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Abstract

Diarrheal disease, a major cause of morbidity and mortality in dairy calves, is strongly asso-

ciated with the health and composition of the gut microbiota. Clostridioides difficile is an

opportunistic pathogen that proliferates and can produce enterotoxins when the host experi-

ences gut dysbiosis. However, even asymptomatic colonization with C. difficile can be asso-

ciated with differing degrees of microbiota disruption in a range of species, including people,

swine, and dogs. Little is known about the interaction between C. difficile and the gut micro-

biota in dairy calves. In this study, we sought to define microbial features associated with C.

difficile colonization in pre-weaned dairy calves less than 2 weeks of age. We characterized

the fecal microbiota of 80 calves from 23 different farms using 16S rRNA sequencing and

compared the microbiota of C. difficile-positive (n = 24) and C. difficile-negative calves (n =

56). Farm appeared to be the greatest source of variability in the gut microbiota. When con-

trolling for calf age, diet, and farm location, there was no significant difference in Shannon

alpha diversity (P = 0.50) or in weighted UniFrac beta diversity (P = 0.19) between C. diffi-

cile-positive and–negative calves. However, there was a significant difference in beta diver-

sity as assessed using Bray-Curtiss diversity (P = 0.0077), and C. difficile-positive calves

had significantly increased levels of Ruminococcus (gnavus group) (Adj. P = 0.052), Lach-

noclostridium (Adj. P = 0.060), Butyricicoccus (Adj. P = 0.060), and Clostridium sensu stricto

2 compared to C. difficile-negative calves. Additionally, C. difficile-positive calves had fewer

microbial co-occurrences than C. difficile–negative calves, indicating reduced bacterial syn-

ergies. Thus, while C. difficile colonization alone is not associated with dysbiosis and is

therefore unlikely to result in an increased likelihood of diarrhea in dairy calves, it may be

associated with a more disrupted microbiota.
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Introduction

Infectious diarrheal disease is one of the main causes of mortality in dairy calves [1,2], and

calves less than 30 days of age are at highest risk of developing diarrhea [3,4]. Studies have

shown that gut microbial composition is associated with gut health and the likelihood of diar-

rhea: reductions in microbial diversity are associated with an increased incidence of diarrhea

[5], and the colonization of the calf gut with beneficial bacteria along with the decreased colo-

nization of potential pathogens decreases the likelihood of calf diarrhea [6].

Clostridioides difficile is a spore-forming anaerobic, Gram-positive bacillus that is a signifi-

cant enteric pathogen in many species of animals. Colonization with C. difficile has been

shown to be associated with reduced gut microbial diversity and increased colonization of

pathogenic bacteria in people [7,8], and we recently demonstrated a similar association in pup-

pies [9]. Dairy calves, like the neonates of other species, are colonized with C. difficile at high

rates, with reported prevalences ranging from 28–56% [10,11]. While there is some evidence

that infection with C. difficile can result in diarrhea in calves [12], the effect of the asymptom-

atic colonization of calves on the gut microbiota is unknown. Given the crucial role of the gut

microbiota in providing colonization resistance against pathogens that cause diarrhea [13,14],

a better understanding of the effect of pathogens such as C. difficile on the calf gut microbiota

is needed. The goal of this cross-sectional study was thus to define the gut microbiota features

associated with C. difficile colonization in dairy calves and to define the effects of calf age, diet,

and farm on the risk of colonization.

Methods

Sample collection

Fecal samples were manually collected from up to five randomly selected healthy calves less

than three weeks of age from each of 23 dairy farms in Pennsylvania, Maryland and Delaware.

Healthy calves were defined as non-diarrheic animals that were bright and alert and not char-

acterized as sick by the farmer. Briefly, gentle rectal palpation was performed to stimulate defe-

cation in each calf, and approximately 10 g of fecal material was captured directly from the

rectum into a testing tube. Fecal material was transported to the lab within 1 hour of the collec-

tion time and stored at -80˚C. Samples were thawed once for batch processing. The number of

calves sampled was chosen to detect a minimum prevalence of C. difficile of 10% based on

prevalences reported in the literature [12,15]. This study was approved by the Institutional

Animal Care and Use Committee of the University of Pennsylvania (Protocol 806386).

