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Background. Cervical dysplasia is a precancerous condition, and if left untreated, it may lead to cervical cancer, which is the second
most common cancer in women. (e purpose of this study was to investigate differences in nuclear properties of the H&E-stained
biopsymaterial between lowCIN and highCIN cases and associate those properties with the CIN grade.Methods.(e clinicalmaterial
comprised hematoxylin and eosin- (H&E-) stained biopsy specimens from lesions of 44 patients diagnosedwith cervical intraepithelial
neoplasia (CIN). Four or five nonoverlapping microscopy images were digitized from each patient’s H&E specimens, from regions
indicated by the expert physician. Sixty-three textural and morphological nuclear features were generated for each patient’s images.
(eWilcoxon statistical test and the point biserial correlation were used to estimate each feature’s discriminatory power between low
CIN and high CIN cases and its correlation with the advancing CIN grade, respectively. Results. Statistical analysis showed 19 features
that quantify nuclear shape, size, and texture and sustain statistically significant differences between low CIN and high CIN cases.
(ese findings revealed that nuclei in high CIN cases, as compared to nuclei in low CIN cases, have more irregular shape, are larger in
size, are coarser in texture, contain higher edges, have higher local contrast, are more inhomogeneous, and comprise structures of
different intensities.Conclusion. A systematic statistical analysis of nucleus features, quantified from the H&E-stained biopsy material,
showed that there are significant differences in the shape, size, and texture of nuclei between low CIN and high CIN cases.

1. Introduction

Cervical dysplasia concerns abnormal alterations to the cells
of the cervix epithelium mainly caused by the human
papillomavirus (HPV). Cervical dysplasia is a precancerous
condition, and if left untreated, it may lead to cervical cancer,
which is the second most common cancer in women [1].
Early diagnosis is important, since most patients can be
cured if they receive early treatment. Diagnosis may be

performed by a number of methods such as the Pap test,
colposcopy, and histopathology. (e Pap test and colpo-
scopy have low sensitivity, and histopathology is considered
the gold standard method for final diagnosis. Diagnosis of
cervical dysplasia by histopathology methods comprises
analysis of the suitably prepared and stained biopsy material
collected from the squamous epithelium region of the cervix.
Histopathology examination aims at observing, under the
microscope, the existence of dysplastic or atypical immature
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cells in the epithelium and evaluating the extent of the epi-
thelium covered by those cells. When abnormal cells spread
into the bottom layer (basal layer) of the epithelium, the biopsy
material is graded as cervical intraepithelial neoplasia (CIN)
grade I, and it is regarded as mild dysplasia [2]. When ab-
normal cells extend into the basal and intermediate layers, the
biopsy material is categorized as CIN grade II, and it is con-
sidered asmoderate dysplasia.When dysplastic cells occupy the
whole of the epithelium (i.e., basal, intermediate, and super-
ficial layers), the diagnosis is CIN grade III, and it constitutes
severe dysplasia. Finally, when dysplastic cells expand beyond
the epithelium to surrounding tissue, it is indicative of invasive
cancer [3]. Additionally, physicians assess the grade of CIN
lesions by observing on histology the biopsy material nuclear
parameters such as size, shape, staining, pleomorphism (var-
iations in size, shape, and staining of nuclei), chromatin pat-
terns, mitotic activity and mitotic figures, and presence of
koilocytes and nucleoli [4, 5]. However, as shown in previous
studies [6, 7], those criteria are assessed visually and are, thus,
subjective leading to inter- and intrapathologists’ variation as to
the final diagnosis. In [7], the authors showed that agreement
between 1st and 2nd readings by a panel of seven histopa-
thologists was 65.57% regarding 6 categories: normal squa-
mous epithelium, reactive squamous proliferation, CIN I, CIN
II, CIN III, and others. In [6], the authors employed the
Bethesda reporting system for assessing observer reporting
variability. (e Bethesda system was developed in 1998 for
reporting preinvasive cervical squamous intraepithelial lesions
(SILs) as of low or high grade (LSIL and HSIL). Results in [6]
revealed fair inter- and intraobserver agreement.

(e discrimination between low- and high-grade CIN
cases is very important since low-grade cases are treated
differently than high-grade cases. In particular, low-grade
CIN cases are usually reversible if treated properly, but high-
grade CIN cases are evolving lesions that might need surgical
intervention. Failure in distinguishing the CIN grade might
endanger treatment’s overall efficacy [8].

