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ABSTRACT

Lysosomes are degradation and signaling centers
within the cell, and their dysfunction impairs a wide
variety of cellular processes. To understand the cellular
effect of lysosome damage, we screened natural small-
molecule compounds that induce lysosomal abnormal-
ity using Caenorhabditis elegans (C. elegans) as a
model system. A group of vobasinyl-ibogan type bisin-
dole alkaloids (ervachinines A–D) were identified that
caused lysosome enlargement in C. elegans macro-
phage-like cells. Intriguingly, these compounds trig-
gered cell death in the germ line independently of the
canonical apoptosis pathway. In mammalian cells,
ervachinines A–D induced lysosomal enlargement and
damage, leading to leakage of cathepsin proteases,
inhibition of autophagosome degradation and necrotic
cell death. Further analysis revealed that this erva-
chinine-induced lysosome damage and lysosomal cell

death depended on STAT3 signaling, but not RIP1 or
RIP3 signaling. These findings suggest that lysosome-
damaging compounds are promising reagents for dis-
secting signaling mechanisms underlying lysosome
homeostasis and lysosome-related human disorders.

KEYWORDS lysosome, alkaloids, lysosomal cell death,
STAT3, Caenorhabditis elegans

INTRODUCTION

Lysosomes are acidic single-membrane organelles that
function as the major sites for digesting cargoes received
from several pathways, including endocytosis, phagocytosis
and autophagy. The lysosome contains >60 different
hydrolytic enzymes, many of which are activated at low pH.
The acidity of the lysosomal lumen is generated and main-
tained by v-ATPase, an ATP-dependent proton pump. The
lysosome contains over 150 membrane proteins that are
required for the integrity and homeostasis of the organelle
(Saftig and Klumperman, 2009). Impairment of lysosomal
function is responsible for more than 70 lysosomal storage
diseases (LSDs) (Macauley, 2016) and contributes to many
other human diseases, such as neurodegenerative disorders
and cancers (Nixon, 2013; Perera et al., 2015). Lysosomes
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also participate in several types of cell death including
apoptosis and necroptosis (Taniguchi et al., 2015; Kreuzaler
et al., 2011). In particular, lysosomal damage leads to lyso-
somal cell death (LCD) under specific physiological or
pathological conditions, for instance, mammary gland invo-
lution after lactation, neutrophil aging, and bacterial infection
(Sargeant et al., 2014; Loison et al., 2014; Prince et al.,
2008).

LCD is characterized by lysosomal membrane perme-
abilization (LMP) and release of cathepsin proteases into the
cytoplasm (Boya and Kroemer, 2008). In the cytoplasm,
cathepsins act as executioners of cell death by mechanisms
that are not well understood. Interestingly, while LCD is
known to occur independently of caspases, cytoplasmic
cathepsins can cleave Bid, promoting mitochondrial
translocation of the proapoptotic proteins Bax and Bak,
which in turn induce mitochondrial membrane permeabi-
lization and caspase-dependent apoptosis (Oberle et al.,
2010). Cathepsins can also promote the degradation of
antiapoptotic proteins such as XIAP to facilitate apoptosis
(Oberle et al., 2010). In addition, cathepsins promote LMP
and thus amplify LCD signals (Oberle et al., 2010). The
caspase-independent feature of LCD offers an important
alternative for designing therapeutic strategies for cancer
treatment. Because cancer cells generally carry mutations in
proapoptotic factors or overexpression of antiapoptotic fac-
tors, they are usually resistant to apoptosis. However, it has
been found that LCD can be induced in such apoptosis-
resistant cells (Gonzalez et al., 2012). Induction of LCD was
also found to restrict propagation of invading bacterial
pathogens (Almaguel et al., 2010; Zhu et al., 2015). Thus,
identifying potent LCD-inducing compounds may provide
valuable reagents both for dissecting mechanisms underly-
ing LCD and for treating lysosome-related human diseases.

In this study, we took advantage of the unique endo-
lysosome system in macrophage-like cells in Caenorhabditis
elegans (C. elegans) to screen for natural compounds that
induced lysosomal abnormality. Our screen identified a
group of vobasinyl-ibogan type bisindole alkaloids (erva-
chinines A–D) that caused abnormal lysosome enlargement
in both C. elegans and mammalian cells. We further found
that these lysosome-targeting natural compounds induced
LMP and LCD in a STAT3-dependent manner. These find-
ings suggest that ervachinines A–D are promising candi-
dates for dissecting the signals underlying lysosome
homeostasis and for developing therapeutic reagents for
human disorders resulting from defective apoptosis.