Detection of C. difficile
Individual fecal samples were tested for C. difficile using the Xpert C. difficile assay (Xpert CD

assay; Cepheid, Sunnyvale, CA, USA) according to the manufacturer’s instructions. This assay

detects the cytotoxin gene (tcdB) and binary toxin genes (cdtA and cdtB). Additionally, the

assay has a callout for ribotype NAP1/B1/027. While this assay has not been validated for use

in bovine feces, the sensitivity and specificity of this assay in human stools are 93.5% (95% CI:

90.3–95.9%) and 94.0% (95% CI: 92.9–95.0%), respectively, according to the manufacturer,

and 84.2% and 87.7%, respectively, in canine feces [16].

To rule out the possibility of colonization with non-toxigenic C. difficile, pooled fecal sam-

ples from each farm were also submitted for anaerobic culture as previously described [9,17].

Briefly, 0.5 g of formed fecal sample was mixed with 0.5 ml of 100% ethanol for 60 minutes at

room temperature before being inoculated on Cycloserine-cefoxitin fructose modified agar

(CCFA) (Remel™) or Clostridium difficile Selective Agar (BBL™) and Columbia CNA agar
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(Thermo Fisher Scientific Remel Products). Inoculated plates and broth were incubated in BD

Gas-Pak™ EZ container systems with BD BBL™ CO2 generators and BD BBL™ Gas Pak™ anaer-

obic CO2 indicators (Franklin Lakes, NJ) at 36˚C ± 2˚C under anaerobic growth conditions

for seven days and checked for growth every other day. Suspect colonies were identified and

isolated. Isolates were confirmed to be C. difficile by Maldi-TOF identification and/or RapID

ANA II System (Thermo Fisher Scientific Remel Products).

16S rRNA sequencing

DNA was extracted from fecal samples using Qiagen PowerSoil DNA extraction kit. 16S rRNA

sequencing was performed as described previously [9,18]. Briefly, the V4 region of the 16S

rRNA gene was amplified using PCR, which was performed using Accuprime Pfx Supermix

and custom primers for 2 minutes at 95˚C, 30 cycles of: 20 seconds at 95˚C, 15 seconds at

55˚C, 5 minutes at 72˚C; and 10 minutes at 72˚C [18]. PicoGreen quantification was used to

normalize post-PCR products and AMPureXP beads were used to clean the combined pools.

Libraries were quantified and sized using a Qubit 2.0 and Tapestation 4200, respectively.

250bp paired-end sequencing was performed using an Illumina MiSeq. Sequence data are pub-

lically available (SRA accession number: PRJNA644943). Positive and negative controls were

confirmed after sequencing.

Sequence data processing using QIIME2

The QIIME2 pipeline [19] was used to process and analyze 16S sequencing data. Samples were

demultiplexed using q2-demux and denoised using Dada2 [20]. Sequences were aligned using

maaft [21] and phylogenetic trees were reconstructed using fasttree [22]. Shannon alpha diver-

sity, weighted UniFrac and Bray-Curtis beta diversity metrics were estimated using q2-core-

metrics-diversity after samples were rarefied to 1941 reads per sample, and p-values were

adjusted for multiple hypothesis testing using Benjamini-Hochberg (B-H) false discovery rate

(FDR) corrections [23]. Taxonomy was assigned to sequences using q2-feature-classifier clas-

sify-sklearn [24] against the Silva reference database [25]. Taxa were collapsed to the genus

level, when possible. OTUs with less than 1% average relative abundance across all samples

were removed.

Correlation analysis and differential feature selection

The association between C. difficile colonization and calf age and feeding type was assessed by

univariable logistic regression to rule out the possibility of confounding by these variables. The

association between C. difficile culture status and microbial alpha diversity of the gut was then

determined using a linear mixed effects model as implemented in the lme4 package [26] in R

where age was controlled for as a fixed effect and with farm and diet as random effects. The

correlation between C. difficile culture status on gut microbiota beta diversity was determined

using PERMANOVA as implemented in the vegan package [27] in R controlling for age, farm,

and diet. Principal coordinate analyses were performed using the phyloseq package in R [28].