To assist the diagnosis of preinvasive lesions of the
cervix, a number of computer-assisted decision support
systems (DSSs) have been developed. Several of those studies
have employed the biopsy material stained with H&E
[1, 2, 4, 5, 9–11] or Feulgen stain [12, 13] for designing DSSs.
(ey did so by quantifying features from digital microscopy
images and employing classification schemes. (ose DSSs
were used for discriminating between CIN grades and/or
normal and malignant cervix lesions. Other studies have
designed DSSs employing Pap smear images [14–16], HPV-
related biomarkers [17], cervigram images [18], and clini-
copathological materials [19].

In the process of designing such DSSs, a few of those
studies have analyzed the discriminatory power of individual

features by employing simple statistical tests such as t-test and
ANOVA to describe changes in nuclei with advancing CIN.
Huang et al. [15] and Chen et al. [16] have analyzed cell
images from Pap smears and have found that dysplastic cells
differ from normal cells in size, nuclear proportion, nuclear
shape irregularity, chromatin density, and nuclear coarseness.
Rahmadwati et al. [9] have analyzed histopathology images of
the biopsy material of the cervix. (ey have found statistical
significant differences between normal and abnormal cells,
regarding 4 nucleus features (N/C, shape factor, compactness,
and diameter). Sedivy et al. [5] have shown that the nuclear
fractal dimension feature, which evaluates nuclear irregu-
larity, quantified from histopathology images of the cervix,
sustains statistically significant differences with the advancing
CIN grade. Since nuclear atypia is considered by physicians an
important parameter in assessing the CIN grade on the
histopathology material, the present study is focused on
quantifying nuclear atypia by analyzing in a systematic way
the changes occurring in the shape, size, and texture of nuclei
with the advancing CIN grade.

(e contribution of the present work is as follows: (i)
a number of features, regarding shape, size, and texture of
nuclei, are quantified from digital images of the H&E-stained
and histologically verified material; (ii) feature quantification
is case centered; that is, for each patient, nuclear features are
computed from the segmented nuclei of 4 or 5 regions of
interest (ROIs) that have been selected by the expert physician
(PR) to facilitate diagnosis; (iii) a systematic statistical analysis
has been conducted for identifying features with statistical
significant differences between low and high CIN cases and
good correlation with the advancing CIN grade; and (iv)
detailed analysis has been conducted for associating each
significant feature and alteration to nuclear size, shape, and
texture with the advancing CIN grade.

2. Materials and Methods

2.1. Clinical Material. (e biopsy material of forty-four pa-
tients with diagnosed cervical intraepithelial neoplasia (CIN)
was selected by an experienced histopathologist (PR) from the
archives of the Department of Pathology, University Hospital
of Patras, Rio, Greece (Table 1).(e patients comprised young
women from 18 to 34 years. Twenty-two of the patients had
been diagnosed with low-grade squamous intraepithelial le-
sions (low-grade CIN) and twenty-two with high-grade
squamous intraepithelial lesions (high-grade CIN).

Biopsy sections were formalin fixed, paraffin embedded,
and hematoxylin and eosin (H&E) stained for histological
grading. Each case was examined thoroughly under the
microscope by the histopathologist, who outlined on the
substrates regions where the cervix abnormalities were more

Table 1: Data clinical annotations.

Categorization
Biopsy (CIN diagnosis) Pap test diagnosis

CIN I CIN II CIN II-III Normal HPV ASCUS CIN I CIN II-III
Low grade 22 — — 1 3 9 9 —
High grade — 15 7 — 1 5 11 5
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obvious and appropriate for further processing. From each
sample, four or five nonoverlapping images were digitized,
using a digital light microscopy imaging system, comprising
a Leica DM2500 light microscope equipped with a Leica
DFC420C digital camera, connected to a PC, with an image
resolution of 1728×1296× 24 bits and TIFF file format.
Images were captured at a magnification of 400x. (e im-
aging software regulated automatically the imaging capture
parameters, such as exposure time, image contrast, image
amplification, gamma value, and white balance. Figure 1
presents sample images from low and high CIN cases,
respectively.

(e study was conducted in accordance with the
guidelines of the Declaration of Helsinki and of the Ethics
Committee of the University of Patras, Greece.(e study did
not include live subjects, and the archive material was
utilized. Informed consent was obtained from participants.

2.2. System Design. Images were first processed by a seg-
mentation technique for locating the nuclei in the image. (e
segmentation method has been previously described in [20].
In brief, the RGB image (Figure 1(b)) was first transformed
into the grayscale image (Figure 2(a)), and it was then pro-
cessed by a Laplacian of Gaussian filter, which has
a smoothing effect on the image (Figure 2(b)); the Canny edge
detection algorithm was next employed for isolating the edges
of the objects on the image (Figure 2(c)), and the resulting
binary image was processed by morphological and size filters
(Figure 2(d)) to complete the outline of the nuclei and to
discard formations less than a preset size threshold. (e latter
was experimentally set to 500 pixels for the specific image
resolution used in the present study. Finally, the resulting
image, which was binary (Figure 2(d)), was combined by
means of logical AND operation with the grayscaled image
(Figure 2(a)) in order to produce the final image that contains
mostly the segmented nuclei (Figure 2(e)).

