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Abstract: Brain-inspired neuromorphic computing is expected to overcome the von Neu-
mann bottleneck by eliminating the memory wall between processing and memory units.
Nevertheless, critical challenges persist in synaptic device implementation, particularly re-
garding nonlinear/asymmetric conductance modulation and multilevel conductance states,
which substantially impede the realization of high-performance neuromorphic hardware.
This study demonstrates a novel advancement in photonic–electronic modulated synaptic
devices through the development of an amorphous indium–gallium–zinc oxide (a-IGZO)
synaptic transistor. The device demonstrates biological synaptic functionalities, including
excitatory/inhibitory post-synaptic currents (EPSCs/IPSCs) and spike-timing-dependent
plasticity, while achieving excellent conductance modulation characteristics (nonlinearity
of 0.0095/−0.0115 and asymmetric ratio of 0.247) and successfully implementing Pavlovian
associative learning paradigms. Notably, systematic neural network simulations employing
the experimental parameters reveal a 93.8% recognition accuracy on the MNIST handwrit-
ten digit dataset. The a-IGZO synaptic transistor with photonic–electronic co-modulation
serves as a potential critical building block for constructing neuromorphic architectures
with human-brain efficiency.

Keywords: a-IGZO; synaptic transistor; artificial synapse; high linearity; neuromorphic
application

1. Introduction
Neuromorphic computing, inspired by biological neural architectures, holds signifi-

cant potential to circumvent the von Neumann bottleneck through in-memory processing,
thereby addressing the fundamental limitations imposed by the memory wall [1–5]. The
emulation of synaptic neurotransmission mechanisms constitutes a fundamental prereq-
uisite for developing neuromorphic architectures [6,7]. Artificial synapse modulation
can be divided into two types: Optical stimuli enable non-contact operation, high-speed
broadband signal transmission, and low power consumption via minimized RC delays and
electromagnetic interference [8]. But, they have faced a significant challenge in large-scale
integrations. Electrical stimuli offer precise signal control and CMOS compatibility but face
bandwidth–density trade-offs and higher energy losses [9]. Their complementary strengths
highlight the potential for integrated optoelectronic architectures in energy-efficient neuro-
morphic computing.

The performance of neuromorphic computing systems fundamentally relies on the
linearity and symmetry characteristics of their constituent synaptic devices, which deter-
mine signal processing accuracy and system robustness [10–12]. However, current research
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on memory-based neuromorphic devices primarily focuses on emulating responses to
single-spike excitation/inhibition, paired-pulse facilitation, and specific biological behav-
iors [13–15]. Studies aimed at improving critical parameters for neuromorphic computing,
such as multilevel conductance states, linearity, and the symmetric ratio, remain insufficient,
limiting the advancement of neuromorphic applications [10,16,17].

Amorphous indium–gallium–zinc oxide (a-IGZO) has garnered attention due to
its uniform and isotropic characteristics, high carrier mobility, and capability for room-
temperature fabrication [18–20]. Furthermore, Fowler–Nordheim (F-N) tunneling enables
the accurate modulation of electron injection to and extraction from the floating gate dur-
ing each operation, allowing the meticulous adjustment of channel conductance through
precise pulsed control [21–23]. However, previously reported a-IGZO synapse transistors
do not simultaneously achieve both the biomimetic shape of the post-synaptic current
(especially the inhibitory post-synaptic currents) and high linearity under multiple pulse
conditions [24–28]. The substantial noise in the post-synaptic current poses a critical barrier
to the development and practical deployment of neuromorphic computing systems.

Here, a molybdenum (Mo)-engineered charge-trapping a-IGZO synaptic transistor
with photonic–electronic co-modulation is proposed. The Mo floating gate possesses
the ability to store a large amount of charge, allowing the channel to exist in multilevel
conductance states and ensuring uniform changes in post-synaptic currents after each
equivalent stimulation. The a-IGZO synaptic transistor not only effectively realizes ex-
citatory/inhibitory post-synaptic currents (EPSCs/IPSCs), but also exhibits outstanding
properties in long-term potentiation/depression (LTP/LTD), including its multilevel con-
ductance states (100/100), high linearity (nonlinear, NL, 0.0095/−0.0115), and asymmetric
ratio (AR, 0.247). Furthermore, a bio-inspired classical conditioning paradigm was suc-
cessfully emulated through optoelectronic co-stimulation, demonstrating spatiotemporal
coordination of photonic input (365 nm) and electronic reinforcement signals (100 µs) in
neuromorphic circuits. Leveraging device-level long-term plasticity, the implemented neu-
romorphic synaptic network achieved a classification accuracy of 93.2% on the simulated
MNIST digit classification benchmark.

