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Anticancer peptides (ACPs) have provided a promising perspective for cancer treatment,
and the prediction of ACPs is very important for the discovery of new cancer
treatment drugs. It is time consuming and expensive to use experimental methods to
identify ACPs, so computational methods for ACP identification are urgently needed.
There have been many effective computational methods, especially machine learning-
based methods, proposed for such predictions. Most of the current machine learning
methods try to find suitable features or design effective feature learning techniques
to accurately represent ACPs. However, the performance of these methods can be
further improved for cases with insufficient numbers of samples. In this article, we
propose an ACP prediction model called ACP-DA (Data Augmentation), which uses
data augmentation for insufficient samples to improve the prediction performance. In
our method, to better exploit the information of peptide sequences, peptide sequences
are represented by integrating binary profile features and AAindex features, and then
the samples in the training set are augmented in the feature space. After data
augmentation, the samples are used to train the machine learning model, which
is used to predict ACPs. The performance of ACP-DA exceeds that of existing
methods, and ACP-DA achieves better performance in the prediction of ACPs
compared with a method without data augmentation. The proposed method is available
at http://github.com/chenxgscuec/ACPDA.

Keywords: anticancer peptide prediction, data augmentation, feature representation, multilayer perception,
machine learning

INTRODUCTION

With the increase in population age, cancer has become one of the most threatening diseases for
humans (Bray et al., 2018; Zhang et al., 2020). The complexity and heterogeneity of cancer make
it difficult to treat. Traditional clinical methods such as surgery, radiotherapy, and chemotherapy
can be used to treat cancer, but the side effects of these methods are very obvious and can cause
great discomfort for patients (Doja et al., 2020). Although traditional anticancer drugs are effective,
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their shortcomings, such as gastrointestinal damage (Mitchell,
2006), are also notable and can easily cause multidrug tumor
resistance (Holohan et al., 2013; Wijdeven et al., 2016). In view
of these problems, it is urgent to find and design novel cancer
treatments and anticancer agents to fight cancer. In recent years,
due to their high specificity, low production cost, and low
toxicity profile, peptides have emerged as alternative anticancer
agents (Otvos, 2008).

Anticancer peptides (ACPs), a class of naturally occurring
important defense substances, provide a new direction for
research involving novel anticancer drugs. ACPs are usually short
peptides with a length of 10–50 amino acids. Since ACPs only
interact with the anionic cell membrane components of cancer
cells, they exhibit extensive cytotoxicity against a variety of cancer
cells but not normal cells (Barras and Widmann, 2011; Boohaker
et al., 2012). There are currently many peptide-based therapies
being evaluated for their efficacy in treating tumors. However,
only a few peptides can be used for clinical treatment. Therefore,
the discovery of new ACPs is of great significance to the successful
clinical application of these peptides. An increasing number of
ACPs from protein sequences have been identified and verified
by experiments (Tyagi et al., 2013), but it is time consuming
and expensive to use experimental methods to identify ACPs.
Therefore, computational methods for ACP identification are
urgently needed.

