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Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided
method for the segmentation of hot lesions in head and neck 18F-FDG PET scans.
Methods: A semiautomated segmentation method was developed, which transforms the segmentation
problem into a graph-based optimization problem. For this purpose, a graph structure around a
user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived
based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g.,
lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes
are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors
present approaches for the efficient interactive local and global refinement of initial segmentations
that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans
from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous
cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant
standard manual segmentation approach was performed based on 2760 segmentations produced by
three experts.
Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated
and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was
not statistically significant (p= 0.2145). However, the intra- and interoperator standard deviations
were significantly lower for the semiautomated method. In addition, the proposed method was found
to be significantly faster and resulted in significantly higher intra- and interoperator segmentation
agreement when compared to the manual segmentation approach.
Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment tar-
geting as well as for response assessment in clinical trials and in clinical oncology decision-making.
The properties of the authors approach make it well suited for applications in image-guided radiation
oncology, response assessment, or treatment outcome prediction. C 2016 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4948679]
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1. INTRODUCTION
1.A. Background

FDG PET/CT has become an essential tool for clinical man-
agement of head and neck (H&N) squamous cell carcinoma
(SCC).1 This disease typically originates from the normal
squamous mucosa that lines the open air spaces in the H&N
region. Cancers are most often caused by irritants and carcin-
ogens from cigarette smoke, alcohol, and chewing tobacco
although more recent studies also show a role for human
papilloma virus (HPV).2,3 Once cancerous, these mucosal neo-
plasms have access to associated lymphatic drainage, leading
to local/regional spread of the disease to neck lymph nodes.
Staging for these cancers is defined by the size and invasion
pattern of the primary site cancer (T stage) as well as the
presence, size, and location of regional nodes (N stage).4 More
rarely these cancers spread to regions beyond the H&N region,
which can be defined as metastases (M stage).

TNM staging is an important determinant of both prognosis
and oncologic treatment decision-making for every patient.4

Because of limitations of physical exam, imaging has rapidly
become a critical part of staging. CT was the initial imag-
ing modality of choice5–8 and provided volumetric anatomic
assessment based on contrast uptake into tumor versus normal
mucosa. The size of local-regional lymph nodes could readily
be determined and lymph nodes larger than 1.5 cm were more
likely involved in cancer. Unfortunately, CT imaging was not
very sensitive with limited involvement of the cancer. The
advent of PET/CT provided a more sensitive imaging tool that
detected cancer based on the metabolic differences in glucose
metabolism with tumors showing greater FDG uptake than
normal tissues. FDG PET/CT is an effective tool for diagnosis
and is effective in accurately detecting sites of cancer involve-
ment and thereby improves the accuracy of staging1,9 and
helps define areas for surgical excision and radiation therapy.
FDG PET/CT has thus become the most important staging
and therapy-planning tool for H&N cancers. Finally, the ulti-
mate success of the treatment can be assessed with this more
sensitive tool, although it requires a sufficiently long interval
(generally 2–3 months) after radiation and/or surgery to allow
the inflammation of treatment to abate.10 FDG PET/CT is
now a standard in many centers for staging, clinical decision-
making, and response assessment.11

Despite the advances associated with FDG PET/CT use,
the previously described applications are mostly based on
standard visual inspection of images with only limited use of
quantitative indices. If quantification is employed, the most
commonly used metrics to characterize lesions are SUVmax,
SUVmean, metabolic tumor volume (MTV), and total lesion
glycolysis (TLG).12,13 PERCIST is an approach that has pro-
posed another index, SUVpeak (i.e., the maximum average
activity in a 1 cm sphere inside the tumor of interest) to assess
response to therapy.14

The work presented here focuses on improvements that
can be achieved by employing more automated and therefore
more consistent approaches to quantitative analysis of tumors
and associated lymph nodes. We argue that highly automated
segmentation algorithms can provide greater accuracy and

consistency in defining radiotherapy treatment volumes and
are important for quantifying responses to therapy.

1.B. Problem statement and requirements

Segmenting H&N lesions in PET images is demanding, as
demonstrated by the examples shown in Fig. 1, which are part
of our evaluation set (Sec. 3.A). Also, for applications like
outcome prediction, it is not a priori known if segmenting and
quantitatively describing the primary tumor only is sufficient
or if all lesions need to be quantified individually. Thus, to
answer this question, all lesions need to be segmented individ-
ually and can be later combined for comparison. Specifically,
our requirements for a head and neck cancer (HNC) segmen-
tation approach are as follows.

• The segmentation method must offer the ability to indi-
vidually segment lesions with varying contrast that are
in close proximity to each other or to normal structures
with FDG uptake, which is especially important for HNC
FDG PET imaging (Fig. 1).

• The segmentation approach must allow physicians to
segment lesions in a time-efficient manner, as required
for clinical use. Note that due to the complexity of HNC
FDG PET images, the (correct) interpretation of scans
(i.e., locating lesions, differentiating between normal and
abnormal structures, etc.) is already time intensive, and
therefore, this point becomes even more important for
this specific application.

• The method must be intuitive to use. Also, in the case
of semiautomated segmentation methods, it must allow
physicians to make corrections to semiautomated seg-
mentation results as deemed appropriate.

• The approach must offer good agreement with manual
segmentation, which is the de facto standard.

• The method must offer better consistency to reduce intra-
and interoperator variability. This is especially important
for applications like radiation treatment planning, where
operator induced variability can compromise outcome.

1.C. Related work

The definition of the gross tumor volume (GTV) or calcu-
lation of FDG uptake metrics like average SUV, MTV, or
total glycolytic volume (TGV) requires the segmentation of
target structures like primary tumors and metabolically active
lymph nodes in volumetric FDG PET images. For PET image
segmentation, a number of approaches have been proposed,
including adaptive thresholding,15 “standard” region grow-
ing,16 a combination of adaptive region-growing and dual-
front active contours,17 k-means-based partitioning into tu-
mor and background regions,18 a gradient-based method,19 a
combination of two segmentation methods to reduce incon-
sistencies,18 and fuzzy locally adaptive Bayesian (FLAB)
method.20 For an overview of published methods, the reader
is referred to the review by Foster et al.21

Recently, a number of graph-based segmentation methods
have been proposed for PET image segmentation, and a