RESULTS

Using C. elegans as a model to screen for natural
compounds that induce lysosomal abnormality

C. elegans has 6 specialized macrophage-like cells, namely
coelomocytes, which are highly active in fluid-phase endo-
cytosis (Sato et al., 2016). Coelomocytes contain

endosomes and lysosomes that are easily distinguished with
differential interference contrast (DIC) optics or fluorescent
markers (Fig. 1A). These features make C. elegans an ideal
organism for screening small-molecule compounds that can
affect endosome-lysosome trafficking. To identify com-
pounds that induce endosomal or lysosomal abnormalities,
we carried out a screen by treating larval stage 4 (L4) worms
cultured in liquid medium with individual natural compounds
at several concentrations and then observed the change in
organelle morphology under DIC optics. A group of bisindole
alkaloids isolated from Ervatamia chinensis (Meschini et al.,
2008; Guo et al., 2012), named as HEC-19 (ervachinine A),
HEC-20 (ervachinine C), HEC-21 (ervachinine D) and HEC-
23 (ervachinine B), induced vacuolar enlargement in coelo-
mocytes (Fig. 1B–D and Table S1). Among them, HEC-23
had the strongest effect (Fig. 1D), and it induced vacuolar
enlargement in time- and dose-dependent manners (Fig. 1E
and 1F).

To determine the identities of the enlarged vacuoles
induced by HEC-23, we treated worms expressing endo-
some- or lysosome-specific proteins tagged with fluorescent
proteins. HEC-23-enlarged vacuoles were positive for
mCherry::CUP-5 (lysosomal calcium channel), LMP-1::GFP
(lysosomal membrane protein) and ASP-1::dsRed (lysoso-
mal hydrolase) (Fig. 1G–J). However, HEC-23 did not
change the sizes of early endosomes labeled by 2xFYVE::
GFP, an indicator of early endosome-specific phosphatidyli-
nositol 3-phosphate (PI3P) (Fig. 1G). These results indicate
that HEC-23 specifically enlarged lysosomes in
coelomocytes.

HEC-23 impairs lysosomal degradation and increases
the number of cell corpses in the germline

Next, we investigated whether HEC-23 affects the delivery of
endocytic cargoes to the lysosome by injecting Texas-Red
BSA (TR-BSA) into the body cavity of HEC-23-treated
worms and monitoring its appearance in lysosomes in
coelomocytes (Liu et al., 2016). Following injection, TR-BSA
similarly appeared in lysosomes labeled with LMP-1::GFP in
control animals and the enlarged LMP-1::GFP-positive
lysosomes in HEC-23-treated animals, suggesting that HEC-
23-induced lysosomal enlargement does not affect lysoso-
mal cargo delivery (Fig. 2A). We then used arIs36 animals to
examine whether lysosomal degradation capacity is com-
promised in the enlarged lysosomes induced by HEC-23.
These animals express in the body cavity a secreted soluble
GFP (ssGFP) driven by a heat-shock promoter, which is
taken up by coelomocytes and degraded in lysosomes
(Fares and Greenwald, 2001). We treated arIs36 animals
with HEC-23 and performed time-course monitoring of
ssGFP signals in coelomocytes following heat shock. While
ssGFP was similarly taken up into coelomocytes in control
animals and HEC-23-treated animals, the ssGFP persisted
much longer in HEC-23-treated coelomocytes than in control
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Figure 1. HEC-23 induces lysosomal enlargement in coelomocytes. (A) Representative images of endosomes and lysosomes in

C. elegans coelomocytes. The top panel shows a schematic depiction of 3 pairs of coelomocytes (in red) in C. elegans. The bottom

panels show a DIC image of a coelomocyte and images of 2xFYVE::GFP-labeled early endosomes, mCherry::CUP-5-labeled

lysosomes, and LMP-1::GFP-labeled lysosomes. Scale bars, 10 μm. (B) Structures of HEC family compounds. (C and D) HEC family

compounds induce enlargement of vacuoles in coelomocytes. Worms were treated with indicated HEC compounds at 100 μmol/L for