Differentially-abundant taxa were determined using LDA Effect Size (LEfSe) [29] and Analysis

of Composition of microbiomes (ANCOM), and p-values were adjusted for multiple hypothe-

sis testing using B-H FDR corrections in R. The Dice index [30] was used to determine the co-

occurrence of bacterial genera. Boxplots and LEfSe plots were visualized using ggplot2 [31]

and ggthemes.
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Results

Subject characteristics and C. difficile status

Fecal samples were collected from a total of 92 Holstein calves from 23 farms. All calves

appeared systemically healthy at the time of sampling and none had received antimicrobial

therapy. The mean (SD) age of the calves was 7.0 (5.0) days. Thirty-six (35.6%) calves were fed

waste milk, while the remaining calves were fed either colostrum or whole milk.

C. difficile was detected by qPCR in 28 calves (30.4%, 95% CI 21.2–40.9%) (Fig 1). Of the 28

samples that were positive for C. difficile on qPCR, 1 (3.6%) was positive for Toxin B only, 14

(50%) were positive for binary toxin only, and 13 (46.4%) were positive for both Toxin B and

the binary toxin. None of the organisms were identified as the NAP1/B1/027 ribotype. On 14

farms, there were both C. difficile-positive and C. difficile-negative calves, whereas on the

remaining farms, all of the calves were C. difficile-negative. There were no farms where all sam-

ples were qPCR-negative and the pooled sample from the farm was culture-positive. Neither

calf age nor feeding of waste milk were significantly associated with the likelihood of detecting

C. difficile among the calves (OR = 1.01, p = 0.805 and OR = 0.71, p = 0.493, respectively)

(Fig 1).

Fig 1. Distribution of age and C. difficile colonization status in 92 pre-weaned Holstein dairy calves.

https://doi.org/10.1371/journal.pone.0251999.g001
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Effect of C. difficile status on microbiota diversity

Sufficient fecal material was available for sequencing from 87 of the 92 calves. Microbiota com-

munity structure of the 87 calf fecal samples was assessed by sequencing and analyzing the V4

region of the 16S rRNA gene. Of the 87 that were sequenced, three were dropped from subse-

quent analyses because of low coverage and four were excluded because there was insufficient

sample for qPCR analysis. Among the 80 remaining samples, 24 were positive for C. difficile by

qPCR and 56 were negative.

The association between C. difficile status and Shannon alpha diversity was not significant

(P = 0.50) when controlling for age, diet, and farm location (Fig 2). PERMANOVA was then

used to test associations between C. difficile infection status and beta diversity of the gut micro-

biota. Farm location rather than C. difficile status explained most of the variation in gut micro-

biota composition across samples using both Bray-Curtis (P = 1e-4; R2 = 0.43) and weighted

UniFrac (P = 1e-4; R2 = 0.46) beta diversity metrics (Fig 3A and 3B). Age and diet were not

significantly associated with gut microbiota composition after controlling for farm (P>0.1).

After controlling for farm, age, and diet, C. difficile status was significantly associated with

Bray-Curtis beta diversity (P = 0.0077; R2 = 0.023), explaining 2.3% of the variation in gut

Fig 2. Alpha diversity of the gut microbiome in 806 pre-weaned Holstein dairy calves by C. difficile colonization

status.

https://doi.org/10.1371/journal.pone.0251999.g002
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microbiota composition. C. difficile status was not significantly associated with weighted Uni-

Frac beta diversity (P = 0.1934; R2 = 0.013) after controlling for farm, age, and diet. Some clus-

tering by farm and by C. difficile status within farms was apparent on principal coordinate

analysis (Figs 4 and S1).

Bacterial community composition

We next sought to determine the specific bacterial taxa associated with C. difficile colonization.