Medical Physics, Vol. 43, No. 6, June 2016



2950 Beichel et al.: Semiautomated segmentation of head and neck cancers 2950

F. 1. Examples depicting the complexity of HNC segmentation in FDG PET scans. [(a)–(c)] Volume rendering of PET scans, showing the primary cancer
[arrow in (d)–(i)] and lymph nodes with uptake. [(d)–(f)] Rendering of segmentations of individual lesions shown in (a)–(c) combined with a volume rendering
of the corresponding PET volume. [(g)–(i)] Examples of PET cross sections with outlined tumor segmentations. (g) Necrotic primary tumor with metabolically
active adjacent lymph node. [(h) and (i)] Cases with multiple lesions and varying degrees of tracer uptake.

summary is given in Table I. Similarly as in other medical
image analysis applications,22 these methods show great prom-
ise and represent a quite powerful segmentation framework.
However, formulating a suitable graph-based cost function
for HNC segmentation (Fig. 1) is not straightforward due
to potentially contradicting/conflicting demands/requirements
(e.g., lesion with inhomogeneous uptake vs. lesions in close
proximity). Such an issue can be avoided by utilizing graph-
segmentation algorithms in an interactive fashion, allowing the
user to contribute expert knowledge, if needed. For example,
in case of random walks and graph cuts, the user can add
additional object and background seeds to alter the segmen-
tation result. However, these changes can affect the segmenta-

T I. Overview of graph-based segmentation methods utilized for PET
image segmentation.

Bagci et al. (Refs. 28
and 29)

Random-walk-based segmentation of lesions in
PET images

Bagci et al. (Ref. 29) Random-walk-based cosegmentation of PET and
volumes produced with other imaging modalities

Ballangan et al.
(Ref. 30)

Graph-cuts-based segmentation of lung cancer in
PET images

Han et al. (Ref. 31) and
Song et al. (Ref. 32)

Cosegmentation of single lesions in PET and CT
images utilizing a Markov Random Field (MRF)
approach; the optimization is solved using a
graph-cuts-based method

tion globally, which can lead to unexpected effects, making
segmentation refinement unintuitive. In contrast, we have
developed approaches that follow the just-enough-interaction
(JEI) principle for segmentation of livers,23 lymph nodes,24 and
lungs in 3D (Ref. 25) and 4D (3D inspiration and expiration
scan)26 MDCT scans as well as for segmentation of IVUS
data sets.27 The idea behind this principle is that the user can
provide simple cues to guide the segmentation algorithm in
an efficient and intuitive manner. Besides the belief that the
general JEI principle can offer improved performance in PET
image analysis, no such approach for PET image segmentation
has been available so far. Specifically, this paper represents
the first demonstration that JEI strategy is suitable for this
application domain.

1.D. Contribution of this work

In this paper, we present a clinically relevant JEI-based
approach for FDG PET image segmentation, which utilizes
a graph-based segmentation method. For this purpose, we
transform the segmentation task into a suitable graph-based
optimization problem. In addition, we introduce several effi-
cient interaction approaches to enable the user to modify the
initial segmentation result. To demonstrate the applicability
and performance of our approach for the task of HNC segmen-
tation, we evaluate our approach on a large cohort of FDG
PET scans and compare its results to manual segmentation,
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the current clinical de facto standard for HNC segmentation
in FDG PET volumes.

2. METHODS

We utilize a highly automated optimal surface segmenta-
tion (OSS) approach, which is a variant of the LOGISMOS
(layered optimal graph image segmentation of multiple objects
and surfaces) segmentation framework,33 for the segmentation
of uptake in FDG PET volumes. OSS was introduced by
Li et al.34 The basic idea behind this approach is to formulate a
segmentation problem as a graph-based optimization problem,
which enables finding an optimal solution (i.e., segmentation
surface) according to the utilized cost function. For more
information on OSS, the reader is referred to Li et al.34

In Subsections 2.A–2.E, the approach for lesion segmen-
tation in FDG PET volumes is described in detail. First, we
introduce the main segmentation approach (Secs. 2.A–2.C).
Second, we outline several additional segmentation modes,
which allow effective handling of frequently occurring situ-
ations like lesions in close proximity (Sec. 2.D). Third, we
describe an approach that enables the user to efficiently refine
segmentations (Sec. 2.E), if needed.

2.A. Graph construction

To construct a graph that represents the segmentation prob-
lem, the user first needs to indicate a lesion to be segmented.
For this purpose, the user specifies a rough center point cek
inside of lesion k. This can be done in two ways: (a) the user-
selected point cekuser is directly utilized as cek or (b) cekuser can
be automatically recentered to the highest uptake voxel within
a search radius of 7 mm from cekuser. Option (b) typically leads
to more consistent results because a property of the PET image
I is utilized to adjust the location of the center point. Therefore,
it is used as the default setting, which can be changed by the
user. However, recentering may cause problems, for example,
when segmenting lesions with necrotic centers.

Based on cek, a graph structure is generated (Fig. 2). For
this purpose we assume that the lesion to be segmented is
roughly spherical in shape, which is frequently the case for
lesions in the H&N area. For more complex shaped lesions,

additional center points can be used, and individual segmen-
tation results will be automatically combined with a logical
OR operation. A graph Gk = (V,E), consisting of nodes V
and edges E, is constructed by placing a spherical mesh with
radius r and ncolumn evenly spaced mesh vertices pi with
i ∈ {0,1,. . .,ncolumn − 1} centered around cek. The volume
(voxels) inside the spherical mesh will be denoted as Mregion.
Then, columns with sample points (nodes) are introduced
between cek and mesh vertices pi. The spacing between nodes
is gap, resulting in nnode nodes that represent sample points
of the physical volume [Fig. 2(a)]. The node ni,0 is closest
to the center, while node ni,nnode−1 is furthest away from the
center. All remaining nodes are placed in order between them.
In addition to nodes, several edges are added to represent
the segmentation problem. First, for all nodes on a column,
the edges {ni, j,ni′, j−1} with infinite capacity are added to E
if j , 0 to ensure that only one node can be selected on a
column34 [Fig. 2(b)]. Second, for all nodes j and j ′, where
j ′ = max( j − sc,0) on every pair of adjacent columns i and
i′, edges {ni, j,ni′, j′} and {ni′, j,ni, j′} with infinite capacity
are added to E to implement a hard smoothness constraint34

[Fig. 2(c)]. Thus, when solved, the nodes of two adjacent
surface points on columns cannot be more than sc nodes apart.
Third, a soft smoothness constraint is included by adding edges
{ni, j,ni′, j} and {ni′, j,ni, j} with capacity sp to E35 [Fig. 2(d)].
Consequently, for a possible solution, the cost is increased
by sp times the difference in j between surface nodes on a
neighboring column.