48 h. DIC images (C) are shown for the vacuoles and quantifications are shown in (D). (E and F) Representative DIC images (E) and

quantification (F) of vacuole enlargement induced by HEC-23. (G) Effect of HEC-23 on vacuoles positive for 2xFYVE::GFP, mCherry::

CUP-5, LMP-1::GFP and ASP-1::dsRed. Scale bars, 10 μm. (H and I) Quantification of vacuoles labeled with mCherry::CUP-5

(H) and LMP-1::GFP (I) in animals treated with HEC-23. (J) Quantification of lysosome sizes in worms treated with HEC-23 (100

μmol/L, 48 h). Data (mean ± SEM) were from 3 independent experiments. **P < 0.01, ***P < 0.001.
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coelomocytes (Fig. 2B–D), indicating that HEC-23-enlarged
lysosomes were defective in lysosomal degradation.

Because dysfunction of lysosomes contributes to cell
death and affects cell corpse clearance, we tested whether
HEC-23 affects apoptosis in germlines. In wild-type animals,
HEC-23 treatment caused a significant increase in button-
like structures that were encircled by GFP-tagged engulf-
ment receptor CED-1 (CED-1::GFP) or the F-actin-binding
protein moesin (GFP::moesin) (Xu et al., 2014) (Fig. 2E–I,
and Table S1). This suggests that the button-like structures
were dying cells. The ced-4(n1162) and ced-3(n717)
mutants are respectively deficient in CED-4/Apaf1 and CED-
3/Caspase, which are required for apoptosis, HEC-23 also
induced button-like cell corpses in these mutants (Fig. 2J, K).
Thus, HEC-23 likely induced cell death independently of the
canonical apoptosis pathway (Horvitz et al., 1994). These
cell corpses persisted much longer than the cell corpses
resulting from physiological cell death (Fig. 2L), suggesting
that HEC-23-induced lysosome damage also compromised
the clearance of cell corpses.

HEC-23 induces lysosome enlargement in mammalian
cells

Given that HEC-23 impaired lysosomal degradation and
induced non-apoptotic cell death in C. elegans, we investi-
gated whether HEC-23 had a similar role in mammalian
cells. In HeLa cells expressing RFP-Rab5, EGFP-Rab7 and
mCherry-LAMP1, which label early endosomes, late endo-
somes and lysosomes, respectively, HEC-23 treatment
caused a strong enlargement of LAMP1-positive lysosomes,

while no obvious change in Rab5- or Rab7-positive orga-
nelles was detected (Fig. 3A). The HEC-23-treated cells
contained lysosomes with diameters up to 2 μm, compared
with lysosomes in diameter ≤1 μm in control cells (Fig. 3B).
HEC-23 similarly enlarged lysosomes in human HEK293
cells and mouse NIH3T3 cells (Fig. 3C). These findings
suggested that HEC-23 had a specific effect on lysosomes in
mammalian cells. To investigate this further, we examined
the integrity of these enlarged lysosomes using GFP-fused
Galectin 3 (EGFP-Gal3), which binds to β-galactoside on
luminal glycoproteins of endosomes or lysosomes with rup-
tured membranes (Liu et al., 1995; Ono et al., 2003; Maejima
et al., 2013). In mock-treated cells, EGFP-Gal3 was dis-
tributed evenly in the cytoplasm; however, EGFP-Gal3
formed punctate structures in the enlarged lysosomes fol-
lowing HEC-23 treatment (Fig. 3D). This suggested that
HEC-23 caused damage to lysosomal membranes. To cor-
roborate this, we examined the acidification of lysosomes
using LysoSensor staining. While lysosomes in mock-treated
cells were positive for LysoSensor Green, no LysoSensor
Green staining was detected for the enlarged lysosomes in
HEC-23-treated cells (Fig. 3E). Thus, the acidification of
HEC-23-enlarged lysosomes was impaired. Furthermore, we
examined the localization of cathepsin L, a lysosomal
cathepsin protease. In DMSO-treated cells, EGFP-tagged
cathepsin L localized well in LAMP1-positive lysosomes, but
HEC-23-induced enlarged lysosomes did not contain
cathepsin L (Fig. 3F), suggesting that lysosomal damage led
to leakage of cathepsins from the enlarged lysosomes.
Consistent with these findings, the lysosomes in HEC-23-
treated cells were not stained by BODIPY pepstatin A, which
labels mature (cathepsin D-positive) lysosomes (Chen et al.,
2000) (Fig. 3G). This result indicates that HEC-23 impairs
lysosomal maturation.