(e evaluation of the segmentation algorithm was
performed with custom-made software specifically designed
to be used by the expert physician. Accordingly, selected
images from each patient and their corresponding seg-
mented versions were displayed side by side. (e expert’s
task was to pinpoint items on the segmented images that

constituted nuclei. (is procedure was repeated for all
images, and the number of indicated nuclei against the total
number of objects present in the segmented images provided
the accuracy of the segmentation algorithm. (e false-
positive rate was 2%.

(e next step of the computer analysis comprised the
evaluation of sixty-three features from each segmented
nucleus in each of the patient’s images. (us, each seg-
mented nucleus was represented by a 63-feature vector that
contained the values of the computed features. (en,
a means feature vector was formed from the feature averages
of all nuclei, providing a 63-feature vector that represented
each patient. Feature vectors were, then, grouped into two
classes, low CIN and high CIN, containing feature vectors
from the corresponding low CIN and high CIN cases,
respectively.

Textural features were generated from each nucleus’
segmented image (such as in Figure 2(e)). Four features were
computed from the nucleus histogram (mean value, stan-
dard deviation, skewness, and kurtosis). (irteen features
were calculated from the nucleus image co-occurrence
matrix [21], which was computed for four directions (0°,
45°, 90°, and 135°) with the interpixel distance equal to 1. Five
features were generated from the nucleus image run-length
matrix [22], which was computed for four directions (0°, 45°,
90°, and 135°). Twenty-four features were computed from
the discrete wavelet transform 2nd level coefficient matrices
[23] along the horizontal, diagonal, and vertical directions,
and eight features were computed along each direction:
mean, median, maximum, minimum, range of values,
standard deviation, median absolute deviation, and mean
absolute deviation. Six Tamura features [24] (Tamura
coarseness 1, 2, 3, and 4, contrast, and roughness) and two
local binary pattern features [18] (LBP mean and standard
deviation) were, also, evaluated. Morphology features,
expressing size and shape nuclear attributes, were generated
from the outline and area of each nucleus. Nine morphology
features were calculated: six from the size of the nucleus
(area, perimeter, equivalent diameter, convex area, length of
the major axis, and length of the minor axis) and three from
the shape of the nucleus (eccentricity, solidity, and extent).
(us, a total of 63 features were calculated from each nu-
cleus. (e 63-feature means of all nuclei from each patient’s

(a) (b)

Figure 1: Image samples from low (a) and high (b) CIN cases.
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ROI images formed the 63-feature vector that represented
each patient, of the verified CIN grade, for further analysis.

All the mathematical equations and the definitions of all
adjustable parameters for the calculation of the above-
mentioned 63 features are presented at the end of this
manuscript in Table 2.

(e third stage of the computer analysis consisted of
determining textural features sustaining statistically signif-
icant differences (SSDs) between low and high CIN cases, by
means of theWilcoxon statistical test [25], and each feature’s
correlation with CIN grade advancement from low to high
CIN was estimated. (is was expected to produce useful
information regarding the variation of nucleus texture and
morphology with the advancing CIN grade. (e variation of
feature values with the increasing CIN grade, from low to

high CIN, was evaluated employing the point biserial cor-
relation (feature values against distinct grades). (e Ben-
jamini and Hochberg FDRmethod was used for correcting p

values accounting for multiple tests [26].
(e proposedmethod was implemented in theMATLAB

environment.

3. Results

In the image processing stage, successful identification of
nuclei was achieved with an average accuracy of 89%, which
is within the range of similar segmentation findings reported
by previous studies [16, 27–30].