At the phylum level, there were no significant differences between bacterial communities in C.

difficile-positive and -negative samples (Fig 5). The Firmicutes phylum predominated (57.1%

in C. difficile-positive samples and 51.4% in C. difficile-negative samples), followed by Proteo-

bacteria (17.1% and 24.3%), Bacteroides (16.7% and 11.5%), and Actinobacteria (8.1% and

9.7%).

At the genus level, the only significant difference between C. difficile-positive and–negative

samples by ANCOM occurred for Clostridioides. When considering LEFse analysis, there

were four taxa among the 19 taxa with average relative abundance greater than 1% that were

statistically significantly (Adj. P<0.1) associated with C. difficile status. Ruminococcus (gnavus
group) (Adj. P = 0.052), Lachnoclostridium (Adj. P = 0.060), Butyricicoccus (Adj. P = 0.060),

and Clostridium (sensu stricto 2) (Adj. P = 0.064) were all found in higher relative abundance

among C. difficile-positive calves than in C. difficile-negative calves (Fig 6). While not statisti-

cally significantly different among the two groups, levels of Lactobacillus,Megasphaera, and

Streptococcus were increased in C. difficile-positive samples, while levels of Blautia, Fusobacter-
ium, Tyzzerella, Enterobacteriaceae, Fecalibacterium, Dorea, and Collinsella were decreased.

Co-occurrence analysis based on the Dice index showed that more co-occurrence of bacte-

rial taxa appeared in the C. difficile-negative samples, with 1,488 (65.5%) highly (correlation

coefficient>0.6) and significantly (p<0.01) correlated genera pairs. Most co-occurrences were

among members of the Firmicutes phylum (1295, 55.0%). However, members of Firmicutes

also showed high co-occurrence with Actinobacteria and Bacteroidetes. In the C. difficile-posi-

tive samples, there were fewer highly co-occurring genera, with 830 (73.3%) highly and

Fig 3. Beta diversity of the gut microbiome in 80 pre-weaned Holstein dairy calves by C. difficile colonization status. A. Bray-Curtis beta diversity. B. Weighted

UniFrac.

https://doi.org/10.1371/journal.pone.0251999.g003
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significantly correlated genera pairs. When only considering taxa with levels of relative abun-

dance greater than 1%, there were no significant differences in co-occurrence patterns (Fig 7).

Discussion

In this study, we characterized microbial features associated with asymptomatic C. difficile col-

onization in dairy calves. While the role of C. difficile in calf diarrhea remains equivocal [12],

exploring the association between this pathogen and the gut microbiota is important for

understanding factors that affect gut health and enteric diseases. A number of studies have

examined the epidemiology of C. difficile in animals of veterinary importance, but the associa-

tion between the microbiota and C. difficile is only beginning to be explored in dogs [9], horses

[32], and pigs [33]. Notably, in pigs, the presence of C. difficile is associated with significantly

reduced microbial diversity and increased levels of enteropathogens associated with neonatal

diarrhea [33].

Fig 4. Bray-Curtis principal coordinate analysis (PCoA) of fecal samples from 80 pre-weaned dairy calves by C. difficile colonization status and by farm.

https://doi.org/10.1371/journal.pone.0251999.g004
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Unsurprisingly, as in other studies [34–36], we found that the farm was the source of most

of the variation in gut microbiota composition. However, even among calves from the same

farm, there was variability in both C. difficile colonization status and gut microbial diversity,

suggesting, as have other studies [35,37], that the farm environment is only one of many com-

peting influencers of the developing calf gut microbiota. Neither diet nor age were significantly

associated with microbiota composition when controlling for farm, but this is almost certainly

due to the small sample size within each farm and the lack of within-farm variability in factors

such as diet. When controlling for age, diet, and farm, we noted a significant difference in beta

diversity between C. difficile-positive and C. difficile-negative fecal samples when considering

the Bray-Curtis metric but not the unweighted UniFrac metric. While both of these metrics

are weighted by abundance, the latter metric weighs diversity by phylogenetic relationship.