Based on experiments performed on a small set of PET
volumes dedicated for algorithm development, we found that
r = 60.0 mm, ncolumn= 1026, gap = 1.0 mm (resulting in nnode
= 60), sc= 5, and sp= 0.005 work well for our application.

2.B. Cost function design

For graph-based segmentation, nodes ni, j that represent
the object boundary should incur low costs, while nodes that
represent the selected object (uptake region), adjacent objects,
or background should incur high costs to make it less likely
that the object surface (mesh) passes through these nodes. To
generate node costs, uptake values up(ni, j) at corresponding
spatial node locations are sampled from the PET volume by
means of linear interpolation and subsequently converted into

F. 2. Graph construction for OSS. (a) Centerpoint cek and utilized node structure; the spherical mesh is symbolized by a circle. For each node, a cost
is assigned. (b) Intracolumn edge structure (red) with infinite capacity, pointing toward the center. [(c) and (d)] Intercolumn edge structure. (c) The hard
smoothness constraint is implemented by introducing edges with infinite capacity shown in green. (d) The soft smoothness constraint is implemented by
introducing bidirectional edges with low finite capacity shown in cyan. (See color online version.)

Medical Physics, Vol. 43, No. 6, June 2016



2952 Beichel et al.: Semiautomated segmentation of head and neck cancers 2952

F. 3. Comparison of PET segmentation approaches. The same sagittal cross section is shown for all segmentations. (a) Manual slice-by-slice segmentation
result. (b) Result of a 50% isocontour segmentation approach. (c) Result of proposed graph-based segmentation method.

node costs cbase(ni, j). This conversion is based on the analysis
of local image properties around the center point cek, which
are robustly estimated. Our cost function design is based on
an adaptive strategy to mimic the typical tracing preference
of radiation oncologists [Fig. 3(a)]. The boundary drawn by
the radiation oncologist [Fig. 3(a)] almost reaches voxels with
background uptake, whereas a typical segmentation approach
based on the isocontour corresponding to 50% of the maximum
lesion uptake-to-background uptake ratio has boundary voxels
with much higher uptake values [Fig. 3(b)]. In this context, we
observed that there is no linear relation between the average
uptake value at the boundary of the manual segmentation
and the maximum uptake to background uptake ratio. Also,
note that the segmentation boundary appears “noisy” in the
sagittal cross section depicted in Fig. 3(a), because the manual
segmentation was performed in an axial slice-by-slice fashion.
The proposed approach to cost function calculation addresses
all these issues [Fig. 3(c)]. All specific design decisions and
parameter selection are based on experiments performed on the

same set of PET volumes that have been used for optimizing
graph construction parameters (Sec. 2.A).

2.B.1. Local image properties

Based on our assumption of roughly spherical object shape,
we introduce the notion of a shell to robustly measure local
uptake parameters. A shell Ω j is the set of all nodes with
the same node level j: Ω j = {ni, j | i = 0,. . .,ncolumn− 1}. The
average uptake for each shell Ω j is robustly estimated by
upΩ( j)=median{up(ni, j) | ni, j ∈Ω j}. A typical plot of upΩ( j)
as a function of j is given in Fig. 4(a). Specifically, we are
interested in finding the “peak” pe and the “knee” kn uptake
values [Fig. 4(a)], which will be utilized for determining a
threshold T h that is used for calculating cbase(ni, j). The peak
pe is given by pe=max j=0, ...,nnode−1(upΩ( j)) and represents the
maximum uptake in a shell. The knee kn is the approximate
uptake value at which the object fades into the background,
but is not intended to be the background itself. To find kn,

F. 4. Calculation of local image statistics. (a) Plot of upΩ with points of interest pe and kn. (b) The gradient of upΩ. (c) The gradient with added center bias
to detect jlow. (d) Deriving jhi from ˜upΩ

′. Points on the curve that are labeled with low and hi mark the location of indices jlow and jhi, respectively.
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F. 5. Plot of Th% as a function of γ.

the gradient up′
Ω
( j) = upΩ( j + 1) − upΩ( j − 1) is calculated

for j = 1,. . .,nnode− 2 [Fig. 4(b)]. Then the index of the node
representing the steepest descent in upΩ is found with jlow
= arg min j=1, ...,nnode−2{(nnode−( j+1))/nnodeup′

Ω
( j)} [Fig. 4(c)].

The linear center bias term (nnode− ( j+1))/nnode helps dealing
with some rare, occasional cases of one large or several small
outside objects with uptake appearing in the shell profile. To
find the point where the shell uptake transitions to background
values, we utilize a modified version of up′

Ω
, such that it never

decreases if j > jlow

˜upΩ′( j)=



up′Ω( j), if j ≤ jlow

max(up′Ω( j), ˜upΩ′( j−1)), otherwise
. (1)

The node index where upΩ starts leveling off is jhi
[Fig. 4(d)] with ˜upΩ′( jhi) = min(0,max j= jlow, jlow+1, ...,nnode−1
( ˜upΩ′( j))). The knee node index is found by evaluating jknee
= arg min j= jlow, jlow+1, ..., jhi| ˜upΩ′( j) − (0.75 ˜upΩ′( jhi) + 0.25

˜upΩ′( jlow))| and kn= upΩ( jknee).

2.B.2. Threshold calculation

Once the peak and knee are determined, the threshold T h
can be calculated evaluating T h= kn+T h%(pe− kn) with

T h%= 0.8e−0.15γ1.5
. (2)

A plot of Eq. (2) as a function of the ratio γ = pe/kn is
provided in Fig. 5, and the rationale behind this design is
as follows. If γ = 2, roughly a 50% threshold is used. For
larger γ-values (e.g., pe≫ kn), the T h% will be lower than
50%, and for smaller γ-values, T h% will be increased moder-
ately. With this empirical design, the typical tracing behavior
of radiation oncologists is mimicked; higher uptake values
above background are included to form a perceived safe tu-

mor margin definition (Fig. 3). High acceptance (i.e., avoid-
ing the urge of users to manually edit/postprocess segmen-
tations that were generated by an algorithm) of computer-
generated thresholds/segmentations is important to achieve
lower inter- and intraobserver variability. Furthermore, Eq. (2)
can be tailored to specific needs or applications. For example,
variants based on some standard threshold methods can be
used as an alternative to focus more on volume estimation than
treatment. Some examples areT h%= 0.4 andT h%= 0.5, which
are based on typical 40% and 50% values of maximum thresh-
olds that are fairly common. Also, note that during calculation
of T h, the most inner and outer shells are not considered
because they represent extreme solutions that are not of inter-
est.