HEC-23 inhibits autophagosome degradation

Because HEC-23 induced lysosome damage, we investi-
gated if HEC-23 has an effect on autophagy, a lysosome-
dependent process for degradation of cellular contents.
HEC-23 treatment strongly increased the endogenous level
of the autophagosome marker LC3II in HeLa cells (Fig. 4A).
The increase was similar to that caused by the lysosomal
v-ATPase inhibitor bafilomycin A1. Combined treatment with
HEC-23 and bafilomycin A1 did not cause a further increase
in the LC3 level (Fig. 4A). This result indicated that HEC-23
only impaired lysosomal degradation, rather than inducing
autophagosome formation (Fig. 4A). In HeLa cells stably
expressing CFP-LC3, HEC-23 induced a strong increase in
the number and intensity of CFP-LC3 foci, in contrast to the
even distribution of CFP-LC3 in control DMSO-treated cells
(Fig. 4B–D). The HEC-23-induced CFP-LC3 foci colocalized
with the enlarged lysosomes (Fig. 4E), suggesting that the
fusion of autophagosomes with lysosomes was normal but
the degradation was compromised. In HeLa cells transiently
expressing RFP-GFP-LC3, HEC-23 induced formation of

Figure 2. HEC-23 impairs lysosomal degradation and

increases the number of cell corpses in the C. elegans

germline. (A) Representative images of TR-BSA localization in

LMP-1::GFP-positive lysosomes following HEC-23 treatment.

(B–D) Time-course analysis of ssGFP signals in DMSO- and

HEC-23-treated coelomocytes. Expression of ssGFP under the

control of a heat-shock promoter was induced at 33°C for 30

min, and the uptake and degradation of ssGFP in coelomocytes

were monitored at the indicated time points (B). The dashed

circles indicate HEC-23-enlarged lysosomes. Quantifications

are shown in (C and D). (E–H) Images (E and F) and

quantification (G and H) of HEC-23-induced germ cell corpses

labeled with CED-1::GFP (E) or GFP::moesin (F) in the

C. elegans germline. Arrows indicate cell corpses. Scale bars,

20 μm. (I) Quantification of HEC-23-induced germ cell corpses

in animals at the indicated adult ages. 30 animals were scored

for each time point. (J and K) Quantification of HEC-23-induced

germ cell corpses in ced-3 (I) and ced-4 (J) loss-of-function

mutants. (L) Durations of germ cell corpses in DMSO- and

HEC-23 (100 μmol/L)-treated worms. Cell corpses from >30

worms were analyzed. For all quantifications, data (mean ±

SEM) were from 3 independent experiments. *P < 0.05, **P <

0.01, ***P < 0.001. NS, not significant.
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LC3 foci positive for both GFP and RFP (Fig. 4F), indicating
that HEC-23 caused accumulation of autophagosomes by
inhibiting their degradation. In contrast, starvation-induced
LC3 foci were mostly positive for RFP, owing to the
quenching of GFP signals following autolysosome formation
(Fig. 4F). Using transmission electron microscopy (TEM), we

confirmed that there was indeed an increase in the number
of autophagosomes/autolysosomes with accumulated sub-
strates in the lumen (Fig. 4G). Thus, HEC-23-induced lyso-
some damage inhibited degradation of autophagosomes.
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Figure 3. HEC-23 induces lysosomal damage in mammalian cells. (A and B) Images (A) and quantification (B) of HEC-23-

induced enlargement of LAMP1-positive lysosomes in HeLa cells. (C) Quantification of HEC-23-induced lysosomal enlargement in

the indicated cell types. (D) Representative images (left) and quantification (right) of EGFP-Gal3 in mCh-LAMP1-positive lysosomes

in HeLa cells treated with HEC-23. (E) Representative images (left) and quantification (right) of LysoSensor Green staining in mCh-

LAMP1-positive lysosomes in HeLa cells treated with HEC-23. (F) Representative images (left) and quantification (right) of cathepsin

L-EGFP in mCh-LAMP1-positive lysosomes in HeLa cells treated with HEC-23. (G) Representative images (left) and quantification