Thus the lack of a significant difference when considering the weighted UniFrac metric sug-

gests that, while there may be a significant difference in the composition of microbial commu-

nities, the differentially-abundant microbes might be closely related to one another. Indeed, all

four genera identified as differentially-abundant by LEfSe are members of the Clostridia class,

with two belonging to the Clostrideaceae family.

While the lack of a consistent difference in alpha and beta diversity between C. difficile-pos-

itive and C. difficile-negative samples suggests that the effect of C. difficile colonization on the

gut microbiota of calves is minimal, other findings suggest that C. difficile colonization is asso-

ciated with a more disrupted (i.e., altered)–but not dysbiotic (i.e., imbalanced and impaired)–

gut microbiota. C. difficile colonization was preferentially associated with certain bacterial taxa

of the class Clostridia that do have associations with dysbiosis. Notably, the overrepresentation

of Ruminococcus gnavus and Lachnoclostridia in C. difficile-positive calves point to the possi-

bility of an underlying imbalance in the gut microbiota. R. gnavus, a Gram-positive anaerobe

that is typically found in the gut of over 90% of healthy people at relative abundances less than

0.1%, has been robustly associated with inflammatory dysbiotic conditions such as Crohn’s

disease [38–40], allergic airway disease [41], eczema [42], and spondyloarthritis [43]. Dramatic

blooms of R. gnavus occur in patients experiencing flares of inflammatory bowel disease, with

relative abundance levels that can peak at 69% of the gut microbiota [40]. Notably, this associa-

tion appears to occur across species, as the gut microbiomes of both infants [7] and piglets [33]

colonized with C. difficile also had increased relative levels of Ruminococcus species, including

Fig 5. Distribution of bacterial phyla by C. difficile status in fecal samples from 80 pre-weaned dairy calves. The

nine most abundant phyla are displayed.

https://doi.org/10.1371/journal.pone.0251999.g005
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R. gnavus. Additionally, Ruminococcus was one of six bacterial genera in the gut microbiota

that predicted the occurrence of diarrhea in calves in another study [44]. The increased relative

abundance of Clostridium sensu stricto and Lachnoclostridia in C. difficile-positive calves also

points to the possibility of a less healthy gut environment. An increased relative abundance of

Clostridium sensu stricto, which was also found in C. difficile-positive piglets [33], was associ-

ated with food allergies in infants [45] and diarrhea in piglets [46]. A tentative association

between increased levels of Lachnoclostridia and neoplasia of the gastrointestinal tract has

been identified in people [47,48]. While no such association has been explored in animals, the

overrepresentation of this taxon in C. difficile-positive calves may be the result of a more dis-

rupted gut microbiota. However, it is also important to note that the increased relative abun-

dance of these taxa were only detected using LEfSe analysis and not ANCOM, which suggests

that the association is likely relatively weak, as a stronger association would more likely have

been consistently found across multiple metrics of differential relative abundance [49].

Fig 6. Distribution of bacterial taxa that were found at higher levels in C. difficile-positive calves by C. difficile colonization status in 86 pre-weaned Holstein dairy

calves. A. Butyricicoccus. B. Clostridium sensu stricto 2. C. Ruminococcus gnavus. D. Lachnoclostridium.

https://doi.org/10.1371/journal.pone.0251999.g006

PLOS ONE C. difficile colonization in calves

PLOS ONE | https://doi.org/10.1371/journal.pone.0251999 December 15, 2021 9 / 15

https://doi.org/10.1371/journal.pone.0251999.g006
https://doi.org/10.1371/journal.pone.0251999


Certain bacterial taxa that predominate in healthy calves were found at lower (but not sta-

tistically significantly lower) levels in C. difficile-positive calves. Notably, Fecalibacterium,

Dorea, Enterobacteriaceae and Collinsella are among the most abundant genera in healthy pre-

weaned calves [50–53], and some of these taxa provide colonization resistance against C. diffi-
cile [8,54]. Their decreased relative abundance in C. difficile-positive calves is also reflective of

a more disrupted gut microbiota. The decreased co-occurrence of bacterial taxa in C. difficile-
positive calves compared to C. difficile-negative calves when considering all levels of relative

abundance may also corroborate the notion of a slightly more disrupted gut microbiota in col-

onized calves. However, because the difference occurred only in rare taxa (relative

abundance < 1%), this difference appears unlikely to result in dysbiosis.