On comparing the two classes by theWilcoxon statistical
test, it was found that nuclei in low CIN and high CIN

(a) (b)

(c) (d)

(e)

Figure 2: Image segmentation process: (a) grayscale image, (b) grayscale image processed by the Gaussian Laplacian filter, (c) grayscale
image processed by the Canny operator, (d) grayscale image processed by morphological and size filters, and (e) final segmented image,
produced by logical AND operation between (a) image and (d) image.
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Table 2
(1) Histogram features

1 Mean value
m � 􏽐i􏽐j g(i, j)/N,

where g(i, j) is the pixel intensity in position (i, j)

and N is the total number of pixels
2 Standard deviation std �

������������������
􏽐i􏽐j (g(i, j)−m)2/N

􏽱

3 Skewness sk � (1/N)(􏽐i􏽐j (g(i, j)−m)3/std3)
4 Kurtosis k � (1/N)(􏽐i􏽐j (g(i, j)−m)4/std4)

(2) Co-occurrence matrix-based features

5 Angular second moment

ASM � 􏽐
Ng−1
i�0 􏽐

Ng−1
j�0 (p(i, j))2,

where Ng is the number of gray levels in the image,
i, j � 1, . . . , Ng, and p(i, j) is the co-occurrence

matrix. ASM describes image smoothness and takes
minimum values for smooth-textured nuclei. p(i, j)

was calculated using the MATLAB function
graycomatrix

6 Contrast CON � 􏽐
Ng−1
n�0 n2 􏽐

Ng−1
i�0 􏽐

Ng−1
j�0 (p(i, j))2􏼚 􏼛, |i− j| � n

7 Inverse different moment IDM � 􏽐
Ng−1
i�0 􏽐

Ng−1
j�0 p(i, j)/1 + (i− j)2

8 Entropy ENT � −􏽐Ng−1
i�0 􏽐

Ng−1
j�0 p(i, j)log(p(i, j))

9 Correlation

COR � 􏽐
Ng−1
i�0 􏽐

Ng−1
j�0 (ij)p(i, j)−mxmy/σxσy,

where mx, my, σx, and σy are the respective mean
values and standard deviations of px and py,

described below:
px(i) � 􏽐

Nrows
j�1 p(i, j)

py(j) � 􏽐
Ncolumns
j�1 p(i, j)

10 Sum of squares SSQ � 􏽐
Ng−1
i�0 􏽐

Ng−1
j�0 (1−m)2p(i, j)

11 Sum average

SAVE � 􏽐
2Ng
i�2 ipx+y(i),

where px+y is
px+y(k) � 􏽐

Ng
i�1 􏽐

Ng
j�1 p(i, j), i + j � k,

k � 2, 3, . . . , 2Ng

12 Sum entropy SENT � −􏽐2Ng
i�2 px+y(i)log(px+y(i))

13 Sum variance SVAR � −􏽐2Ng
i�2 (i− SENT)2px+y(i)

14 Difference variance DVAR � 􏽐
2Ng
i�2 (i− SAVE)2px−y(i)

15 Difference entropy

DENT � −􏽐Ng−1
i�0 px−y(i)log(px−y(i)),
where px+y is

px−y(k) � 􏽐
Ng
i�1 􏽐

Ng
j�1 p(i, j), |i− j| � k,

k � 2, 3, . . . , Ng − 1
16 Information measure of correlation 1 ICM1 � HXY−HXY1/max HX, HY{ }

17 Information measure of correlation 2

ICM2 � (1− exp[−2.0(HXY2−HXY)])1/2,
where HXY � −􏽐Ng−1

i�0 􏽐
Ng−1
j�0 p(i, j)log(p(i, j)),

HXY1 � −􏽐Ng−1
i�0 􏽐

Ng−1
j�0 p(i, j)log(px(i)py(j))

,

HXY2 � −􏽐Ng−1
i�0 􏽐

Ng−1
j�0 px(i)py(j)log(px(i)py(j))

(3) Run-length matrix-based features

18 Short-run emphasis

SRE � 􏽐
Ng
i 􏽐

Nr
j QRL(i, j)/j2/􏽐

Ng
i 􏽐

Nr
j QRL(i, j),

where QRL(i, j) is the run-length matrix, Ng is the
number of gray values in the image, Nr is the largest

possible run, i � 1, . . . , Ng, and j � 1, . . . , Nr

19 Long-run emphasis LRE � 􏽐
Ng
i 􏽐

Nr
j QRL(i, j) · j2/􏽐

Ng
i 􏽐

Nr
j QRL(i, j)

20 Gray-level nonuniformity GLNU � 􏽐
Ng
i 􏼔􏽐

Nr
j QRL(i, j)􏼕

2
/􏽐

Ng
i 􏽐

Nr
j QRL(i, j)

21 Run-length nonuniformity RLNU � 􏽐
Nr
j 􏼔􏽐

Ng
i QRL(i, j)􏼕

2
/􏽐

Ng
i 􏽐

Nr
j QRL(i, j)

22 Run percentage RP � 􏽐
Ng
i 􏽐

Nr
j QRL(i, j)/P,

where P is the total number of pixels in the image
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images differed in twenty-two features at the 5% (p< 0.05)
statistical level (Table 3). After applying the Benjamini and
Hochberg FDR method, 19 features from Table 3 retained
statistical significance at p< 0.05. (ese features express
properties related to nucleus shape and texture.

