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Abstract
Cancer cachexia is a highly complex multifactorial disorder that is often misdiagnosed, leading to suboptimal health outcomes.
Indeed, cachexia is a concern in cancer, typifying lower response to treatment and risk of death. Thus, efforts have been made to
better understand the molecular basis of this syndrome, envisioning to improve its diagnosis and management.
C-reactive protein (CRP) has been reported to be consistently increased in the circulation of patients with body wasting associated

to chronic diseases. However, the role of CRP in the pathogenesis of cachexia remains elusive. Several hypotheses have been
advanced but most of experimental findings support an indirect effect on the activation of muscle proteolysis, mostly through its
interplay with pro-inflammatory cytokines. Herein, we overview the contribution of CRP to body wasting and its putative biomarker
value for the diagnosis and follow-up of the therapeutic management of cachexia.

Abbreviations:Akt (or PKB) = protein kinase B, ALP = autophagy-lysosome pathway, AMPK = activated protein kinase, AP-1 =
activator protein 1, APP = acute-phase protein, BMI = body mass index, C/EBP = CCAAT enhancer-binding proteins, CRP = C-
reactive protein, FOX-O = transcription factors forkhead, Gp130 = glycoprotein 130, IGF-1 = insulin-like growth factor 1, IGF-1R =
IGF-1 receptor, IkB = inhibitor of kappa B, IL = interleukin, IL-1R = IL-1 receptor, IL-6R = IL-6 receptor, IRS-1 = insulin receptor
substrate 1, JAK = Janus Kinase, LC3 = microtubule-associated protein 1 light chain 3, LPC = lysophosphotidylcholine, mCRP =
monomeric CRP, mRNA =messenger ribonucleic acid, mTOR =mammalian target of rapamycin, mTORC1 =mammalian target of
rapamycin complex 1, MuRF1 =muscle ring finger protein 1, NF-kB = nuclear catabolic factor kappa B, NK = natural killer, pCRP =
pentameric CRP, PI3K = phosphoinositide 3-kinases, PLA2 = phospholipase A2, SMAD = acronym from the fusion of
Caenorhabditis elegans Sma genes and the Drosophila Mad, mothers against decapentaplegic, STAT = signal transducer and
activator of transcription, Th1 = T helper cell, TNF-a = tumor necrosis factor alpha, TNFR = TNF-a receptor, UPP = ubiquitin-
proteasome pathway.
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Introduction

C-reactive protein (CRP) was the first acute-phase protein to be
described by Tillett and Francis in 1930, owing its name to its
ability to react with C-polysaccharide of pneumococcal bacteria
cell wall.1 Since then, its clinical usefulness as marker of acute-
phase response tomost forms of inflammation haswidely spread.2
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It is recognized that highCRP values are not diagnostic by itself, as
this is commonly found in several chronic diseases, but can be very
informative when integrated with other clinical data.2–4,5 For
instance, in the absence of an underlying infection, elevated
circulating levels of CRP are associated with poor prognosis,
advanced stages of disease6,7 and/or to cachexia in cancer
setting.8,9 It is also associated with an increased risk of anorexia,
weight loss, fatigue and pain,10–12 which are all signs of cachexia.
Cachexia is a multifactorial syndrome defined by “an ongoing

loss of skeletal muscle mass (with or without loss of fat mass) that
cannot be fully reversed by conventional nutritional support and
leads to progressive functional impairment”.13 In the context of
cancer, cachexia is usually considered when there is an
involuntary weight loss higher than 5% or a body mass index
(BMI) lower than 20kg/m2 with any degree of weight loss higher
than 2%.14 Cachectic patients also present decreased physical
performance, which impairs their quality of life and the clinical
outcome of disease treatment.15 This syndrome is characterized
by reduced food intake and abnormal metabolism as a result of
tumor metabolism, systemic inflammation, among other effects
mediated by the tumor.14,16,17 More than half of cancer patients
suffer from cachexia at the time of death.18

In addition to their involvement in promoting cancer cell
growth, resistance to apoptosis and promotion of angiogenesis/
metastasis, pro-inflammatory cytokines such as interleukin (IL)-
6, IL-1 and TNF-a are the main molecular triggers of cachexia.19

In the liver, these cytokines induce the synthesis of CRP.19

However, the role of CRP in themodulation of bodywasting, and
consequently on cachexia pathogenesis, remains elusive. Herein,
we explore the molecular mechanisms behind body wasting in
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cancer that are regulated by CRP and explore its putative utility
for cachexia diagnosis.