(right) of BODIPY-Pepstatin A in mCh-LAMP1-positive lysosomes in HeLa cells treated with HEC-23. In (D–G), boxed regions in the

merged images are magnified and shown in the bottom right corners. Cells were treated with HEC-23 at 10 μmol/L for 3 h. Data

(mean ± SEM) were from 3 independent experiments. **P < 0.01, ***P < 0.001. Bars represent 10 μm in all images.
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HEC-23-induced lysosomal enlargement depends
on STAT3 activation

Recently, it was found that STAT3 controls cell death during
mammary gland involution by regulating LMP (Kreuzaler
et al., 2011; Sargeant et al., 2014). During this process,
STAT3 is activated, which up-regulates expression of
cathepsins B and L but down-regulates their endogenous
inhibitor Spi2A, causing LMP-mediated necrosis in mam-
mary epithelial cells. We thus investigated if STAT3 signaling

is involved in HEC-23-induced lysosomal enlargement.
HEC-23 strongly increased the phosphorylation of STAT3 at
tyrosine 705 (Y705) (Fig. 5A). Importantly, knocking down
STAT3 significantly suppressed HEC-23-induced lysosomal
enlargement and damage (Fig. 5B, 5C and 5E). HEC-23
treatment resulted in elevated expression of cathepsin l and
cathepsin b, but decreased the expression of spi2a, all of
which are STAT3 target genes (Fig. 5D). Furthermore,
knocking down STAT3 reversed the HEC-23-induced
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changes in the expression of these genes (Fig. 5D). Alto-
gether, these findings suggest that STAT3 signaling is
required for HEC-23-induced lysosomal enlargement and
damage.

HEC-23 induces cathepsin-dependent necrosis through
STAT3 signaling

In carcinoma cells, including HeLa, HepG2, MCF-7 and HL-
60, HEC-23 induced cell death in a concentration-dependent
manner (Fig. 6A). In addition, HEC-23 had a synergistic
effect on cell death with cisplatin, a well-established anti-
tumor therapeutic drug (Fruh et al., 2016) (Fig. 6B). Further
analysis indicated that >90% of the dying HEC-23-treated
cells were positive for propidium iodide (PI) staining, indi-
cating that HEC-23 likely induced non-apoptotic cell death
(Fig. 6C). In support of this hypothesis, pretreatment with the
pan-caspase inhibitor z-VAD or the autophagic inhibitor
3-MA (3-methyladenine) did not inhibit the cell death induced
by HEC-23 (Fig. 6D).

To determine which signaling pathway is required for
HEC-23-induced cell death, we performed siRNA (small
interfering RNA) to knock down RIP1 and RIP3, the key
regulators of necroptosis (Sun and Wang, 2014). Knock-
down of RIP1, RIP3, or both, did not affect HEC-23-induced
cell death (Fig. 6E, F), suggesting that HEC-23 does not act
through these two factors. In contrast, treatment of cells with
STAT3 siRNA, the cathepsin inhibitor CA-074-Me or the
necrosis inhibitor IM-54 strongly suppressed HEC-23-in-
duced cell death (Fig. 6G). These findings indicated that
HEC23-induced STAT3 activation not only upregulated gene
expression of cathepsins (Fig. 5D), but also resulted in LMP
(Fig. 5C, E) and subsequent leakage of cathepsins (Fig. 3F)
and necrosis (Fig. 6G). Altogether, these results indicate that
STAT3 signaling is required for HEC-23-induced lysosomal
dysfunction and LCD (Fig. 7).

DISCUSSION

In this study, we present C. elegans as a model for screening
natural compounds that target lysosomes. We found that a

group of alkaloids, named HECs, enlarge the size and impair
the integrity, acidification and digestion capacity of lyso-
somes, and these effects are conserved in different species.
HEC-induced lysosomal impairment results in the accumu-
lation of cell corpses and non-apoptotic cell death in C. ele-
gans and lysosomal cell death in mammalian cells.

The use of C. elegans to identify lysosome-targeting
small-molecule compounds has many advantages. Firstly,
the macrophage-like coelomocytes are active in fluid-phase
endocytosis and pinocytosis, which facilitate the entry of
compounds into the cell. Secondly, lysosomes are easily
identified in a living animal using DIC optics or fluorescently
labeled makers. Thirdly, the powerful genetic approaches
and the availability of numerous mutant alleles make it
possible to dissect the mechanisms underlying the function
of the compounds.