2.B.3. Cost function

Once the threshold T h is found, the cost function cbase(ni, j)
is constructed as follows (Fig. 6). Essentially, cbase consists of
the following three components:

If up(ni, j)<T h: The cost cbase(ni, j) = H̃(up(ni, j)) reflects
the likeliness of the uptake to be part of
the background. For this purpose, the im-
age volume inside Mregion is isotropically
resampled, and a normalized image histo-
gram H with max(H) = 1 is generated. H̃
is then generated by taking the right-to-left
monotonic increasing envelope function of
H [Fig. 6(a)].

If up(ni, j)=T h: The cost is defined as cbase(ni, j)= 0.
If up(ni, j)>T h: The cost is a linear function given by

cbase(ni, j)= (up(ni, j)−T h)/(up(cek)−T h),
which has the value of 0 at the threshold
uptake and 1 at the center uptake.

The final cost function is given by c(ni, j) = cbase(ni, j) +
creject(ni, j). The term creject(ni, j) is added to reject trivial solu-
tions or parts of adjacent, unrelated objects. It is defined as

creject(ni, j)=



rej, if r1(ni, j) or r2(ni, j)
0, else

, (3)

with r1(ni, j) = j < jmin, r2(ni, j) = ( j > jmin and min j′=0,1, ..., j
(up(i, j ′))< median(Mregion)), and jmin= 3. Therefore, the costs

F. 6. Cost function design. (a) Histogram H of a region around a typical lesion with corresponding envelope function H̃ . (b) Example of a cost function; the
individual components are clearly visible. The left part follows H̃ , while the right part is linear. The lowest point where both parts meet is at Th. (c) Example
of a typical cost profile with and without creject on a single column i, as a function of j , paired with the uptake along the column.
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F. 7. Examples of lesion segmentation results. [(a)–(c)] Segmentation results with a marked column along the x-axis. [(d)–(f)] Plots of the uptake and cost
function corresponding to (a)–(c).

of nodes in close proximity to the center ( j < jmin) as well
as nodes further away where the uptake has fallen below the
median of spherical region Mregion are increased by rej= 6, far
above the typical cost range between 0 and 1. An example of
a complete cost function profile is given in Fig. 6(c).

2.C. Segmentation

Once the graph is constructed and all costs have been deter-
mined, a globally optimal solution can be found in low degree
polynomial time, as described by Li et al.34 The result is a set
of nodes with exactly one node per column selected, which
represents the segmentation boundary. To visually represent
the segmentation result, the initial spherical triangle mesh can
be utilized by moving mesh vertices to selected boundary
nodes on the same column. Several examples of segmentations
and their cost functions are shown in Fig. 7.

Once the user has produced a valid segmentation of lesions
found in a PET volume, the meshes are converted to labeled
volumes by means of voxelization, resulting in segmentations
Sk. Voxelization can lead to a result where some voxels are
not within a 6-neighborhood of the main part of the lesion that
includes cek. Such voxels are removed. Also, the user has the
option to close one-voxel-wide gaps between adjacent lesions
(e.g., hot lymph nodes within a chain of nodes).

2.D. Segmentation options

Beyond the base algorithm (Secs. 2.A–2.C), there are alter-
native modes that can adapt the behavior of the algorithm to
better handle frequently occurring situations that are ambig-
uous. Thus, the options enable the user to provide additional
expert knowledge, which is utilized to modify the behavior
of the algorithm accordingly. For our method, the following
segmentation options were implemented, which are described
in appendices. Label Avoidance prevents new lesion segmen-
tation from overwriting existing segmentations (Appendix A).

Splitting simplifies individually segmenting lesion in close
proximity with similar uptake (Appendix B). Necrotic Mode
simplifies the segmentation of necrotic lesions (Appendix C).

2.E. JEI-Based refinement approach

Designing a cost function that is appropriate for all possible
situations is difficult. Consequently, while the above-described
base algorithm will perform flawlessly for the majority of
lesions found in H&N FDG PET scans, suboptimal results
can occur in some cases. For practical applicability in clinical
trials and routine care, it is important that even difficult cases
can be processed with the same segmentation tool without
major additional effort. Thus, we utilize the JEI principle to
effectively deal with segmentation errors of the base algorithm.
The basic idea behind JEI is that user input is kept at a min-
imum during refinement of a segmentation. Thus, instead of
manually correcting (local) errors (i.e., user driven boundary
delineation), the user provides only high-level input to the
algorithm to correct the segmentation boundary by utilizing
refinement modes of the approach. Also, an undo function
is provided that allows the user to reverse a refinement step.
Two examples of JEI-based refinement are given in Fig. 8,
and a detailed description of refinement modes is given in the
sections below.

2.E.1. Global refinement

Global refinement changes the value of T h in order to
modify the boundary of the segmentation. The user can place
a point RTh at an image location where the lesion boundary
should go through, and the corresponding uptake value is
utilized as a new value for T h, which will change the cost func-
tion and thus the entire segmentation surface. In addition, the
closest column to RTh is modified to force the result (surface)
through the closest node to RTh, which will be called niTh, jTh

.
This is accomplished by adding another cost change function

Medical Physics, Vol. 43, No. 6, June 2016
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F. 8. Examples of JEI-based segmentation refinement. (a) The segmentation surface expanded outward too much. (b) A part of the lesion was excluded.
(c) The segmentation shown in (a) is corrected with one mouse click by using the global refinement option, affecting the whole boundary. (d) The segmentation
shown in (b) is corrected with one mouse click by using local refinement, affecting only a local portion of the boundary. (See color online version.)

cTh(ni, j)=



1000, if i = iTh and j , jTh

0, else
(4)

to cbase during the calculation of the final cost c. As a result of
this cost change, the entire graph-based optimization needs to
be rerun. If the user is not satisfied with the result, he/she can
repeat the process, which will override the previous settings.
An example for a “single click” global refinement action is
provided in Figs. 8(a) and 8(c). As can be seen, a single user
provided point [red dot in Fig. 8(c)] is sufficient to update the
whole object surface.

2.E.2. Local refinement

Local refinement allows the user to correct cases where only
a portion of the segmentation boundary needs to be corrected.
This is accomplished as described below.

(a) User-interaction. To start the local refinement process,
the user needs to inspect the segmentation and, if
needed, specify a surface point RLp through which
the correct surface should go [blue point in Fig. 8(d)].
Because the user can perform multiple local refine-
ment interactions, the index p is used to keep track
of them. The node closest to RLp will be denoted as
n(iLp, jLp).