Where and when CRP is produced

CRP is a plasma protein that belongs to pentraxins protein
family.20 It has 5 identical non-covalently associated protomers
(206 amino acid residues) arranged symmetrically around a
central pore. The protomer has a ligand binding site that consists
of a pocket with 2 calcium ions bound,21 which is also
fundamental for the stability of the CRP molecule.22 There are
2 conformational distinct forms, native pentameric CRP (pCRP)
and monomeric CRP (mCRP). pCRP seems to have pro-
inflammatory or anti-inflammatory properties depending on
the context, while the mCRP exerts potent pro-inflammatory
actions and may even amplify the inflammatory response.23,24

Usually its pro-inflammatory action occurs in endothelial cells,
endothelial progenitor cells, leukocytes and platelets.23 The link
of CRP to inflammationmay result from the dissociation of pCRP
into pro-inflammatorymCRP.25 This dissociation is promoted by
the binding of pCRP subunits to phosphocholine (PC) residues of
lysophosphatidylcholines (LPCs) on the cell membrane. LPCs are
exposed by phospholipase A2.26 In activated monocytes, pCRP
also interacts with lipid rafts on the cell surface. pCRP is
encapsulated onto microvesicles where it undergoes a conforma-
tional change. In this activated form, pCRP binds to complement
C1q, which forces its dissociation to mCRP.26

In response to most forms of tissue damage, infection,
inflammation, and malignant neoplasia, hepatocytes synthetize
various proteins, known as acute-phase proteins (APP, also
known as positive acute-phase proteins).20 In addition to C-
reactive protein, there are other APPs, including proteinase
inhibitors (eg, a1-antitrypsin, a1-antichymotrypsin) and coagu-
lation (eg, fibrinogen, factor VIII), complement (eg, C2, C3) and
transport (eg, haptoglobin, serum amyloid A) proteins. However,
the only one that exhibits sensitivity and response rate
comparable to CRP is the serum amyloid protein A.3 APP
synthesis is controlled by cytokines originating at the pathology
site,27 or at tumor site.28,29 The tumor microenvironment
contains innate immune cells, including macrophages, neutro-
phils, mast cells, myeloid derived suppressor cells, dendritic cells
and natural killer (NK) cells, and also, T and B lymphocytes.30,31

Tumor-associated macrophages are the immune cells most
abundantly found in the tumor microenvironment.30 These cells
are an important source of cytokines,32 particularly M1
macrophages that express high levels of pro-inflammatory
cytokines.33 Th1 lymphocytes are also relevant sources of pro-
inflammatory cytokines.34 Some cytokines appear to have origin
in the tumor, which was reported in a large range of solid
tumors.35–37 Cancer cells overexpress the receptors for those
cytokines, using them to boost tumor development and
immunosuppression.38,39 The IL-6 receptor is an example. This
receptor is overexpressed in several types of cancer (eg, oral
squamous cell carcinoma) and its activation leads to the
upregulation of cells proliferation, differentiation and resistance
to apoptosis.31 Through the activation of several downstream
effectors such as NF-kB, AP-1, STAT and SMAD, some cytokines
control the immune and inflammatory environment,30 allowing
the tumor to grow progressively without the immunological
constraints.40 This immunosuppressive microenvironment is also
favored by different features of tumor cells’ metabolism.41,42

Cancer cells switch from mitochondrial oxidative phosphoryla-
tion to aerobic glycolysis, a metabolic reprogramming known as
2

“Warburg effect”.41,43 The resultant local acidity and the
hypoxia that characterizes solid tumors with rapid tumor growth
and aberrant vasculature formation have profound effects on
both innate and adaptive immune cells.44 For instance, T cell
differentiation and function, and NK cell cytotoxic properties are
impaired by insufficient oxygen supply.44