There are many computational methods in the field of
bioinformatics, that are used to solve different kinds of
bioinformatics problems (Zou et al., 2018; Zou, 2019; Deng
et al., 2020; Huang et al., 2020). There are many computational
methods, especially machine learning-based methods, for the
identification of ACPs. Anti-CP was the first computational
tool based on a support vector machine (SVM), which used
sequence-based features and binary profiles (Tyagi et al., 2013).
Hajisharifi et al. (2014) considered Chou’s pseudo amino acid
composition (PseAAC) and local alignment kernel for the
prediction of ACPs (Amanat et al., 2020; Hasan et al., 2020;
Naseer et al., 2020). Chen et al. (2016) developed a method
based on the optimization of g-gap dipeptide components. Li
and Wang (2016) selected the amino acid composition, average
chemical shifts, and reduced amino acid composition to represent
ACPs. Wei et al. (2018) developed a feature representation
learning model with a two-step feature selection technique to
improve the prediction of ACPs. Xu et al. (2018) proposed
using 400-dimensional features with g-gap dipeptide features
for ACPs. Boopathi et al. (2019) applied a two-step method to
obtain optimal feature vectors, which were used as inputs for
a SVM. Ge et al. (2019) proposed a generalized chaos game
representation (CGR) for ACP identification. Ge et al. (2020)
used different features and multiple classifiers and the classifier
outputs were used as inputs for a SVM, which was used to
identify ACPs. Yu et al. (2020) explored three different deep-
learning architectures and found that recurrent neural networks
are superior to other architectures. Zhao et al. (2020) used a deep
belief network to encode the sequences and chemical features of
ACPs and applied random relevance vector machines to identify
ACPs. Yi et al., 2019 proposed a deep learning long short-
term memory (LSTM) neural network model called ACP-DL to

predict novel ACPs. Agrawal et al., 2020 used various features
and different machine learning classifiers on two datasets for the
prediction of ACPs.

However, the number of ACPs involved in the above methods
did not exceed 1000 cases, which is not a large number. The
performance of these methods could potentially be further
improved if additional ACPs are considered. In this article, we
use data augmentation to increase the number of samples in
the training set and further improve the performance of ACP
prediction methods based on machine learning. Specifically, we
propose an ACP prediction model with Data Augmentation,
named ACP-DA. In our method, binary profile features (BPFs)
and the features that describe the physicochemical properties
of amino acids are concatenated to represent peptides, and the
samples in the training set are augmented in the feature space.
The samples after data augmentation are used to train a machine
learning model, which is used for the prediction of ACPs.

The flowchart of ACP-DA is shown in Figure 1. There are
four major steps in our method. First, given peptide sequences as
the input, each sequence is preprocessed to equal length. Second,
the peptide sequences are represented by concatenating BPFs
and AAindex features selected based on minimum redundancy
maximum relevance (mRMR). Third, data augmentation is
performed in the feature space of samples in the training set.
Ultimately, the data-augmented samples are used to train a
multilayer perception (MLP) model, and the trained MLP model
assigns labels to the samples in the testing set. To evaluate the
performance of our method, we used five-fold cross-validation
to evaluate ACP-DA based on two benchmark datasets: ACP740
and ACP240. We discuss the performance of this method with
different parameters and evaluate the effect of data augmentation
based on different classifiers. The experimental results show that
data augmentation can help improve the prediction of ACPs
under the condition of using suitable classifiers, and our method
is suitable for ACP prediction.

MATERIALS AND METHODS

Datasets
A good dataset is very important for establishing a reliable ACP
prediction model. In recent years, several excellent datasets have
been established (Wei et al., 2018; Yi et al., 2019). We selected
two benchmark datasets, ACP740 and ACP240, which have more
samples (Yi et al., 2019) than others. The similarities between
the two datasets were as follow: ACPs verified in the experiment
were regarded as positive samples, and anti-microbial peptides
(AMPs) without anticancer function were regarded as negative
samples. CD-HIT was used to remove the peptide sequences
with a similarity of more than 90%. The difference was that
ACP740 was from Chen et al.’s and Wei et al.’s studies, while
ACP240 was from Yi et al.’s studies. There were 376 positive
samples and 364 negative samples in ACP740, and there were
129 positive samples and 111 negative samples in ACP240. There
were no overlapping data between ACP740 and ACP240, and
both are non-redundant datasets. These two datasets are available
at https://github.com/haichengyi/ACP-DL.
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FIGURE 1 | Flowchart of ACP-DA. Binary profile features (BPFs) and AAindex features after feature selection were concatenated to represent peptides, and the
samples in the training set were augmented in the feature space. The samples after data augmentation were used to train the multilayer perception (MLP) model,
which was used for the prediction of anticancer peptides (ACPs).