In particular, features of highest between-class statistical
differences at the 5% level (p< 0.005 and p corrected <0.05)

and of good correlation (r> |0.4|) with the advancing CIN
grade were found in eight features: three morphological
features (nucleus solidity, nucleus minor axis length, and
nucleus equivalent diameter) and five textural features (4
Tamura coarseness and gray-level nonuniformity). Figures
3(a)–(f) present the box plots of the most statistically sig-
nificant features. (e box plot is a graphical representation

Table 2: Continued.
(4) Wavelet-based features

23 dwt2H Mean Value
MATLAB function: mean(W(:)),

where W is the 2nd level dwt in the horizontal
direction

24 dwt2H Median Value MATLAB function: median(W(:))
25 dwt2H Max Value MATLAB function: max(W(:))
26 dwt2H Min Value MATLAB function: min(W(:))
27 dwt2H Range of Values MATLAB function: range(W(:))
28 dwt2H Standard Deviation MATLAB function: std(W(:))
29 dwt2H Median Absolute Deviation MATLAB function: mad(W(:),1)
30 dwt2H Mean Absolute Deviation MATLAB function: mad(W(:),0)

31–38 same as 23–30,
where W is the 2nd level dwt in the diagonal direction (MATLAB function dwt2)

39–46 same as 23–30,
where W is the 2nd level dwt in the vertical direction

(5) Tamura-based features

47 Tamura coarseness 1

Fcrs � (1/m × n)􏽐
m
i 􏽐

n
j Sbest(i, j),

where m and n are region dimensions and
Sbest(i, j) � 2k,

in which k is the best scaling for highest
neighborhood average

48–50 Tamura coarseness 2–4 Values of the 3-bin histogram of Sbest

51 Tamura contrast
Fcon � σ/(a4)

n,
where σ is the standard deviation and a4 is the

kurtosis
52 Tamura roughness Frgh � Fcrs + Fcon

(6) Local binary pattern-based features

53 LBP mean

Mean value of the LBP histogram:
LBPP, R � 􏽐

P−1
p�0 s(gp −gc)2P,

where gp and gc are, respectively, gray-level values of
the central pixel and P surrounding pixels in the

circle neighborhood of radius R and

s(x) �
1, if x≥ 0
0, otherwise􏼨

54 LBP standard deviation Standard deviation of the LBP histogram
(7) Morphological-based features

55 Nucleus area
MATLAB function: regionprops(BW, properties),

where BW is the binary image nucleus and
properties� ‘Area’

56 Nucleus perimeter Where properties� ‘Perimeter’
57 Nucleus equivalent diameter Where properties� ‘EquivDiameter’
58 Nucleus convex area Where properties� ‘ConvexArea’
59 Nucleus major axis length Where properties� ‘MajorAxisLength’
60 Nucleus minor axis length Where properties� ‘MinorAxisLength’
61 Nucleus eccentricity Where properties� ‘Eccentricity’
62 Nucleus solidity Where properties� ‘Solidity’
63 Nucleus extent Where properties� ‘Extent’
(e parameters used for calculation of the abovementioned features were the following: (1) histogram features: the number of grayscale values� 256. (2) Co-
occurrence matrix-based features: directions (0°, 45°, 90°, and 135°), interpixel distance� 1, and the number of grayscale values� 16. (3) Run-length matrix-
based features: directions (0°, 45°, 90°, and 135°) and the number of grayscale values� 16. (4) Wavelet-based features: MATLAB function dwt2, Daubechies 2
transform, 2nd level coefficient matrices along the horizontal, diagonal, and vertical directions, and the number of grayscale values� 256. (5) Tamura-based
features: k� 0 : 5. (6) Local binary pattern-based features: R � 1 and p � 8. (7) Morphological-based features: MATLAB function regionprops.
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method that presents data based on their quartiles. (e
“box” illustrates the range of values within 25%–75% of all
measurements obtained for this particular feature. (e top
and bottom lines depict the maximum and minimum values
of all measurements obtained for this particular feature.

3.1. Morphological Features. Figure 3(a) shows the box plot
diagram of the feature solidity (nucleus solidity), which
reflects nucleus shape irregularity. Nuclei in high CIN cases
displayed significantly higher border irregularities than
nuclei in low CIN cases. Additionally, nucleus solidity
displayed the highest correlation (r> 0.5) with the advancing
CIN grade, as it may be verified by comparative examination
of the correlation of r values of all features in Table 3. (is is
promising, since it signifies a property that perhaps could be
used for establishing a segregating threshold between the
two classes. Obviously, the further apart the two classes
situated in the feature space, the highest the probability that
such a threshold could be realistically determined.