One finding that is in contradiction to the general trend of C. difficile colonization being

associated with disrupted microbiota is the increased relative abundance of Butyricicoccus in

C. difficile-positive calves. In people, Butyricicoccus species of bacteria are generally found in

lower levels in people colonized with C. difficile [55] or diagnosed with inflammatory bowel

disease [56,57], and at higher levels in healthy dairy calves compared to calves with diarrhea

[52,58]. It is unclear why the relative abundance of Butyricioccus occurred at higher levels in C.

difficile-positive calves compared to C. difficile-negative calves. Butyricicoccus bacteria produce

butyrate, an important nutrient source for gut colonocytes and a beneficial driver of the immu-

nological maturation of the gut mucosa [59]. Moreover, this genus is one of the most abundant

genera in dairy calves 7 days after birth [60]. The differential levels in calves compared to peo-

ple with enteric disease may be due to species-specific patterns of development of the neonatal

gut. Species-specific differences may also explain why C. difficile colonized calves had higher

levels of Clostridial genera but colonized puppies had lower levels [9]. While rumen develop-

ment is minimal in pre-weaned calves, they are nevertheless ruminants and thus have

Fig 7. Analysis of co-occurrence among microbial lineages scored using the Dice index by C. difficile-colonization status (positive and negative). Dice indexes are

shown as a heat map for all genera present at a level of relative abundance greater than 1% and with statistically significant (p<0.01) co-occurrence are shown as a

heatmap. The degree of co-occurrence is shown by the color code at the bottom.

https://doi.org/10.1371/journal.pone.0251999.g007
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fundamentally different enteric physiologies and microbial ecologies compared to true mono-

gastric species.

Some limitations apply to this study. Heterogeneity in farm location, age, and diet across all

of the sampled calves may have obscured features of the microbiota that would otherwise have

been associated with C. difficile colonization. The cross-sectional nature of the study also pre-

cludes the possibility of drawing any conclusions about the duration of colonization and its

effect on an already rapidly evolving gut microbiota. Moreover, while in some species the fecal

microbiota is similar to that of the rectal mucosa [61–63], the fecal microbiota overall appears

distinct from that of other parts of the GI tract, including the colon, where C. difficile resides

[64–66]. The use of a qPCR assay to detect C. difficile that has not been validated in bovids

could have resulted in false negatives or false positives. However, we believe this possibility to

be minimal, because we have shown that the performance of this assay is relatively high in

other species [16], and because pooled samples underwent anaerobic culture, which would

have ruled out false negatives. Finally, because the qPCR assay only detects toxigenic C. diffi-

cile, we were unable to detect non-toxigenic C. difficile. It is likely that toxigenic and non-toxi-

genic C. difficile occupy a similar ecological niche and compete for similar resources within the

gut microbiota; thus the presence of non-toxigenic C. difficile could account for the lack of a

significant difference in alpha diversity and microbial composition between C. difficile-positive

and C. difficile-negative calves. However, we believe this possibility to be unlikely, as there

were no samples that were negative on qPCR but came from a farm where the pooled sample

was positive for C. difficile on anaerobic culture.

Conclusion

The greatest source of variability in the calf microbiota was the farm, and there were few or no

statistically significant differences in alpha or beta diversity between C. difficile-positive and C.

difficile-negative calves. C. difficile colonization thus does not appear to be associated with dys-

biosis or with increased levels of enteropathogens that cause calf diarrhea. However, microbial

community signatures–including increased relative abundance of bacterial taxa that that have

been associated with dysbiotic states in other species and in people—suggest that the micro-

biota of C. difficile-colonized calves is more disrupted than that of non-colonized calves.

Supporting information

S1 Fig. Bray-Curtis principal coordinate analysis (PCoA) of fecal samples from 80 pre-

weaned dairy calves. Point shape identifies C. difficile colonization status and color denotes

farm. 95% confidence intervals were drawn around samples collected in the same farm.
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