Prediction Framework
To identify potential ACPs, we propose an ACP prediction
model called ACP-DA. Figure 1 illustrates the framework of the
proposed method. First, we preprocess the peptide sequences to
equal length, and the length is selected to be LX amino acids so
that the next feature calculation can be performed. Second, the
AAindex in the iFeature Python package (Chen et al., 2018) is
used to calculate the physicochemical properties of the amino
acids in each sequence, and mRMR (Peng et al., 2005) is then used
for feature selection. BPFs and AAindex features after feature
selection for each peptide sequence are concatenated to represent
a peptide. Third, data augmentation is performed in the feature
space of samples in the training set for subsequent processing.
Finally, the data-augmented samples are used to train the MLP
model; the trained MLP model assigns labels to the samples in
the testing set. The following sections describe the steps in our
framework in detail.

Preprocessing
Since the AAindex in the iFeature Python package can only
encode peptides of the same length, we need to preprocess the
original peptide sequences to obtain peptides of the same lengths.
To obtain the best sequence length, we need to know the length
distribution of all samples. We performed statistical analyses of
the length of the peptides in the ACP740 and ACP240 datasets.
As shown in Figure 2, most of the peptides were less than 60

amino acids in length. To obtain peptides of the same length,
we processed each peptide as follows. For sequences less than LX
amino acids, each peptide was padded with “X” until LX amino
acids were reached. For sequences greater than LX amino acids,
the extra amino acids after LX were removed, and only the first
LX amino acids were reserved. LX can be selected as 40, 50, or 60.
We think the best length can be derived from the three numbers.

FIGURE 2 | Sequence length statistics for all peptides in the ACP740 and
ACP240 dataset.
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Representation of Peptides
The main objective of feature representation is to convert
peptides of different lengths into fixed-length feature vectors
(Zhang and Liu, 2019). The unprocessed peptide sequence P can
be represented as:

P = p1p2...pL

where p1 is the first residue of P and pL is the last residue of P. L
is the length of P. pi (1 ≤ i ≤ L) is an element of the standard
amino acid alphabet {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, Y}. After preprocessing, the peptide sequence can be
expressed as:

P = p1p2...pLX

Different feature representation methods describe different
properties of peptide sequences. If two features have
complementary characteristics, combining the two features
will help to improve the performance of the predictive model.
However, more features don’t necessarily lead to better
performance. Too many features may cause redundancy,
resulting in performance degradation. So, we tested three
feature representation methods and their concatenations: BPFs,
AAindex, and K-mer sparse matrix.

Binary Profile Features
There are 20 different amino acids in the standard amino acid
alphabet. In BPFs, each amino acid is encoded by a feature vector
composed of zeroes and ones. The first amino acid type A in the
above amino acid alphabet is encoded as f(A) = (1, 0, ..., 0),
the second amino acid type C is encoded as f(C) = (0, 1, ..., 0),
and so on. For each given peptide, the N-terminus of k amino
acids is encoded as the following feature vector:

FBPF = [f (p1),f (p2),..., f (pk)]

Experiments derived from ACP-DL (Yi et al., 2019) show that
the result is best when k is 7, which means that only the first 7
amino acids in each peptide sequence are encoded; therefore, the
dimension of FBPF is 20 × 7 = 140.

AAindex
The physicochemical properties of amino acids represent the
characteristics of biochemical reactions and have been widely
used in bioinformatics research. The AAindex is a database
of amino acid indices representing the physicochemical and
biochemical properties of amino acids (Kawashima et al., 2008).
We used the AAindex in the iFeature Python package to represent
peptides. The AAindex descriptor can only be used to encode
peptides of equal length (Tung and Ho, 2008). The preprocessing
steps in the previous section changed peptides of different lengths
to peptides of equal length for encoding based on the AAindex.
If LX in the above section is set to 40, the AAindex descriptor
calculated for a peptide of 40 amino acids will result in a
21,240-dimensional feature vector. The dimension of the features
is too large, which may cause dimension disaster. mRMR is
an excellent dimension reduction technology, and it has good
application properties in many scenarios. Therefore, we selected
the 50 most informative candidate features by using mRMR for
more efficiency.