The most well characterized pro-inflammatory cytokine that
regulates CRP synthesis is interleukin (IL)-6, and to a lesser extent
IL-1b.45 This regulation occurs via recruitment and activation of
family members C/EBP (C/EBPb and C/EBPa), NF-kB and
STAT3 pathways.45–47 STAT3 and Rel proteins bind to the
proximal CRP promoter, with subsequent interactions resulting
in increased C/EBP binding, thereby facilitating maximal CRP
overexpression.48 Once synthesized, CRP is rapidly secreted by
liver cells (Fig. 1).49 An increase in CRP circulating levels is not
immediately noticed, being detected after 6 to 8hours, peaking at
24 to 48hours. Although CRP is mainly synthesized in the liver,
its mRNA was also detected in respiratory tract epithelial cells,
T-lymphocytes,50 adipose tissues, epithelial cells of renal cortical
tubules, and in smooth muscle cells and macrophages from
atherosclerotic plaques.51

CRP synthesis is stimulated by several factors such as aging,
increased blood pressure, smoking, coffee and alcohol consump-
tion, decreased physical activity, high triglyceride levels, insulin,
high protein diet, chronic tiredness and sleep disturbances, and
depression.52 The mechanisms involved in age-related increase of
chronic inflammation are not fully understood. It has been
proposed that the highest levels of CRP, and other inflammatory
markers, are related to increased volume of adipose tissue
(especially visceral), decline of sex hormones, and increased
oxidative damage, common situations in the elderly individua-
ls.53 In addition, aging usually results in immunosenescence, a
process characterized by the functional decline of the immune
system, resulting in increased susceptibility to infectious diseases
and prevalence of non-communicable diseases.54 However, age-
related inflammatory status might be modulated by lifestyle. For
instance, the decrease of TNF-a and IL-6 circulating levels has
been associated with an active lifestyle.55 Consequently, dimin-
ished CRP production and secretion is observed.56 Physical
activity also induces the increase of circulating anti-inflammatory
cytokines, such as the IL-1 receptor antagonist and IL-10, which
hamper the production of CRP.54,57

C-reactive protein in cancer cachexia

Epidemiologic studies highlight an association between elevated
circulating CRP levels, measured by high-sensitivity assays, and
the risk of certain types of cancer.58–67 For example, elevated
concentrations of CRP have been positively associated with
epithelial cancers such as liver, lung, colorectal, endometrial and
breast.63–67 Moreover, a positive association between CRP and a
poor prognosis of cancer was reported, with an evident
relationship between its levels and disease prognosis.6 Compar-
ing cancer types, the highest mCRP values appear to be detected
in esophagus, rectum, colon, bladder and pancreas cancer
patients.6 In addition, males with advanced cancers present
higher levels of CRP than females, which was associated with
more weight loss and shorter survival.68 Despite the prognostic
value of CRP for advanced cancers,6,7 the molecular basis behind
this association are not known.
Up to 50% to 80% of cancer patients exhibit cachexia at

advanced stages of disease.69 The prevalence of this syndrome
reaches 86% in the last 1 to 2weeks of life.70 Thus, the increase in



Figure 1. An overview of the signaling pathways behind the role of CRP in cancer-induced muscle wasting. Pro-inflammatory cytokines drive the synthesis of CRP
by the liver. The pro-inflammatory properties CRP are associated to the spread of pro-inflammatory cytokines synthesis, which act on skeletal muscle, activating
specific signaling pathways such as STAT and NF-kB pathways. These pathways activate the expression of E3 ligases from the UPP. Concomitantly, the Akt/
mTOR pathway is downregulated. Thus, FOXO3 phosphorylation is suppressed, allowing its translocation to the nucleus where it regulates the expression of
atrogin and MuRF1. The direct effect of CRP was reported and seems to occur through the inhibition of Akt signaling; however, the mechanisms involved are not
known (figure produced using Servier Medical Art). Akt=protein kinase B, ALP=autophagy-lysosome pathway, FOXO3= forkhead box O3, Glc=glucose,
gp130=glycoprotein 130, IGF-1= insulin-like growth factor 1, IGF-1R= IGF-1 receptor, IkB= inhibitor of kappa B, IL= interleukin, IL-1R= IL-1 receptor, IL-6R= IL-
6 receptor, IRS-1= insulin receptor substrate 1, JAK=Janus Kinase, LC3=microtubule-associated protein 1 light chain 3, mCRP=monomeric CRP, pCRP=
pentameric CRP, PI3K=phosphoinositide 3-kinases, STAT3=activator of transcription 3, TNF-aR=TNF-a receptor, UPP=ubiquitin-proteasome pathway.