(b) Local search for similar columns. Subsequent to finding
n(iLp, jLp), neighboring columns of the surface segment
to be altered are determined based on the similarity of
the uptake pattern around n(iLp, jLp) (Fig. 9). For this
purpose, a breadth-first search (BFS) on columns with

a hard constraint of ds(i,iLp) ≤ 5 is performed. The
function ds(i,iLp) represents the number of edges on
the shortest path on selected columns (mesh vertices)
between the surface mesh vertices a and b (graph
geodesic) that are associated with columns i and iLp,
respectively. An uptake pattern on a column is consid-
ered similar if smc(ni, j,niLp, jLp

) = 3
k=−3 |up(ni, j+k)

− up(niLp, jLp+k)| < thsim and | j − jLp | ≤ ds(i,iLp) is
fulfilled with thsim = 0.05

3
k=−3 |up(ni, j+k)|. Because

the BFS can leave “holes” in the set of selected columns,
left out columns are added in a “closing” step; columns
that were skipped during BFS due to dissimilarity are
included, if two thirds of its immediate neighbors were
selected by smc. Finally, for all selected columns with
i , iLp, the node with the highest profile similarity is
stored in the set Ψp.

(c) Modification of costs. To locally refine the segmenta-
tion result, the costs on column iLp itself and selected
neighboring columns in set Ψp are modified. On col-
umn iLp, the cost update function is given by

cLp(niLp, j)=



1000, if j , jLp

0, else
. (5)

For all nodes of columns that include a node nĩp, j̃p

∈Ψp, the function cLp(nĩp, j)= notch( j, j̃p,3,ds(ĩp,iLp))
is utilized; for the definition of function notch see
Eq. (A2) in Appendix A. Thus, the cost is decreased
around the target. The decrease is narrow in close prox-
imity to column iLp, but becomes much wider further
away. For all other nodes, cLp is equal to zero. The

F. 9. Examples illustrating local refinement. (a) In this example, the vector around REl
on the column marked Ci+3 is compared to vectors on adjacent

columns within range to find the best match for the refinement. Note that the vector is smaller than in practice and for simplicity, only columns in a plane are
shown. (b) Illustration of BFS to find neighboring columns whose costs need to be adapted. Note that in this case, comparisons are based on column Ci.
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motivation behind this design is as follows. First, it
forces the boundary to pass trough niLp, j. Second, it
models uncertainty further away from the user specified
refinement point. Third, it enables a smooth transition
to the unchanged portions of the surface.

(d) Calculating a new solution. After adding cLp to the
original cost function c, a new solution is calculated
and the segmentation result is displayed. Calculating a
new solution can be done efficiently by building on the
previously calculated one, as outlined by Boykov and
Jolly.36

Multiple local refinement points can be utilized for a lesion,
each resulting in a cost change, which are accumulated to
update c. The only exceptions are columns directly associated
with user-selected refinement points, which will not have their
costs further changed.

3. METHOD VALIDATION
3.A. Image data

For method validation, 60 PET/CT scans from 59 different
subjects with H&N cancer were utilized, which were ac-
quired with different scanners and reconstruction parameters
(Table II) between 2004 and 2008. Out of this set, 59 scans
were performed pretreatment, and for one patient, an addi-
tional post-treatment scan with uptake was included. All sub-
jects were injected with 370 MBq ± 10% of [F-18]FDG with
an uptake time of 90 min ± 10%. In all cases subjects were
fasted for >4 h and had blood glucose <200 mg/dl. Because of
the interest in the H&N region, patients were imaged with arms
down, and CT-based attenuation correction was performed.
All reconstructions were performed with 2D OSEM iterative
algorithms (Table II). Siemens Biograph 40 PET images were
reconstructed onto a 168 × 168 pixel image matrix, while
Siemens Biograph Duo PET and GE Medical Systems Dis-
covery LS images were reconstructed onto a 128×128 pixel
image matrix. The number of axial image slices ranged from
191 to 545. The complexity of cases to segment covered a
wide spectrum, ranging from simple to complex (Figs. 10
and 1). Primary cancers included the following anatomical
regions: base of tongue, oropharynx, pyriform sinus, tonsil,
hypopharynx, and nasopharynx. The cases had varying TNM
stage, but no metastasis. An experienced radiation oncologist
(JMB) inspected all scans and identified primary tumors and
all positive (hot) lymph nodes. Overall, the PET scans include
a total of 230 different lesions with 59 primary tumors and 171

F. 10. Range of complexity of utilized H&N PET image data. (a) Case with
low complexity (single primary tumor) and (b) a case with high complexity
with primary cancer and multiple hot lymph nodes in close proximity.

lymph nodes, and the average number of lesions was 3.83/scan.
All scans were assessed in terms of complexity and classified
into the following categories: low, med, and high.

3.B. Experimental setup

To assess the performance of our semiautomated algorithm,
it was implemented as an extension for 3D Slicer,37 a multi-
platform, free, and open source software package for visuali-
zation and medical-image computing. In addition, the manual
segmentation (2D drawing) tools offered by 3D Slicer were
used for comparison.

Three physicians (experts) with different levels of radiation
oncology experience (one faculty professor—JMB and two
physician residents with instructions—KAP and TC) partic-
ipated in our validation experiment. Before the start of the
experiment, all experts were trained on both segmentation
methods and tools, using a separate set of ten H&N PET scans.

For validation, the 60 PET scans described in Sec. 3.A were
randomly divided into three sets of 20 scans each. The parti-
tioning was stratified such that each set contains approximately
the same range of case complexities. These three sets were
processed sequentially in four processing steps. In each step,
the complete set of 20 PET scans was segmented in a random
sequence by alternating the use of semiautomated and manual
segmentation methods such that after two steps, all 20 cases in
a set were processed with both methods by each physician. To
assess intraoperator variability, two additional steps were per-
formed by all three experts. Thus, all 230 lesions present in the
60 PET scans partitioned into three sets were segmented four-
times by three experts, resulting overall in 2760 segmentations.
Half were done by using the semiautomated (JEI) method and
half with the standard manual segmentation method. For both

T II. Utilized PET-CT scanners and image reconstruction parameters.