K-mer Sparse Matrix
K-mer of peptides is composed of K amino acids. Suppose the
length of a peptide sequence is L, there will be 7K different
possible K-mer and an L− K + 1 step appearing in the
sequence. One peptide sequence is transformed to a 7K × (L−
K + 1) K-mer sparse matrix M, which is a low-rank matrix.
Singular value decomposition (SVD) is used to convert this
matrix into a 343-dimension feature vector.

A new feature vector is formed to represent peptides by
concatenating the above feature representations of each peptide.
If BPFs and AAindex are selected, the dimension of the new
feature vector is 140+ 50 = 190.

Data Augmentation
When using machine learning technology to solve scientific
problems, insufficient data (Han et al., 2020) or data imbalance
(Fu et al., 2020; Gao et al., 2020; Mahmud et al., 2021) issues
are common. Collecting more data can certainly solve these
problems, but sometimes it may be difficult to obtain more data
due to cost restrictions or other reasons. In such cases, data
augmentation can potentially be efficient. Data augmentation has
mainly historically been used in the field of computer vision
(Chaitanya et al., 2021; Wang et al., 2021), and novel samples
can be obtained by flipping, rotating, scaling, and cropping the
original samples in the methods of data augmentation. In the
field of bioinformatics, there will sometimes be data imbalances
(Zou et al., 2016; Wan et al., 2017; Meng et al., 2019). Data
augmentation can be used to solve data imbalance problems
(Chen et al., 2020). Here, we are facing the insufficient sample
problem, which can be solved by data augmentation. Four
oversampling techniques are used to generate new samples in
feature space to improve the performance of the RNA coding
potential prediction model (Chen et al., 2020). Noise adding
oversampling (NAO) is the best. We also use this technique to
generate new samples.

To improve the performance of the ACP prediction model,
we augmented the positive and negative samples in the
datasets, respectively. Data augmentation is achieved by adding
perturbation values to the original samples in the feature space
to generate pseudosamples. The features of a peptide include two
parts: BPFs and the AAindex. BPFs are binary codes composed
of 0 and 1, which are not suitable for adding perturbations. So,
we only add perturbations to the AAindex, and the BPFs remain
unchanged. A new sample Fnew is generated by the following
mathematical formula:

Fnew = Fi ∗ V ∗ a + Fi

where Fi is a random sample from the training samples of peptide
sequences and i = 1, ...,N. N is the total number of positive
(negative) samples. V is a 190-dimensional vector for generating
perturbations that corresponds to Fi. Because perturbations are
not added to BPFs, V is composed of two parts: one is a 140-
dimensional vector of zeros corresponding to BPFs, and the
other is a 50-dimensional random vector with values between
0 and 1 corresponding to AAindex. Thus, perturbations are
added to AAindex features, and BPFs are kept unchanged in the
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pseudosample set Fnew. a is the coefficient of the perturbation and
is set to 0.005 for the ACP740 dataset. We repeat the sampling
process N times to obtain N new samples.

Classifier
The MLP classifier is an artificial neural network composed of
an input layer, a hidden layer, and an output layer. The hidden
layer can be a single layer or multiple layers, and the layers
are fully connected. A back propagation (BP) algorithm is used
to train the MLP classifier (Rumelhart et al., 1986). Due to its
excellent classification performance, this classifier has been used
in many fields of bioinformatics, as noted in Auer et al. (2020).
For implementation, we used the scikit-learn Python package; the
hidden layer was composed of 6 sublayers, each with 100 neurons.
The L2 penalty (regularization term) parameter was 0.01, and
the other parameters were set to default values. We employed
the MLP classifier to train our predictive model. In this work,
we also tested other classifiers, including SVM (Fan et al., 2008),
random forest (RF) (Breiman, 2001), MLP, decision tree (DT),
and extremely randomized trees (ExtraTrees) (Geurts et al., 2006)
classifiers, to build prediction models based on the augmented
data in the training set. Among these classifiers, the MLP classifier
works best according to the experiments section.