2. Experiment
A heavily p-doped Si substrate with a 100 nm thermal SiO2 layer was cleaned using

acetone, isopropyl alcohol, and deionized water. First, a Mo bottom floating gate layer
was deposited by DC sputtering. Next, an Al2O3 tunneling layer was deposited by atomic
layer deposition (trimethylaluminum (TMA, Al(CH3)3) served as the aluminum precursor,
oxygen plasma was employed as the oxygen source, 200 ◦C, 0.1 nm/cycle). An a-IGZO
film was then deposited by RF sputtering using an IGZO target with an In/Ga/Zn/O
atomic ratio of 1:1:1:4 (110 W, 0.4 Pa, argon, 20 ◦C, 0.8 nm/min). Finally, 50 nm tungsten
(W) source and drain electrodes were deposited by DC sputtering. The channel length and
width of the device were both 10 µm. All patterns were defined using standard lithography
techniques. Cross-sectional images were obtained using a Thermo Scientific Themis Z
aberration-corrected transmission electron microscope (TEM, Thermo Fisher Scientific,
Waltham, MA, USA). Specimens for TEM measurement were prepared by focused ion
beam (FIB) milling with a Thermo Scientific Helios G4 HX (Thermo Fisher Scientific). EDS
analysis data were obtained using the Super X FEI System in STEM mode. Electrical
characterizations were conducted under ambient conditions (25 ◦C, 1 atm) using a Keysight
B1500A semiconductor parameter analyzer in a dark environment (Keysight, Santa Rosa,
CA, USA).
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3. Results and Discussion
The schematic diagram of the fabricated a-IGZO synapse and the cross-sectional TEM

image along the A-B line are shown in Figures 1a and 1b, respectively. This device employs
a heavily p-doped Si substrate, which also serves as the gate electrode, an a-IGZO layer as
the channel, an Al2O3 layer as the tunneling oxide, a Mo layer for charge trapping, and a
100 nm SiO2 layer as the blocking oxide. The cross-sectional TEM image and EDS mapping
show that all layers exhibit distinct boundaries and a uniform deposition (Figure 1b,c).
The device demonstrates a clear transfer curve with a large memory window, low leakage
through the gate current (Ig, ~1 pA), and a high on/off ratio exceeding 107 (Figure 2a).
As the gate voltage (Vg) sweep range increases, the double-sweep transfer curve displays
larger clockwise hysteresis due to threshold voltage (Vth) shifts resulting from the charge-
trapping process. Figure 2b schematically illustrates the energy band diagrams under
applied bias, providing a description of the charge transport and trapping mechanisms
within the device.
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(b) The schematic energy band diagram under bias.

In the human brain, synapses form connections between neurons and facilitate the
transmission of electrical signals from pre-synaptic to post-synaptic neurons (Figure 3) [29].
The efficacy of neuronal communication, collectively termed synaptic weight, is dynami-
cally regulated through neuro-modulatory pathways. This dynamic modulation system
constitutes a substrate for adaptive neural computation and information storage in biologi-
cal neural networks [30]. Artificial synapses typically quantify these two characteristics
using the magnitude of EPSC/IPSC. In the a-IGZO artificial synapse, the channel con-
ductance state (Ids) is used as the synaptic weight, with its plasticity being modulated by
an applied Vg pulse. Figure 4a–d present the pulse-voltage- and pulse-width-dependent
EPSC/IPSC plasticity. For a single excitatory pulse, the EPSC increases as the pulse width or
voltage increases, while the other parameter is held constant. This relationship also applies
to the IPSC. Thus, the synaptic weight can be flexibly tuned by an electrical pulse, demon-
strating that the plasticity of an a-IGZO synapse can be realized by the pulse stimulations.

As illustrated in Figure 2b, when a sufficiently positive pulse is applied, a certain
number of electrons in the IGZO tunnel through the Al2O3 layer and become trapped in
the Mo charge-trapping layer. These trapped electrons cannot return, leading to a decrease
in Ids, which corresponds to the IPSC. Conversely, a sufficiently negative pulse transfers
electrons from the Mo layer to the IGZO, resulting in an increase in Ids, corresponding to the
EPSC. The steady-state F-N tunneling current density exhibits an exponential dependence
on the electric field (J ∝ E2exp(−B/E), where E is the internal electric field strength in the
oxide layer and B is a constant related to the barrier height). As shown in Figure 5a,b,
the post-synaptic current shows an exponential relationship with voltage, which confirms
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that charges in the proposed artificial synapse are injected into the trapping layer through
F-N tunneling.
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Figure 3. The schematic of the a-IGZO synapse and a biological synapse. The gate terminal functions
as the pre-synaptic neuron, responsible for delivering input signals. The channel conductance
represents the synaptic weight, analogous to the strength of the connection between neurons, and is
modulated by applied gate voltage pulses. The source and drain terminals act as the post-synaptic
neuron, receiving the signal in the form of changes in current.
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Paired-pulse facilitation (PPF) and paired-pulse depression (PPD) are critical forms of
short-term synaptic plasticity involved in learning and memory processes in the human
brain [31,32]. In biological synapses, such behavior is closely associated with short-term
plasticity and plays a vital role in sensory processes like pain perception. The artificial
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synapse successfully replicates PPF/PPD, as demonstrated in Figure 5c,d. The change
in the amount of charge in the Mo floating gate accumulates as the number of pulses
increases. Consequently, the post-synaptic current generated by the second presynaptic
spike surpasses that induced by the first.
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The metastable carrier-trapping dynamics underlying the persistent photoconduc-
tivity effect in amorphous IGZO channels enable precise emulation of light-stimulated
synaptic potentiation behaviors at the device level [33,34]. To demonstrate the application
of the proposed photonic–electronic co-modulated artificial synapse in complex associative
learning patterns, it was used to simulate the Pavlovian conditioned reflex [16,35]. Both
optical and electrical stimuli were employed, with the optical stimuli representing food
as the unconditioned stimulus (US) and the electrical stimuli representing the ringing
of a bell as the conditioned stimulus (CS). An EPSC value of 202 nA was defined as the
threshold for triggering the salivation response. As shown in Figure 6, the initial electrical
stimulus (CS) did not trigger a response, whereas the optical stimulus (US) successfully
did. During the training stage, both stimuli were applied simultaneously twice to establish
an association between the bell ringing and the salivation response. After conditioning, the
EPSC induced by a single electrical stimulus exceeded the threshold, effectively triggering
the conditioned salivation response. As the EPSC decayed further, the rise induced by
the electrical stimulus alone fell below the threshold, failing to initiate a response and
simulating the forgetting process of the conditioned response. This demonstrates that the
photonic–electronic co-modulated synapse successfully mimics the learning and forgetting
behaviors in a Pavlovian conditioned reflex.