Apoptosis and necrosis have been extensively studied
during the development of organisms and the pathogenesis
of diseases. In the present study, we find that mutation of
neither ced-3 nor ced-4 could totally block the HEC-23-in-
duced elevation of cell corpses. This demonstrates that
HEC-23 induces non-apoptotic cell death in C. elegans. We
also performed knock-down of RIP1 and RIP3, which did not
reverse HEC-23-induced necrosis in mammalian cells.
These data demonstrate that HEC-23-induced necrosis is
independent of the RIP1/3 pathway.

Intriguingly, LMP also plays a crucial physiological role in
regression of the mammary gland. Conditional deletion of
STAT3 causes an obviously delay in involution of the
mammary gland and reduces the level of cell death
(Kreuzaler et al., 2011; Sargeant et al., 2014). In the present
study, we found that HEC-23 induces the activation of
STAT3, up-regulation of cathepsins B and L and down-reg-
ulation of Spi2A. Importantly, knock-down of STAT3 abol-
ished lysosomal enlargement and necrosis induced by HEC-
23 treatment. Furthermore, inhibition of cathepsins reverses
the HEC-23-induced reduction in cell viability. These findings
indicate that HEC23-induced necrosis is dependent on the
STAT3-cathepsin pathway.

We found that HEC-23 treatment significantly promotes
the phosphorylation of STAT3 at Y705. Unfortunately, we
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Figure 7. Schematic diagram of HEC23-induced lysosomal enlargement and cell death.
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failed to obtain functional biotin-labeled compounds related
to HEC-23, since they all lost the ability to enlarge lyso-
somes in cells. However, we can still propose how HEC-23
may interact with potential targets in the JAK-STAT3 sig-
naling pathways. Firstly, HEC-23 may function as an agonist
to directly bind with and activate JAK (Janus kinases), which
in turn phosphorylates STAT3 at the Y705 site (Vainchenker
and Constantinescu, 2013). Secondly, HEC-23 may function
as an antagonist to bind with Src homology region 2 domain-
containing phosphatase-1 (SHP-1) or suppressor of cytokine
signaling (SOCS), which inhibits JAK activity in the cyto-
plasm (Vainchenker and Constantinescu, 2013). Thirdly,
HEC-23 may function as an antagonist to bind with E3
SUMO-protein ligases (PIASs) or protein tyrosine phos-
phatases (PTPs), which inhibit STAT3 transcription activity in
the nucleus (Vainchenker and Constantinescu, 2013).

Usually, LCD remains functional in apoptosis-resistant
cancer cells. The fact that HEC-23 induced non-apoptotic
cell death in several different cancer cell lines suggests that
HEC-23 family compounds can potentially be used to
develop therapeutic reagents for cancers that are resistant to
apoptosis-based therapy. Notably, the antimalarial agent
mefloquine was found to induce LMP and release of
cathepsins into the cytoplasm of human acute myeloid leu-
kemia (AML) cells, which provides a novel and promising
therapeutic strategy for AML (Sukhai et al., 2013). Further
studies are needed to investigate the application of HEC-23
and STAT3 activation to the therapeutic treatment of AML
and other cancers.

MATERIALS AND METHODS

C. elegans strains and genetics

The Bristol strain N2 is used as wild type. The mutant alleles used in

this study are vps-18(tm1125), arl-8(tm2388), ced-3(n717) and ced-4

(n1162). The integrated arrays are: smIs34(Pced-1ced-1::gfp),

yqIs121(Pced-1gfp::moesin), cdIs85(Punc-1222xfyve::gfp), cdIs97

(Punc-122mCherry::cup-5), cdIs131(Punc-122gfp::rab-5), pwIs50(Plmp-

1lmp-1::gfp), and tmIs225(Pasp-1asp-1::dsRed). C. elegans cultures

and genetic crosses were performed according to standard

procedures.