Tavares et al Porto Biomed. J. (2021) 6:1 www.portobiomedicaljournal.com
systemic inflammation given by circulating levels of APPs such as
CRP seems to be associated to muscle mass loss9 and elevated
CRP levels were shown to be an early predictor of severe lean
tissue loss.6,71 Although not yet fully understood, some
hypotheses have been raised to mechanistically explain this
association. To the best of our knowledge, no receptors for CRP
have been reported in skeletal muscle. The most widely
recognized inflammatory-related triggers of muscle decline in
cancer are the pro-inflammatory cytokines (Fig. 1).72 Neverthe-
less, some redundancy in their participation in prompting muscle
wasting has been noticed in literature. Several issues seem to
contribute to this lack of consistency, such as cancer type.8,73

It has been argued that the cytokines that stimulate the
synthesis of CRP in hepatocytes also act on skeletal muscle.74 By
activating neutrophils and monocytes to secrete IL-6, IL-1b and
TNF-a, CRP indirectly promotes muscle wasting.24 Pro-
3

inflammatory cytokines such as IL-6 act on JAK/STAT receptors
in skeletal muscle.75,76 The activation of STAT3, by phosphor-
ylation, leads to the spontaneous dimerization of this transcrip-
tion factor. This pathway ends with phospho-STAT3 being
translocated to the nucleus, where the dimers bind to the
consensus sequences in the promoter regions of the target genes
(Fig. 1).77 Consequently, the expression of atrogin and MuRF1
increases. These E3 ligases from the ubiquitin-proteasome
pathway (UPP) participate in the breakdown of muscle
proteins.78 The nuclear catabolic factor kappa B (NF-kB) may
also be activated by IL-1 and TNF-a.79,80 This transcription
factor has an important role in the regulation of the UPP.81 Other
proteolytic pathways intervene in muscle wasting such as the
autophagic-lysosomal process. This proteolytic pathway seems to
be required to energetically sustain tumor growth.82 Pro-
inflammatory cytokines also down-regulates muscle anabolic
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capacity, through the modulation of IGF-1 dependent signaling
pathway (Fig. 1).83 All these molecular events driven by
inflammation lead to muscle wasting.84 However, muscle fibers
are not affected in the same way. Several studies suggest that type
II fibers are the most vulnerable to cachexia, possibly because
they are preferential targets of pro-inflammatory cytokines.85–88

Indeed, increased inflammatory signaling leads to changes in
muscle contractile phenotype.89 In tumor-bearing mice, muscle
wasting was related with a slow-to-fast transition,90 a phenotype
characterized by decreased oxidative metabolism and mitochon-
drial density.89 However, very few studies have explored muscle
phenotype remodeling in cachexia and, to the best of our
knowledge, no studies have compared the distribution of
cytokine receptors among distinct fiber types.
CRP has been implicated in the regulation of muscle cells’