Long-term plasticity, including both LTP and LTD, is essential for learning and mem-
ory functions in biological nervous systems [36]. Generally, when an artificial synapse
exhibits higher linearity and symmetry in conductance regulation, the neuromorphic com-
puting it composes will show better performance. As shown in Figure 7a, the LTP/LTD
characteristics of the IGZO synapse were measured and exhibited remarkable properties,
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including 100 conductance states in both potentiation and depression, good linearity with
NL coefficients of 0.0099 and −0.0115, and an AR of 0.247, as calculated using the for-
mulas in the reference [36]. These evaluation parameters significantly surpass those of
other similar devices [37–39]. The a-IGZO artificial synapse consumes between 1.7 and
4.3 pJ of energy per spike during weight modulation, following the calculation method in
reference [40].
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was applied at −17 V for 100 µs.

Moreover, multilevel conductance states with high linearity and symmetric conduc-
tance updates have been established as essential features for optimizing neuromorphic
computing performance. The image recognition accuracy was evaluated using MNIST
handwritten digit images to demonstrate the potential of this synapse in neuromorphic
computing. The artificial neural network simulation employed a three-layer neural net-
work with 784 input neurons, 50 hidden neurons, and 10 output neurons, as shown in
Figure 7b. Figure 7c illustrates the recognition accuracy of the neuromorphic network incor-
porating IGZO synapses. The accuracy of the network improved to 90.0% after 20 training
epochs and then reached 93.8% and stabilized there after 60 training epochs. Notably,
the theoretical maximum accuracy for digit recognition using the back-propagation algo-
rithm is 96.8% [27]. The confusion matrix comparing the desired and predicted values
after 60 training epochs is presented in Figure 7d, highlighting the effectiveness of IGZO
synapses in enhancing recognition accuracy. After the addition of 10% noise-level pixels to
MNIST test images, the recognition accuracy of the synaptic-based ANNs remains above
83% (Figure 7e,f). The above-mentioned results suggest that the proposed synapse is a
promising candidate for constructing neuromorphic computing networks.
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curves. The LTP/LTD comprise 100 potentiation pulses (−20 V/100 µs) and 100 depression pulses
(32 V/100 µs). (b) Illustration of a three-layer neural network, consisting of an input layer, a hidden
layer, and an output layer. (c) Simulated pattern recognition accuracy as a function of training epochs
of artificial synapses in comparison with the ideal case. (d) The confusion matrix comparing the
desired and predicted values after 60 training epochs. (e) Examples of MNIST handwritten digit
images before and after adding 10% noise. (f) Confusion matrix for handwritten digit recognition
after noise addition. The maximum values appear along the diagonal, corresponding to successful
digit identification.

4. Conclusions
In summary, the proposed a-IGZO photonic–electronic co-modulated synapse suc-

cessfully simulates synaptic plasticity (including good linearity, excellent symmetry, and a
high number of conductance states) and effectively mimics biological conditioned reflex
behaviors. The neuromorphic network based on this synapse achieved a notable accuracy
of 93.8% in handwritten digit recognition. The novel photonic–electronic co-modulated
a-IGZO synaptic transistor demonstrates significant potential as a core functional element
in neuromorphic computing architectures, effectively bridging optoelectronic modulation
with biologically inspired synaptic emulation capabilities.

Author Contributions: Methodology, Z.H., Y.Z. and D.W.; Formal analysis, Z.H. and J.S.; Investi-
gation, Z.H., J.S., Y.Z. and D.W.; Writing – original draft, Z.H.; Writing – review & editing, D.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant
number 62374044).
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