Screen for natural compounds that induce enlargement

of lysosomes

All compounds used in this study were isolated from plants and

compound structures were determined by means of 1D NMR, 2D

NMR and MS as previously reported (Li et al., 2016). In total, 257

natural compounds (35 alkaloids, 23 triterpenes, 46 diterpenes, 22

sesquiterpenes, 17 monoterpenes, 18 tetranortriterpenoids, 12 fla-

vonoids, 11 coumarins, 25 sterols, 27 lignanoids, 11 saponins, and

10 cyclic peptides) were tested individually for their ability to induce

lysosome enlargement. Worms were cultured in M9 solution (1 L

contains 3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl and 1 mmol/L MgSO4)

with X1666. 20–30 worms at L4 stage were transferred into liquid

culture with or without different natural compounds in 24-well plates

in a shaker (120 rpm, 20°C). 48 h or 72 h later, worms were

examined for lysosomal changes in coelomocytes under a fluores-

cence microscope with DIC optics. The investigators were blinded to

compound identities during the screen.

Microscopy and trafficking experiments in coelomocytes

Adult worms were immobilized with 2.5 mmol/L levamisole in M9

solution and mounted on 2% agarose pads for imaging. DIC pictures

were captured by using an AxioImager M1 (Carl Zeiss). Fluores-

cence images were obtained by using an inverted FV1000 confocal

microscope system (IX81; Olympus). TR-BSA trafficking assays in

C. elegans coelomocytes were performed as previously described29.

In brief, TR-BSA (Sigma-Aldrich; 1 mg/mL in water) was injected into

the body cavity of adult worms. Then worms were cultured on NGM

plates seeded with Escherichia coli OP50. Worms were imaged by

confocal microscopy at different time points after injection. For each

time point, similar results were obtained in more than 30 coelomo-

cytes from 15–20 different worms.

Germ cell corpse analysis

Animals synchronized to different adult stages were scored for germ

cell corpses under Nomarski optics. Animals were grown in liquid

culture at 20°C unless otherwise indicated. For cell corpse analysis

in HEC-23-treated worms, animals were scored for germ cell corp-

ses after 12 h, 24 h, 36 h, 48 h and 72 h. At each time point, germ

cell corpses in the meiotic region of one gonad arm were counted for

every animal, and ≥30 animals were analyzed.

Cell culture, transfection and reagents

All cell lines were cultured at 37°C with 5% CO2 in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS) (HyClone), 100 U/mL penicillin and 100 mg/mL

streptomycin. No cell lines used in this study were found in the

database of commonly misidentified cell lines that is maintained by

ICLAC and NCBI Biosample. All cell lines were from American type

culture collection (ATCC). Transient transfections were performed

with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) following the

manufacturers’ instructions. TR-BSA and CA-074-Me were from

Tocris Bioscience (Bristol, UK). bafilomycin A1, 3-MA, z-VAD,

necrosis inhibitor IM-54 and cisplatin were from Calbiochem

(Darmstadt, Germany). The mature lysosome dye BODIPY-pep-

statin A, LysoSensor, Annexin V and PI were purchased from Invit-

rogen Life Technologies (Carlsbad, CA). The antibody against LC3

was from MBL. Antibodies against p-STAT3 and STAT3 were from

Cell Signaling Technology. Mouse monoclonal antibodies for α-

tubulin were purchased from Sigma-Aldrich (St. Louis, MO). HRP-,

Cy3- and FITC-conjugated secondary antibodies were obtained

from Jackson ImmunoResearch Laboratories (West Grove, PA).

Western blot

Cells were lysed in ice-cold RIPA buffer (20 mmol/L Tris-HCl pH 7.5,

100 mmol/L NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1 mmol/L

PMSF) containing Complete Protease Inhibitor Cocktail (1 tablet in

50 mL RIPA buffer) and Phosphatase Inhibitor Cocktail Tablets (1
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tablet in 10 mL RIPA buffer) (Roche, Basel, Switzerland). Cell

lysates were spun down at 12,000 rpm for 10 min at 4°C. 20 μg of

each supernatant were resolved by sodium dodecyl sulfate poly-

acrylamide gel electrophoresis (SDS-PAGE) and probed with the

indicated antibodies. α-Tubulin was used as the internal control.