proliferative and metabolic activities. Myogenic cells exposed to
serum from elderly women with elevated CRP levels showed
reduced proliferative rates.91 The proliferative rate of other cell
types, such as endothelial cells was also reported to be affected by
serum with increased CRP content.92 The molecular mechanisms
behind this effect are not understood but seems to be indirect,
through IL-6. This pro-inflammatory cytokine promotes the
downregulation of the Akt/mTOR pathway in muscle fibers
(Fig. 1).75 However, Wåhlin-Larsson et al93 reported a CRP-
mediated reduction in Akt phosphorylation based on experimen-
tal observations retrieved from myotubules exposed to CRP
added to culture medium (at a concentration of 50mg/mL). Other
molecular players were reported to be affected by CRP, such as
ribosomal protein S6. The phosphorylation levels of this critical
component of the 40S ribosomal subunit was also shown to be
reduced. In opposition, an increase in the phosphorylated form of
Raptor Ser792 was observed.93 Raptor is a direct substrate of
AMPK and a mTOR-binding-partner, linked to the inhibition
of mTORC1 (Fig. 1).94 To the best of our knowledge, there are
no in vivo studies reporting a direct role of CRP in muscle
remodeling.
If by one side inflammation seems to trigger muscle wasting,

then muscle wasting seems to support the inflammatory status95

and also to support tumor’s metabolic needs.70,96 For instance,
glutamine is released by skeletal muscle in order to provide
energetic substrate and precursors to be used in nucleic acid
synthesis for rapidly dividing cells, such as tumor and immune
cells.96 Alanine is other example of an amino acid exported in
large quantities from skeletal muscle and used to support liver
gluconeogenesis, giving glucose for tumor cells.95 Amino acids
secreted by wasted skeletal muscle also support APP synthesis by
the liver (Fig. 1).95,96 Thus, the interplay between liver,
muscle fibers, immune and tumor cells seem to be critical in
feeding the wasting phenotype characteristic of advanced stages
of cancer.
Limitations in the application of CRP as a biomarker of
cancer cachexia

Detecting cachexia at its early stages has been a major goal in the
care of cancer patients. Several putative biomarkers derived from
different body compartments have been advanced, such as
myostatin, ghrelin and pro-inflammatory cytokines.97,98 From
these, pro-inflammatory cytokines have been the preferential
targets of intensive research in the set of cancer cachexia; however,
cytokinesprofile varywith tumor typeand stage.99 Since it doesnot
seem to be modulated by these variables, CRP is a promising
candidate marker of cachexia in the set of cancer.6 Still, there are
4

some limitations to be considered in the interpretation of CRP
values for diagnosis. The specificity and cutoff values are probably
the main problems.7 For instance, an underlying infection should
be ruled out when assessing the diagnosis value ofCRP in the set of
cancer cachexia.100Themost commonlyused cutoff point todefine
cachexia appears to be CRP concentration higher than 10mg/L.6

However, a cutoff higher than 25mg/L was also reported.100

Shrotriya et al7 reviewed 271 studies and in 92 of them, the cutoff
value of CRP for cachexia diagnosis was set at 10mg/L. However,
in the remaining analyzed studies the reported cutoffs varied from
values higher than 2mg/L to values higher than 50mg/L. Such
discrepancies may be due to the use of distinct laboratory
methodologies forCRPassessment.101Moreover,CRP synthesis is
modulated not only by several clinical conditions102 but also by
lifestyle,103 which challenge the definition of a unique cutoff value
for all cancer patients’ population. Eventually, more than a single
CRP cutoff value should be considered, depending on the screened
population.
Conclusions

CRP is a highly sensitive marker of inflammation to be considered
in the diagnosis of cancer cachexia. Indeed, the levels of this acute-
phase protein reflect the interplay between inflammation and
muscle decline in the set of noncommunicable diseases such as
cancer. However, the application of CRP in the clinical assessment
of cancer cachexia has been hampered by several issues, such as its
lack of specificity for cachexia and the poor comprehension of its
role in the activation ofmusclewasting.Most of the studies suggest
an indirect effect, through pro-inflammatory cytokines with only
one study suggesting a direct role. Moreover, CRP levels are very
responsive to lifestyle and several pathophysiological conditions.
Thus, the identification of cutoff values for CRP values is needed
and should consider the heterogeneity of cancer patients’ clinical
profile. The definition of a standard laboratorymethodwill help to
define these cutoff values. Future studies should also explore the
mechanistic association of CRP with muscle decline. With such
information, CRP might be proposed as a relevant marker for the
early diagnosis of cachexia and the follow-up of anti-cachexia
therapeutic approaches.
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