(e next two morphological features are related to the
size of the nucleus, the nucleus minor axis length (nucleus
minor axis length), and the nucleus equivalent diameter
(nucleus equivalent diameter). Results obtained are shown
in Table 3 and Figures (3b) and 3(c). High CIN cases had
nuclei significantly larger in size than nuclei in low CIN
cases, having a longer minor axis length and a larger nucleus
equivalent area as shown by the higher medians and spreads
in Figures 3(b) and 3(c), as well as by the higher mean and
standard deviation values shown in Table 3.

With regard to the rest of themorphological features that
sustained statistically significant differences between low

CIN and high CIN classes (nucleus area, nucleus convex
area, nucleus major axis length, and nucleus perimeter), it
was found that, in high CIN cases, nuclei were larger in size
and in the spread of the feature values (Table 3).

Most morphological features also displayed good cor-
relations (r> |0.3|) with the advancing CIN grade. Existing
statistically significant differences between the two classes
and good correlations of morphological features with the
progression of the CIN grade indicate that there are changes
occurring in the shape and size of the nuclei as the disease
progresses from low CIN to high CIN.

3.2. Textural Features. Four Tamura coarseness features,
which evaluate the coarseness of the nucleus texture, dis-
played high significant differences between low CIN and
high CIN and very good positive correlations (r≥ 0.45) with
the advancing CIN grade. Feature values in high CIN cases
were higher and more spread, as shown in the box plots of
Figures 3(d)–3(g) and in the mean values and standard
deviations of Table 3.

(e gray-level nonuniformity feature (gray-level
nonuniformity), which is a measure of nonuniformity in
gray-level structures within the nucleus, displayed a high
statistical significance difference between the two classes and
the second highest ranked correlation (r> 0.5). (e high
CIN cases displayed higher median values (red line in the
Figure 3(h)) and higher variances (as indicated by the spread
of the corresponding box plots). (is may also be verified by
the corresponding data in Table 3, from where the mean
value and standard deviation of the low CIN cases are
significantly lower than those of the high CIN cases.

Table 3: Morphological and textural features with statistically significant differences between low and high CIN classes, ranked
alphabetically.

Feature name p< 0.05 p corrected∗ r (correlation)
Low CIN High CIN

Mean SE∗∗ Mean SE
1 dwt2D Mean Absolute Deviation 4.48E− 02 1.34E− 01 −0.34 6.23 0.13 5.50 0.28
2 dwt2H Mean Absolute Deviation 2.02E− 03 1.82E− 02 −0.39 10.44 0.24 8.67 0.59
3 dwt2H Mean Value 6.25E− 03 3.03E− 02 0.27 −0.84 0.029 −0.68 0.080
4 dwt2H Median Absolute Deviation 7.20E− 03 3.24E− 02 −0.33 1.17 0.065 0.95 0.072
5 dwt2H Median Value 5.03E− 05 3.17E− 03 0.18 −0.014 0.0024 −0.0079 0.0048
6 dwt2H Standard Deviation 2.50E− 02 7.87E− 02 −0.31 23.33 0.39 20.80 1.10
7 Gray-level nonuniformity 2.02E− 03 2.13E− 02 0.52 85.21 1.98 116.83 7.71
8 Kurtosis 2.98E− 03 2.35E− 02 0.37 2.59 0.02 2.71 0.04
9 Local binary pattern mean value 1.02E− 02 3.77E− 02 0.40 16.61 0.23 18.03 0.45
10 Local binary pattern standard deviation 1.37E− 04 4.30E− 03 −0.47 0.12 0.00082 0.12 0.0014
11 Nucleus area 7.20E− 03 3.02E− 02 0.46 1141 50 1640 137
12 Nucleus convex area 8.27E− 03 3.26E− 02 0.45 1253 53 1772 147
13 Nucleus equivalent diameter 5.03E− 03 2.64E− 02 0.47 36.53 0.78 43.59 1.85
14 Nucleus extent 5.00E− 02 1.43E− 01 0.22 0.64 0.0045 0.66 0.0079
15 Nucleus major axis length 1.16E− 02 4.07E− 02 0.37 52.6 1.7 60.1 2.3
16 Nucleus minor axis length 3.75E− 03 2.36E− 02 0.47 28.0 0.5 34.1 1.7
17 Nucleus perimeter 1.24E− 02 4.12E− 02 0.40 135.9 3.2 156.6 6.4
18 Nucleus solidity 1.37E− 04 2.87E− 03 0.52 0.91 0.0027 0.93 0.0037
19 Tamura coarseness 1 1.15E− 03 1.81E− 02 0.45 7.12 0.12 8.01 0.24
20 Tamura coarseness 2 4.04E− 03 2.31E− 02 0.48 23.88 0.57 33.99 2.77
21 Tamura coarseness 3 2.98E− 03 2.09E− 02 0.45 9.11 0.37 14.27 1.51
22 Tamura coarseness 4 1.73E− 03 2.18E− 02 0.49 18.21 0.70 23.94 1.40
∗Benjamini and Hochberg FDR correction; MATLAB function: mafdr(); ∗∗SE� standard error.
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Kurtosis, which evaluates the distribution of gray-level
values about the mean gray level of the nucleus, sustained
high statistically significant differences between the two
classes and a good positive correlation with the advancing
CIN grade. High CIN cases had higher feature values and
were more spread, as shown in themean values and standard
deviations of Table 3.