Performance Evaluation
We used five-fold cross-validation to evaluate the performance
of ACP-DA. In the evaluation, five metrics were used in
the binary classification tasks. The five metrics were accuracy
(ACC), precision (PRE), sensitivity (SN), specificity (SP), and the
Matthews correlation coefficient (MCC), which were widely used
in bioinformatics (Zhang et al., 2019). These metrics are defined
as follows:

ACC =
TP + TN

TP + TN + FP + FN

PRE =
TP

TP + FP

SN =
TP

TP + FN

SP =
TN

TN + FP

MCC =
TP∗TN−FP∗TN

√
(TP + FN) ∗ (TP + FP) ∗ (TN + FP) ∗(TN + FN)

where TP stands for true positives and FN, TN, and FP stand
for false negatives, true negatives, and false positives, respectively.
MCC is a comprehensive performance evaluation metric.

RESULTS

In this section, we first discuss the effects of two important
parameters on the performance of our method and then compare

the performance of the model for different features. We also
analyze the effect of data augmentation in the case of using
different classifiers. Finally, we compare our method with
existing methods.

Parameter Discussion
Two parameters affect the performance of the model. One is
LX in the preprocessing step, which is the length of the peptide
sequence after preprocessing. LX can be set to 40, 50, or 60.
The other parameter is N, which is related to the number
of new positive (negative) samples in the data augmentation
step. Here, we use the training samples after data augmentation
to build the prediction model with 100, 200, or 300% of the
original positive (negative) sample number as new samples. Thus,
N may be set to 100, 200, or 300% of the original positive
(negative) sample number.

For the ACP740 and ACP240 datasets, the performance
of the prediction models established based on different
parameters is shown in Tables 1, 2. MCC is a comprehensive
performance evaluation metric, and larger MCC values mean
better performance. Therefore, we choose the best parameters
LX 40 and N 100% for ACP740 and LX 40 and N 300% for
ACP240 according to the maximum MCC value. The N value of
ACP240 is larger than that of ACP740, which means that more
pseudosamples are needed for ACP240 than ACP740 because
ACP240 has fewer samples than ACP740.

Comparisons With Different Features
Binary profile feature and k-mer sparse matrix have been proved
to be effective in ACP-DL (Yi et al., 2019), and AAindex has also
been mentioned in physicochemical property based therapeutic

TABLE 1 | Performance of ACP-DA with different parameters based on ACP740
(The best metrics are in bold).

LX N ACC (%) PRE (%) SE (%) SP (%) MCC (%)

40 100% 81.89 84.14 80.59 83.23 64.71

40 200% 82.02 83.46 80.89 83.26 64.56

40 300% 81.49 82.89 80.88 82.15 63.40

50 100% 80.41 83.35 79.02 81.88 62.59

50 200% 82.03 81.51 84.57 79.36 64.68

50 300% 80.27 77.23 86.98 73.35 61.17

60 100% 79.19 80.18 79.54 78.85 58.89

60 200% 78.37 77.72 81.67 75.01 57.21

60 300% 79.73 79.14 81.93 77.47 59.61

TABLE 2 | Performance of ACP-DA with different parameters based on ACP240
(The best metrics are in bold).