PET-CT scanner Number Voxel size (mm) Reconstruction algorithm

Siemens Biograph 40
13 3.394×3.394×2.025 2D OSEM, 4 iterations,
2 3.394×3.394×5.000 8 subsets and a 7 mm Gaussian filter

Siemens Biograph Duo
1 3.432×3.432×3.375 2D OSEM, 2 iterations,

43 3.538×3.538×3.375 8 subsets and a 5 mm Gaussian filter
GE Medical Systems Discovery LS 1 4.297×4.297×4.250 2D OSEM, 2 iterations, 28 subsets
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F. 11. Example of an indicator image provided to experts to specify what
lesions should be segmented and the label (seven in this case) that should be
assigned.

methods, PET scans were loaded into the segmentation soft-
ware using a default display setting, consisting of a window of
6 SUV and level of 3 SUV. The experts were allowed to change
this setting if deemed necessary for the segmentation task at
hand (e.g., chain of active lymph nodes with similar uptake).

For segmentation, a set of indicator images was provided to
the experts that roughly identified the object to be segmented
and the corresponding object label to be used (Fig. 11) for each
lesion toavoiddifferences in the interpretationof thePETscans.
The indicator images were generated by an experienced radia-
tion oncologist (JMB) with access to medical patient records.

3.C. Independent reference standard
and quantitative indices

(a) Segmentation accuracy. Due to the lack of a ground
truth for lesions, the following approach was used to
form an independent reference for comparison. For
a given expert, the four manual segmentations per-
formed by the two other experts were combined to pro-
duce a segmentation reference by utilizing the Simulta-
neous Truth and Performance Level Estimation (STA-
PLE) algorithm proposed by Warfield et al.38 To assess
segmentation accuracy, the Dice coefficient was com-
puted between each expert’s observed and reference
segmentations. Given two segmentations, A and B, the
Dice coefficient is given by D = (2|A∩B|)/(|A|+ |B|).
Coefficient values close to one indicate high agreement,
and values close to zero indicate low agreement.

(b) Segmentation agreement. For the assessment of inter-
and intraoperator segmentation agreement, the follow-
ing approach was used. To assess intraoperator agree-
ment, theDicecoefficientbetween trialoneand twowith
a given method was calculated. To measure interoper-
ator agreement, Dice coefficients for a given method
were calculated for all user pairs within each trial.

(c) Time and user effort. For each user, the time required to
segment all lesions in a given PET scan was recorded
for both methods. Additionally, for the semiautomated
approach, the number of actions (specifying a center
point for segmentation, refinement operations, etc.)
including and excluding discarded actions was recorded
and analyzed.

3.D. Statistical analysis of performance indices

Statistical analysis was performed on results from the tumor
segmentations. Reported Dice coefficient means, 95% confi-
dence intervals, and p-values were obtained with linear mixed
effects regression models. Random effects were included in
the models for experts and patients in order to account for
repeated segmentation within the two factors. Estimated intra-
and interoperator variability in segmentation accuracy Dice
coefficients are reported as standard deviations. Intraoperator
variability measures the amount of variation in the trial one
and two segmentations about their average. Interoperator vari-
ability measures the variation in trial one and two averages
across experts.

4. RESULTS
4.A. Segmentation accuracy

For both methods, the average Dice coefficient is given
in Table III. The Dice coefficients were not found to be
statistically different (p = 0.2145). Also, Table III provides
summaries of the intra- and interoperator standard deviation of
segmentation accuracy assessed with the Dice coefficient. The
provided 95% confidence intervals (CIs) show that intra- and
interoperator standard deviations are significantly lower for
the semiautomated method compared to the manual segmen-
tation approach.

4.B. Segmentation agreement

Table IV summarizes results for intra- and interoperator
segmentation agreement analysis. In both cases, the semi-
automated method shows a significantly higher agreement
compared to the manual method. Figure 12 depicts typical
examples of intra- and interoperator variation in HNC
segmentation.

4.C. Time and user effort

Table V and the box-plots provided in Fig. 13 summarize
the time required for producing manual and semiautomated

T III. Estimated mean Dice coefficient, intraoperator variability, and interoperator variability of segmentation
accuracy.

Manual Semiautomated

Measure Value 95% CI Value 95% CI

Dice coefficient mean 0.764 (0.741, 0.786) 0.766 (0.718, 0.815)
Intraoperator standard deviation 0.044 (0.0419, 0.0452) 0.037 (0.0359, 0.0387)
Interoperator standard deviation 0.049 (0.0462, 0.0513) 0.043 (0.0410, 0.0456)
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T IV. Estimated mean Dice coefficients for intra and interoperator seg-
mentation agreement.

Manual Semiautomated

Agreement Mean 95% CI Mean 95% CI

Intraoperator 0.770 (0.747, 0.794) 0.926 (0.902, 0.949)
Interoperator 0.713 (0.699, 0.727) 0.905 (0.891, 0.919)

PET segmentations per HNC PET scan. The 95% confidence
intervals in Table V show that the proposed semiautomated
method is significantly faster than its manual counterpart. Note
that while the average time for segmenting all lesions (average:
3.83 lesions) with our semiautomated method in a PET scan
was 3.74 min, the segmentation algorithm itself runs at inter-
active speeds. Thus, almost all of the reported time is spent by
the user on understanding the scene and inspecting produced
segmentations.

Table VI provides statistics about the number of actions
required by experts to perform a semiautomated segmentation
of all lesions in a PET scan. The plots in Fig. 14 show the accu-
mulative percentage of cases that were completely segmented
in dependence of the number of actions required. Differences
between used (all) and actually necessary (final) actions in
Table VI and Fig. 14 indicate that the user effectiveness can
be further increased with additional training.

5. DISCUSSION
5.A. Performance

Our JEI graph-based segmentation approach offers a high
degree of automation, requires little user interaction, and en-
ables clinically practical and efficient computer-aided segmen-
tation refinement. Compared to a manual segmentation

T V. Estimated mean times in minutes with standard deviation (SD) and
95% confidence intervals (CIs) for manual and semiautomated segmentations
per PET data set.

Method Mean SD 95% CI

Manual 8.88 7.1 (6.47, 11.28)
Semiautomated 3.74 3.3 (2.40, 5.08)

approach, this combination results in a versatile segmenta-
tion tool that showed equivalent average segmentation error
with significantly reduced standard deviation. The performed
assessment of user agreement showed significantly higher
intra- and interoperator consistency for the semiautomated
approach compared to manual segmentation. This can be seen
by the example provided in Fig. 12; the manual segmentation
approach leads to considerable variation in segmentations pro-
duced by the same user as well as across users, whereas little
variation is observed between the segmentations produced
with the semiautomated method. Thus, the approach meets the
requirements defined in Sec. 1.B.