(ree two-dimensional discrete wavelet transform fea-
tures (dwt2H Mean Value, dwt2H Median Value, and
dwt2H Median Absolute Deviation from the 2nd level 2D

horizontal wavelet coefficient matrix) were found to sustain
statistically significant differences between low CIN and high
CIN cases (Table 3). (e mean (dwt2H Mean Value) and
median (dwt2H Median Value) features, which evaluate
image coarseness in the horizontal direction, displayed
statistically significant differences between the two classes.
Both features displayed higher values in high CIN cases and
had positive correlations, and feature values were more
spread, as seen by the standard deviations in Table 3.(e rest
of the discrete wavelet transform features (dwt2H Mean
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Figure 3: Box plots of features with high statistical significant differences and good correlation with the advancing CIN grade (p< 0.005,
p corrected <0.05, and |r|> 0.4): (a) nucleus solidity; (b) nucleus minor axis length; (c) nucleus equivalent diameter; Tamura coarseness
(d) 1, (e) 2, (f) 3, and (g) 4; (h) gray-level nonuniformity.
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Absolute Deviation and dwt2H Median Absolute De-
viation), evaluating deviations of feature values from the
median or mean values, displayed negative correlations
(i.e., feature values decreased from low CIN to high CIN
cases) and higher spreads, as it may be observed by the
means and standard deviations of Table 3.

Two of the features emanating from the local binary
pattern of the nucleus texture and evaluating the image
contrast, mean (local binary pattern mean value), and
standard deviation (local binary pattern standard deviation)
were found to sustain statistically significant differences
between the two classes and displayed positive correlations
with the advancing CIN grade (r> 0.3) and feature values
larger and more spread in the high CIN cases (Table 3).

It is also worth noticing that all features in Table 3
displayed higher spread of values in the high CIN cases,
as it may be observed in the standard deviations columns.

4. Discussion

(ematerial of the present study consisted of forty-four CIN
cases that had been graded into two categories, low (22) and
high (22) CIN cases, by an experienced pathologist. Four or
five digital images per case were used, which had been
previously selected by the physician, employing a micro-
scope connected to a digital photography camera and
a desktop computer. For the purpose of the present study,
a custom-made software was designed that located the nuclei
in all the images of each patient. Sixty-three features were
calculated from each nucleus, and the means feature vector,
comprising the means of all nuclei in a case, was computed
to represent each particular CIN case.

Regarding nuclear features, those that revealed highest
statistical significant differences (SSDs) and good correlation
with the advancing CIN grade (r> |0.4|) were three mor-
phological features (nucleus solidity, nucleus minor axis
length, and nucleus equivalent diameter), which quantify
nuclear shape and size, and five textural features (4 Tamura
coarseness and gray-level nonuniformity).

Regarding morphological features with highest SSDs, the
nucleus solidity feature, which estimates the nucleus shape,
is quantified by the quotient of the nucleus area divided by
the area of the smallest-sized convex hull polygon that can
encompass the nucleus. (e value of the feature increases
with increasing nucleus border irregularity. As it may be
observed from Figure 3(a), feature values of nuclei in high
CIN cases were (a) significantly higher and (b) with larger
spread amongst cases. (ese two findings indicate that
nuclei in high CIN cases attain different and irregular
shapes, and these parameters also vary significantly amongst
high CIN cases. Shape irregularity has been also reported in
[15, 16] (analyzing Pap smears) and [9] (quantifying nuclear
features from histopathology images), as well as in [5].
Increased nuclear shape irregularity and great variation in
nucleus irregularity amongst high CIN cases found in the
present study reflect the fact that, in high CIN cases, nuclear
atypia is dominant.