LX N ACC (%) PRE (%) SE (%) SP (%) MCC (%)

40 100% 85.42 83.43 92.28 77.59 71.57

40 200% 87.92 87.17 91.48 83.91 76.03

40 300% 88.33 90.11 88.37 88.30 76.68

50 100% 85.00 84.71 88.43 81.11 70.10

50 200% 83.75 84.80 86.12 81.10 68.10

50 300% 85.42 86.48 86.86 83.83 71.03

60 100% 86.25 84.35 92.28 79.37 72.97

60 200% 87.08 86.89 90.74 83.04 74.64

60 300% 87.92 85.70 93.78 81.11 76.26
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peptide predictor (PPTPP) (Zhang and Zou, 2020). BPF and
AAindex were introduced in the previous subsection. The k-mer
sparse matrix was proposed to represent protein sequences (You
et al., 2016), and later used in the representation of peptide
sequences (Yi et al., 2019). To obtain more effective features
or feature combinations, we use the MLP classifier to build
ACP prediction models and test the performance of each model
based on three features and their pairwise concatenations without
data augmentation.

The three features are BPFs, the AAindex, and the k-mer
sparse matrix (k-mer). The concatenations of the three features
are BPF+AAindex, BPF+ k-mer, AAindex+ k-mer and BPF+
AAindex + k-mer. The performance of the models for different
features and feature concatenations is shown in Figure 3. When
the three features are used alone, BPF and AAindex yield the
best performance. Among the four feature concatenations, BPF
+ AAindex yields the best performance for ACP240 and BPF +
AAindex + k-mer yields the best performance for ACP740. The
performance of BPF + AAindex + k-mer on ACP240 is even
worse than that of BPF alone. On the basis of comprehensive
consideration of various factors, we chose the concatenation of
BPF+ AAindex to represent the peptide sequence.

Classifier Discussion
After determining that the concatenation of BPF + AAindex
should be used to represent peptides, we need to consider
which classifier is the best in our method. We analyzed the
performance of the prediction model with data augmentation
on several different classifiers. We considered five different
classifiers, namely, SVM, RF, MLP, ExtraTrees, and DT classifiers,
to build the prediction models. Since MCC is a comprehensive
metric, we used it to evaluate the performance of the prediction
models. The performance of the models on ACP740 and ACP240
is shown in Figure 4.

As shown in Figure 4A, based on the ACP740 dataset,
for the prediction models built using the MLP, RF, SVM,
and ExtraTrees classifiers, data augmentation can improve the

FIGURE 3 | Comparison of prediction models using BPFs, the AAindex, the
k-mer sparse matrix (k-mer), and their concatenations based on ACP740 and
ACP240.

prediction performance according to the MCC value. However,
data augmentation will cause the performance to decrease for
the prediction model established based on the DT. As shown
in Figure 4B, for the ACP240 dataset, data augmentation can
improve the performance of the prediction models established
based on the MLP, SVM, and ExtraTrees classifiers and cause the
prediction performance of the models based on the RF and DT
classifiers to decrease. Therefore, when using the MLP, SVM, and
ExtraTrees classifiers, data augmentation is helpful for improving
the performance of the ACP prediction model. These results
show that the effectiveness of data augmentation is related to the
choice of classifier. RF and DT classifiers are not suitable for our
prediction model.

As deep learning technology has the advantages of strong
learning ability and good portability, it has outstanding
performance in various fields in recent years. Combined with the
MCC value of the two datasets, we chose the MLP classifier to
build the final predictive model.

Comparison With Existing Methods
To verify the effectiveness of our proposed method, we compared
our method ACP-DA with ACP-DL (Yi et al., 2019), AntiCP 2.0
(Agrawal et al., 2020), and DeepACP (Yu et al., 2020). The results
on ACP740 and ACP240 are shown in Figure 5.

Compared with ACP-DL, the advantage of our method lies
in the use of data augmentation. In addition, our method used
the AAindex feature instead of the k-mer sparse matrix in ACP-
DL. Our method with data augmentation outperforms ACP-
DL in most metrics, especially on the two metrics of most
importance MCC and ACC.