Small interfering RNA (siRNA)

RNA oligos used for siRNA in this study were:

Human gene Oligo

STAT3 5′-UGUAAUGCAUGACAGCCUGTT-3′
5′-AUUGUCUUUCUUCUGCCGCTT-3′
5′-UUGAUGUUGAACCUUCGUCTT-3′

RIP1 5′-AUCCCUGCUCUCUUCAGUGTT-3′
5′-AGGGCUGCUUUCCUUGGCCTT-3′
5′-UCAUCAGCCUGGAGUCCAGTT-3′

RIP3 5′-AUUUGAAUGUAAAGGACUCTT-3′
5′-AGUAACAAAUUCAUGGCACTT-3′
5′-AUUUCAUACAACAGGACGCTT-3′

Control siRNA 5′-UUCUCCGAACGUGUCACGUTT-3′

Cells were transfected with 100 pmol RNA oligos twice (at 0 h

and 24 h) using Lipofectamine 2000 in 6-well plates or confocal

culture dishes. The efficiency of siRNAs was evaluated by Western

blot or qRT-PCR.

Quantitative real-time reverse-transcription PCR (qPCR)

RNA was isolated from cells by using TRIzol reagent (Invitrogen) as

recommended by the manufacturer. A reverse transcription kit

(Promega) was used to reverse transcribe RNA (1 μg) in a 20 μL-

reaction mixture. Quantification of gene expression was performed

using a real-time PCR system (7900HT Fast; Applied Biosystems) in

triplicate. Amplification of the sequence of interest was normalized

with the reference endogenous GAPDH gene.

Expression vectors

The mammalian expression vector pEGFP-N2-cathepsin L was

constructed by inserting the cDNA of cathepsin L between the

HindIII and KpnI sites of the pEGFP-N2 vector using standard pro-

tocols confirmed by sequencing.

The following vectors were kindly provided by other scientists:

mCherry-LAMP1 (Dr. Li Yu, Tsinghua University, China), EGFP-

Galectin3 (Dr. Tamotsu Yoshimori, Osaka University, Japan), RFP-

GFP-LC3 (Dr. Hong Zhang, Institute of Biophysics, CAS). All

expression constructs were confirmed by DNA sequencing.

Transmission electron microscopy

HeLa cells were cultured on plastic cover slices with DMEM con-

taining 10% FBS. After HEC-23 treatment for 3 h, the cells were

fixed in fixation buffer (2.5% glutaraldehyde, 1% paraformaldehyde

in PBS) on ice for 1 h. The samples were then post-fixed by 1%

OsO4 for 2 h, followed by dehydration in a graded ethanol series

(30%, 50%, 70%, 90% and 100%). After rinsing with propylene oxide

(100%) for 3 times, the samples were infiltrated stepwise in

increasing concentrations of embed 812 resin (propylene oxide:resin

2:1 for 3 h and 1:1 for 5 h). Then, the samples were incubated in

100% fresh resin twice for 8 h, and transferred into fresh resin in an

embedding mold and polymerized in a 60°C oven for 3 days.

Ultrathin sections (70 nm) were generated with a diamond knife

(Diatome) on an ultramicrotome (Ultracut UCT; Leica Microsystems),

and collected on copper grids (EMS). The slices on copper grids

were stained with 2% UAc and 1% citric acid for 10 min. Then, the

samples were visualized with a JEM-1400 TEM at 80 kV. Pictures

were recorded with a Gatan832 (4k × 2.7k) CCD camera.

MTT assay for cell viability

Cells were cultured in 96-well plates with DMEM containing 10%

FBS. After HEC-23 treatment for 24 h, 15 μL of dye solution was

added into each well. Then the plates were incubated at 37°C for 2 h

in a humidified CO2 incubator. 100 μL of stop solution was added to

each well, and the absorbance was recorded at 570 nm using a

96-well plate reader. A reference wavelength at 630 nm was used.

The MTT kit was purchased from Promega (Cat# G4002).

Cell death quantification by flow cytometry

After treatment with HEC-23 for 24 h, the cells were harvested and

washed with PBS. Cells were stained in binding buffer containing

Annexin V (5 μL) and PI (10 μL) for 15–30 min in the dark. After

extensive washing, cells were suspended in PBS and transferred

into tubes for quantification of cell death by flow cytometry using a

FACS AriaII machine (BD Biosciences). Data were analyzed by

using FlowJo software (FLOWJO, LLC).

Statistics and reproducibility

Data were analyzed with Prism (GraphPad Software) to generate

curves and bar charts. Statistical analyses were performed using t-

tests or ANOVA. P < 0.05, indicated with *, was considered statis-

tically significant. P < 0.01, indicated with **, was considered sig-

nificant. P < 0.001, indicated with ***, was considered extremely

significant. P > 0.05 was considered not significant (NS).
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