Despite the relatively short training phase, all three experts
were able to produce valid segmentations of target lesions in
all utilized PET scans. However, as Table VI and Fig. 14 show,
training of users is important to achieve good efficiency. Based
on the plots shown in Fig. 14, we estimate that more than 90%
of the 230 lesions can be segmented with one or two user input
actions (mouse clicks), which will likely reduce the required
user interaction time (Table V and Fig. 13) even further.

5.B. Current limitations

As can be seen from Fig. 14, in some rare cases, more than
ten user actions were necessary to produce a segmentation
of a lesion. This issue can be addressed by adding suitable

F. 12. Example of intra- and interoperator segmentation agreement for manual and semiautomated segmentation methods. [(a)–(d)] Manual slice-by-slice
segmentation results. [(e)–(h)] Semiautomated full 3D segmentation results. (i) Same PET image as in images (a)–(h), but with a different grey-value transfer
function, showing uptake peaks corresponding to individual lymph nodes in close proximity.
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F. 13. Boxplots of operator segmentation times for the manual and semi-
automated segmentation methods per PET scan.

segmentation modes and/or refinement tools that enables the
user to more efficiently handle such cases.

While the results presented in Sec. 4 are very promising
in terms of segmentation error, segmentation agreement, and
interaction time, it does not offer insight into the impact of
different PET image reconstruction methods on segmentation
results. Thus, we plan to study this aspect by utilizing PET
phantoms in the near future. Harmonization of image acqui-
sition and quality assurance is another critical component of
assuring optimal clinical trials, target definitions, and response
assessment that is also being addressed nationally.39

In the current implementation, only the PET image infor-
mation of PET-CT scans is utilized. However, the chosen
graph-based LOGISMOS framework is well suited for ex-
panding our approach to segmenting PET and CT volumes
at the same time. In addition, the method can be adapted for
segmenting dynamic PET (volume and time) scans. Also, by
defining a suitable cost function, our segmentation approach
can be adapted for segmenting PET scans with tracers other
than FDG.

5.C. Impact

Target or lesion definition is a critical component for both
radiation therapy treatment planning and delivery as well as
for response assessment of tumors after treatment. Our current
standard involves a process wherein the radiation oncologist

T VI. Statistics of actions required by expert 1 to expert 3 for the
semiautomated method. All actions denotes the number of actions actually
performed by the expert, and final actions denotes the number of actions that
would have been required to generate the segmentations (i.e., undone actions
are not counted).

Number of actions

Expert Actions Mean Median For 90%

1 All 1.57 1 3
2 All 2.43 1 6
3 All 1.80 1 3
1 Final 1.36 1 2
2 Final 1.37 1 2
3 Final 1.18 1 2

or radiologist manually outlines a tumor or lesion. This is
inherently both time consuming and relatively inconsistent
because of the nature of both human perception and limits of
human dexterity. Algorithmic tools have the capacity to speed
the process and at the same time improve consistency.

While concerns exist regarding automation of critical
treatment-determining steps and decision-making metrics, the
ability to improve consistency is unquestionably paramount,
particularly when considering clinical trials in which multiple
institutions and investigators will determine targets and hence
outcomes. The ability to substantially improve consistency
enables better comparisons of tumor control probabilities.
Although substantial quality assurance efforts within the radi-
ation therapy community have been extremely effective and
robust in consistently defining dose delivery parameters across
institutions using a variety of treatment planning and delivery
systems for clinical trials,40 the same level of robustness has
not been possible for tumor definitions. Algorithmic tools are
an essential method for achieving this improved robustness.

Our tool illustrates a 26.9% improvement in segmentation
agreement across physicians combined with a 20.3% improve-
ment of agreement within the same physician contouring the
same target. In addition, the tool reduced the time required
for segmentation by 57.9% compared to the standard manual
method per PET scan. In considering radiation therapy trials,
this can impact both the cost by diminishing the numbers
of patients needed and decreasing the time for defining the
tumor target for treatment. Additional tools to apply these
algorithmic benefits for response assessment will be both use-
ful for outcome determination as well as potentially for therapy
adaptation.

F. 14. Plots showing the accumulative number of cases completely segmented in dependence of number of user actions required for the semiautomated method
for experts one, two and three. “All actions” denotes the number of actions actually performed by the expert, and “final actions” denotes the user actions that
were actually required to perform the segmentations (i.e., undone actions are not counted).
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6. CONCLUSIONS

We have presented a novel approach for the highly
computer-aided segmentation of lesions in H&N FDG PET
volume data sets. By utilizing the JEI paradigm, a good trade-
offbetween automation and input required from human experts
was achieved, enabling segmentation of simple and complex
cases with the same tool in an efficient and consistent manner.
Due to the higher intra- and interoperator segmentation agree-
ment compared to manual segmentation without a loss in
segmentation accuracy, the proposed method is well suited for
applications like image-guided radiation treatment planning as
well as image based assessment of treatment response or treat-
ment outcome prediction, which all benefit from these traits.
The application of these tools in multi-institutional clinical
trials can improve their efficiency and cost-effectiveness.
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APPENDIX A: LABEL AVOIDANCE

When generating a segmentation Sk, it can be problematic
if existing segmentations with other segmentation labels are
overwritten. In such cases, the label avoidance option can be
used to prevent this. This option affects the graph generation,
cost calculation, and segmentation phase. First, if recentering
is utilized (Sec. 2.A), label avoidance prevents cek from being
placed on or adjacent to (6-neighborhood) a lesion label in L
different from that nearest to cekuser.

Second, label avoidance modifies creject [Eq. (3)] by convert-
ing it into crejectla. The modification requires knowledge of the
closest label to a given node, which is known as li, j for node
j on column i. Suppose that the object label currently being
applied (to indicate an object in L) is lnew and that the label
for no object in L is lbg . If the object on a node in a column is
some other label l ′ not equal to those, then that node and others
beyond it are rejected with label avoidance to avoid including
already segmented objects. For this purpose, a new condition
r3(ni, j) = j > jmin and (∃ j ′ | 0 ≤ j ′ ≤ j and li, j′ , lbg and li, j′
, lnew) is introduced in the if-clause of Eq. (3) with a logical
OR operation. This prevents placing the boundary on an object
in the existing labels image L. An example of label avoidance
is shown in Fig. 15.