As shown in Figure 5A, the performance of our method on
ACP740 was better than that of ACP-DL and AntiCP2.0 and
worse than that of DeepACP according to the MCC value and
ACC value. Figure 5B shows that our method performed better
than other methods on ACP240. The number of samples on
ACP240 was less than that on ACP740. Our method performed
better on ACP240, which indicated that our method was more
suitable for the case of insufficient samples.

DISCUSSION

As a complex disease, cancer involves complex biological
processes. The complex mechanisms of cancer make it
difficult to trace the cause. Despite the emergence of various
cancer treatment strategies, most of the strategies have been
unsatisfactory. Due to its high specificity, high tissue penetration,
low production cost and other advantages, treatment based
on ACPs has become a potential cancer treatment method.
Most ACPs come from protein sequences. The development of
high-throughput sequencing technology has brought an increase
in the number of available proteins, and it is expected that
the number of ACPs will also increase. It is time-consuming
and expensive to use experimental methods to discover ACPs
from protein sequence data. Therefore, it is urgent to develop
computational methods to speed up the identification of ACPs.
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FIGURE 4 | Comparison of the prediction models with and without data augmentation based on (A) ACP740 and (B) ACP240.

FIGURE 5 | Comparison of ACP-DA with existing methods on (A) ACP740 and (B) ACP240.

In this paper, an ACP prediction method called ACP-DA
is proposed. According to the results on the two datasets of
ACP740 and ACP240, our model has good overall performance.
Compared with existing methods, our method has a better effect
in identifying whether the peptide sequence is ACP, and its
accuracy may be attributed to the following reasons.

First, how to use effective feature representation methods
to characterize peptide sequences is a major challenge in
current prediction methods. To find an effective feature
or feature combination, we tested 3 feature representation
methods and their feature combinations: BPF, AAindex,
k-mer, BPF + AAindex, BPF + k-mer, AAindex + k-mer,
BPF + AAindex + k-mer. Experiments on the ACP740 and
ACP240 datasets show that BPF + AAindex obtains the best
performance, so we use BPF + AAindex to represent the
peptide sequences.

Second, we used data augmentation to increase the samples in
the training set for the insufficient samples. Data augmentation
is achieved by generating pseudosamples based on the original
samples. The specific method of generating pseudosamples is to
add disturbances in the feature space of the original sample. The
feature space of the sample is formed by the concatenation of BPF
and AAindex. BPF is a code composed of 0 and 1, which is not
suitable for adding disturbance, so, we only add disturbance on

AAindex to generate pseudosamples. The model is trained with
the augmented data to further improve the performance of the
prediction model.

Finally, various classifiers show good performance in many
classification tasks of bioinformatics. However, it is still unknown
whether our data augmentation method can improve the
performance of prediction models under various types of
classifiers. Therefore, we tested the effect of this method in the
case of using five different classifiers. The results show that data
augmentation is effective when using MLP, SVM, and ExtraTrees,
and data augmentation may not be effective when using RF
or DT. Therefore, we choose the MLP with the best overall
performance as the final classifier.

The main innovation of this article lies in the use
of data augmentation methods. From the experimental
results, the method is of great significance. When using
MLP, SVM, and ExtraTrees as classifiers, the use of data
augmentation can significantly improve the performance of the
prediction model. Moreover, a comparative analysis with other
methods shows that ACP-DA is better than other methods in
most cases.

In short, we provide a new idea for the identification of
ACPs, and hope that ACP-DA will play an important role in the
development of new anticancer drugs.
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CONCLUSION

In this work, we proposed a novel ACP prediction model
called ACP-DA. To establish an effective prediction model,
we concatenated BPFs and the AAindex to represent peptide
sequences. We performed data augmentation in the feature space
and used the augmented data to train the prediction model.
The experimental results show that the proposed method can
effectively distinguish ACPs and non-ACPs. Compared with the
method without data augmentation, ACP-DA achieves better
performance. ACP-DA will be a useful tool for the discovery of
novel potential ACPs.
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