(e morphological features nucleus minor axis length
and nucleus equivalent diameter (the diameter of a circle

with the same area as the nucleus), both related to the size of
the nuclei, sustained SSDs between the two classes and
positive correlations (r> 0.4) with the advancing CIN grade.
Additionally, nuclei in high CIN cases displayed higher
spreads (Figures 3(b) and 2(c)) and standard deviations
(Table 3). (ese findings are in line with nucleus enlarge-
ment in atypia and variation in the degree of atypia, both
prevailing in high CIN cases.(e previous studies [15, 16] on
Pap smears and the study [9] on histopathology images have
also found increases in nuclear size in high CIN cases.

(ere were four more morphological features that
sustained SSDs between the two classes: at the 1% level and
correlation r> 0.45, the nucleus area and nucleus convex
area features, and at the 5% level, the nucleus perimeter
(r> 0.4) and nucleus major axis length. Additionally, nuclei
in high CIN cases displayed higher spreads and standard
deviations (Table 3) in these four features. (ese findings are
in line with nucleus enlargement in atypia and variation in
the degree of atypia which prevail in high CIN cases.

With regard to textural features, four Tamura coarseness
features were found to sustain SSDs between high CIN and
low CIN cases at the 5% level and displayed positive cor-
relations (r> |0.4|). (is becomes evident from Table 3,
where mean values and standard deviations are higher in the
high CIN cases, and Figures 3(d)–3(g), where the medians
and spreads in the box plots are higher in the high CIN cases.
(ese findings indicate that nuclei in high CIN cases appear
coarser; that is, the nucleus texture contains smaller num-
bers of large primitives or texture elements (texels), and that
image coarseness varies more amongst high CIN cases. (is
is probably related to the predominance of atypical nuclei in
high CIN cases. Higher nuclear coarseness in high CIN cases
has been also reported in [15, 16] on Pap smears.

Two more textural features, kurtosis and gray-level
nonuniformity, sustained high SSDs between high CIN
and low CIN cases and displayed positive correlations
(r� 0.35 and r� 0.52, resp.) with the advancing CIN grade
(Table 3). Kurtosis is related to the distribution of graytone
intensities on the nucleus texture, and gray-level non-
uniformity is a measure of nonuniformity in gray-level
structures that comprise the nucleus texture. (ese find-
ings indicate that nucleus texture in high CIN cases contains
structures of different gray-level intensities and that these
distributions vary amongst cases.

(e “horizontal detail” (H) discrete wavelet transform
features were found to sustain SSDs between high CIN and
low CIN cases. Positive correlation with the advancing CIN
grade (r> 0.3) displayed those dwt2 features that evaluate the
mean and median of the H-image (dwt2H Mean Value and
dwt2H Median Value), and negative correlations displayed
those that evaluate the mean and the median of the absolute
deviation (dwt2H Mean Absolute Deviation and dwt2H
Median Absolute Deviation) (Table 3). (ese findings in-
dicate that, in the case of the median and mean value dwt2
features (dwt2HMean Value and dwt2HMedian Value), the
nuclei in high CIN cases had larger magnitude edges as
compared to nuclei in low CIN cases. (is may be attributed
to the hyperchromasia or higher staining than normal of
nuclei with atypia, which prevails in high CIN cases. (e
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lower values in high CIN cases in the dwt2 features that
evaluate deviation (dwt2H Mean Absolute Deviation and
dwt2H Median Absolute Deviation) indicate consistency in
the size of edges amongst high CIN cases.

Finally, two more textural features, local binary pattern
mean value and local binary pattern standard deviation,
sustained SSDs between high and low CIN cases. (e LBP
quantifies the local contrast of the nucleus texture. (e
features local binary pattern mean value and local binary
pattern standard deviation quantify the mean and the
variation of the local contrasts on the nucleus texture. It was
found that both features had larger values in high CIN cases,
which indicates that the textural contrast of nuclei is higher
with higher variation amongst high CIN cases.

Several of the above morphological and textural features
quantify similar properties of the nuclei, such as the nucleus
image structure, size, and shape. Nevertheless, those features
had to be examined, with regard to the particular property
they quantify, for reassuring findings as to how particular
nucleus properties change with the advancing CIN grade.
(is is probably connected to higher nuclear atypia and
variation in the degree of nuclear atypia which prevail in
high CIN cases.

Summarizing, this study showed that nuclei in high CIN
cases, in comparison to nuclei in low CIN cases, attain more
irregular shape and are larger in size, and the nucleus texture
becomes coarser, contains higher edges, is of higher local
contrast, is more inhomogeneous, and contains structures of
different intensities. (ese properties seem to vary a lot in
the nuclei of high CIN cases, except for the existence of high
edges on the nucleus surface.
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