Third, if there is never a decrease in cost from the center
point until the node that is part of another lesion label (Fig. 16),
which will likely result in a gap between two objects that
should be bordering to each other, then an additional cost term
cs(ni, j) is added to c(ni, j). The cost term

cs(ni, j)=



notch( j, j ′,2,1), if (∃ j ′ | csc(i, j ′)=True and j ≤ j ′)
0, else

,

(A1)

with

notch( j, j ′,d,σ)=−d e
−( j− j′)2

2σ2 (A2)

uses the cost seal condition csc(ni, j), which becomes true for a
node ni, j with j > jmin if it is adjacent to a different object label
and the uptake is monotonically increasing between jmin− 1
and j. In addition, only the first occurrence of such a pattern
is taken into account. For locations where csc becomes true,
cs induces a cost minimum as shown in Fig. 16.

APPENDIX B: SPLITTING

To facilitate the segmentation of an object with uptake
in close proximity to an another object with similar uptake
(e.g., hot lymph node that is part of an active lymph node
chain), a splitting mode is implemented (Fig. 17). First, the soft
smoothness constraint is increased from sp = 0.005 to

F. 15. The effect of label avoidance on the cost function c. (a) Costs due to label avoidance along an axis, from cek . Both creject and crejectla reject the first
few nodes, but crejectla also begins to reject as soon as it encounters the other object label. The two points indicate the different low points in the cost function.
(b) The axis on which the costs are changed with the same two points marked.
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F. 16. An example of a lesion with no real feature between its center and an adjacent lesion. (a) The graph center cek and the other lesion in light blue.
(b) The segmentation showing the sealing effect of label avoidance. (c) The cost change due to cs for the marked axis. (d) The general shape of the cost change.
(See color online version.)

sp = 0.05. Consequently, parts of a surface that are further
away from the rest of the shape are more likely to be cut off.
Furthermore, the surface becomes more responsive to the local
refinement presented in Sec. 2.E.2. Second, the cost function
c is expanded by adding csplit, introducing additional feature
terms that focus on local and potentially weak evidence of
the presence of an uptake boundary. For this purpose, the
following features are considered.

Local minima: Nodes representing local uptake minima
along columns are detected by using spcmin(ni, j)
= (up(ni, j−1)> up(ni, j)) AND (up(ni, j) ≤ up(ni, j+1)).
Watersheds: For watershed analysis, an inverted version
of image I is utilized.

(i) Strong watersheds [Fig. 17(c)] are identified by a
watershed segmentation with a fill level of 20% of the
maximum difference of the processed volume, where
the level is the threshold for watershed unions.41 The
resulting watershed labels at node ni, j will be denoted
as sws(ni, j). Then, if two adjacent nodes on a column
are in different watersheds and are in the above-
threshold part of the column, the node is marked:
spcsws(ni, j) = (sws(ni, j−1) , sws(ni, j) and (@ j ′ |
up(ni, j′)<T h and 0 ≤ j ′≤ j)).

(ii) Weak watersheds [Fig. 17(d)] are found by a water-
shed segmentation with a fill level of 0% of the maxi-

mum, which will likely result in oversegmentation.
Nodes representing transitions between weak water-
sheds are marked by spcwws(ni, j) = (wws(ni, j−1)
, wws(ni, j) and (@ j ′ | up(ni, j′) <T h and 0 ≤ j ′≤ j)).
Note that weak watersheds will also respond to strong
watersheds, but not vice versa.

Each node at which a splitting condition is met is a splitting
node. Note that several markers described above can be set for
a node on a given column. For each column, sets of nodes with
the features snlmini, snlswsi, and snlwwsi are combined into a
superset snli, containing all nodes that respond to correspond-
ing features on column i.

At the location of a node with a condition met, a cost change
is applied. For this purpose the notch function [Eq. (A2)]
is utilized. This allows for the splitting feature to affect the
surface solution, even if smoothness constraints prevent the
exact splitting node from being part of the surface. The depth
d is adjusted based on the type of splitting feature: csplitmin(i, j)
=


ni, j′∈snlmini
notch( j, j ′,0.4,2), csplitwws

(i, j) = ni, j′∈snlwwsi

notch( j, j ′,0.5,2), and csplitsws
(i, j) = ni, j′∈snlswsi

notch( j, j ′,
0.2,2). Note that dsws < dwws, but weak watershed features
usually also occur at nodes with strong watersheds, and thus
their effects are additive, resulting in a cost reduction (i.e.,
notch depth) of 0.7 at such locations.

The additive cost term can now be defined as

csplit(i, j)=



csplitmin(i, j)+csplitwws
(i, j)+csplitsws

(i, j)+ j+1
nnode

if snli , ∅,

0, otherwise
(B1)
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F. 17. Segmenting a hot lymph node in close proximity to another hot node. (a) A segmentation produced in splitting mode with a single node column marked
in blue. (b) Image as in (a), but with adjusted grey-value transfer function to better show the separation between the nodes. (c) Strong and (d) weak watersheds
with cek marked in red. Note that voxels with an uptake below Th are blacked out, since they do not affect the segmentation. (e) Additional cost components
due to activated splitting option. (f) All components are added together with the base cost, resulting in the modified cost term; the corresponding segmentation
is shown in (a). (See color online version.)

where the term ( j + 1)/nnode represents a linear bias toward
the center-most features of columns with splitting features.
This equation is shown in its various parts in Figs. 17(e) and
17(f). The term csplit is added to cbase function, resulting in the
final cost function c, which is used for calculating an optimal

solution. The effect of this and the change to the soft smooth-
ness constraint, when splitting is active, cause the method
to be far more effective at segmenting lymph nodes in close
proximity. Several examples of this mode’s effect are shown
in Fig. 18.

F. 18. Examples of segmentations generated by using the splitting mode option. [(a)–(c)] Segmentations with one node column highlighted in blue. [(d)–(f)]
Uptake and cost profiles corresponding to (a)–(c).
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APPENDIX C: NECROTIC MODE

Necrotic lesions have a core with minimal or no uptake that
is typically surrounded by active regions with uptake values
above background. With the above presented framework, it
will be difficult to segment such a necrotic lesion when the
user places the center in the necrotic region. The main reason
is that the approach presented above assumes that lesions
have above background uptake values. This behavior can be
changed by activating the necrotic mode option—instead of
rejecting as soon as the uptake goes below the regional me-
dian, the uptake must first go above the threshold. Thus, the
rejection for being too low will not happen immediately on
necrotic regions, allowing the segmentation to succeed. For
complex, very heterogeneous cases, a combination of normal
and necrotic modes can be used to segment different dominant
parts, which can be joined by assigning the same segmentation
label (i.e., performing a logical OR operation).
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