M-lines remained con-
stant at approximately 2.0mm throughout sarcomerogenesis, whereas

distances between Z-lines increased from 1.1mm in early sarcomere
organization to approximately 2.0mm in more mature structures.17

We thus measured the mean distance between Z-lines by immuno-
staining with antibody for the Z-line protein a-actinin. Early after
transfection, from 8 to 16 h overexpressed MR-1 caused a rapid
increase in the ratio of polymerized actin to total actin, ratio of
well-organized cardiomyocytes and average distance between two
neighboring Z-lines, as well as expression of sarcomeric myomesin-1
and MRLC. Interestingly, these significant alterations occurred long
before the hypertrophic phenotypes such as cell size and [3H]-Leucine
incorporation, both of which were significantly increased with
transfection of cardiomyocytes for 48 h. Therefore, sarcomere
organization may be a substantial basis of cardiac hypertrophy.

We next wondered how MR-1 regulates sarcomere organization.
Overexpression of MR-1 promoted myomesin-1 translocation and
increased the expression of myomesin-1,1 which has special roles in
assembly and stabilization of sarcomere and differentiation of striated
muscle.7,11 The characteristic upregulation and translocation of
myomesin-1 suggests that MR-1 may promote sarcomere organization
by regulating myomesin-1. The 185-kDa M-line molecule myomesin-1
is a high-molecular-weight protein originally identified because of its
ability to interact with titin and myosin.18–21 Myomesin-1 is thought
to be the most prominent structural component of the sarcomeric
M-line because of its essential role in sarcomere assembly and
stabilization.22,23

To explain why myomesin-1 is targeted to the nucleus only in
neonatal cardiomyocytes but not in adult cardiomyocytes, SUMO-
involved translocation of myomesin-1 was considered. SUMO is a
novel post-translational protein that contains 101 amino-acid residues
and modifies other proteins through the SUMOylation pathway.
SUMOylation modification has been implicated in the regulation of
subcellular localization of proteins. This process involves the covalent
attachment of a SUMO-peptide to the lysine residues within the
consensus sequence WKXE of the target proteins.24,25 Reddy KB
hypothesized that myomesin-1 is required for differential expression
of yet unknown sarcomeric proteins.11 Once this expression
is achieved, SUMOylated myomesin-1 is exported out of the
nucleus and incorporated into the sarcomeric structures. However,
SUMO-1 and/or SUMO-conjugating machinery are not fully
expressed in all neonatal cardiomyocyte nuclei, where most of the
myomesin-1 is still localized.17 We found that overexpression of
SUMO-1 promotes translocation and expression of myomesin-1 and
assembly of sarcomeres, which mimicked the effect of overexpression
of MR-1. However, SUMO-1-induced translocation and upregulation
of myomesin-1 were attenuated when SUMO-1 was co-transfected
with rMR-1-stealth siRNA, which indicates that MR-1 is required in
SUMO-1-involved myomesin-1 shifting. Myomesin-1 might be regu-
lated by an MR-1-involved SUMOylation mechanism. Furthermore,
we also measured the mRNA and protein levels of SUMO-1 after
transfection and found that overexpression of MR-1 did not affect the
SUMO expression. Thus, SUMOylation of myomesin-1 was not
promoted by the SUMO-conjugating machinery, rather it was pro-
moted by the increase of SUMO peptides. Overexpression of MR-1
may induce cardiomyocyte hypertrophy by promoting SUMOylated
myomesin-1-mediated sarcomere organization.
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Figure 4 MR-1 is necessary for myomesin-1 translocation and SUMO-1-

induced promotion of sarcomere organization. (a) Immunofluorescent

staining of myomesin-1 showing translocation of myomesin-1 in neonatal rat

cardiomyocytes. Myomesin-1 predominantly localized in the nucleus in

primary cultured neonatal rat cardiomyocytes (control). With MR-1

transfected into cardiomyocytes for 24h, myomesin-1 translocated to

cytoplasm (MR-1). Transfection with pcDNA3.1 plasmid showed localization

of myomesin-1 similar to the control (vector). On transfection with small

ubiquitin-like modifier-1 (SUMO-1), myomesin-1 shifted to cytoplasm

similar to with MR-1 transfection. Myomesin-1 was localized in the nuclear

area with RNAi silencing (RNAi). Transfection with SUMO-1 in MR-1-

silenced cardiomyocytes showed that myomesin-1 localized in nucleus and

peri-nuclear area (SUMO-1+RNAi). (b) Silencing of MR-1 attenuated SUMO-

1-induced promotion of sarcomere organization as detected by FITC-labeled
phalloidin. Sarcomere organization with SUMO-1 transfected into

cardiomyocytes for 16 h (SUMO-1) and with RNA interference silencing

(SUMO-1+RNAi), *Po0.05. A full color version of this figure is available at

the Hypertension Research journal online.
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