metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(*u*-6-hydroxynaphthalene-1-carboxylato)bis[(6-hydroxynaphthalene-1-carboxylato)(1,10-phenanthroline)cadmium(II)] tetrahydrate

Chun-Sen Liu,* Min Hu and Liang-Qi Guo

Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China Correspondence e-mail: chunsenliu@zzuli.edu.cn

Received 20 October 2009; accepted 21 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.028; wR factor = 0.063; data-to-parameter ratio = 12.6.

The title complex, $[Cd_2(C_{11}H_7O_3)_4(C_{12}H_8N_2)_2]\cdot 4H_2O$, has a centrosymmetric binuclear structure in which two Cd^{II} atoms are both six-coordinated and bridged by 6-hydroxynaphthalene-1-carboxylate ligands, with a Cd···Cd separation of 3.671 (1) Å. The remaining coordination sites are occupied by two N atoms of a 1,10-phenanthroline ligand and two O atoms of a 6-hydroxynaphthalene-1-carboxylate ligand. The crystal packing is stabilized by O−H···O hydrogen-bonding interactions.

Related literature

For the preparation of functional coordination architectures, see: Barnett & Champness (2003); Comba & Schiek (2003); Telfer & Kuroda (2003); Robin & Fromm (2006); Tranchemontagne et al. (2009). For complexes with carboxylic acid ligands, see: Bania et al. (2007); Liu et al. (2006); Marsh (2004); Paz & Klinowski (2004); Qin et al. (2008); Shi et al. (2005); Wu et al. (2006); Xu et al. (2005); Ye et al. (2005).

Experimental

Crystal data

[Cd₂(C₁₁H₇O₃)₄(C₁₂H₈N₂)₂]·4H₂O $M_r = 1405.96$ Monoclinic, $P2_1/c$ a = 11.7382 (11) Åb = 15.1433 (14) Å c = 18.2059 (13) Å $\beta = 116.430 (4)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.804, \ T_{\max} = 0.868$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	406 parameters
$wR(F^2) = 0.063$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
5096 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

V = 2897.9 (4) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.21 \times 0.18 \; \mathrm{mm}$

20423 measured reflections

5096 independent reflections

4064 reflections with $I > 2\sigma(I)$

 $\mu = 0.81 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.037$

Z = 2

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1\cdots O5^{i}$	0.85	2.15	2.934 (3)	154
$O1W - H2 \cdot \cdot \cdot O1^{ii}$	0.85	2.03	2.872 (3)	170
$O2W - H3 \cdots O1W$	0.85	1.96	2.801 (4)	170
$O2W - H4 \cdot \cdot \cdot O2$	0.85	2.08	2.883 (3)	156
$O5-H5B\cdots O4^{iii}$	0.82	1.84	2.664 (3)	176
$O6-H6B\cdots O2W^{iv}$	0.82	1.91	2.728 (4)	180
Symmetry codes:	(i) $-x + 1$.	$v - \frac{1}{2}, -z + \frac{3}{2};$	(ii) $x_{-}v_{+}$	$\frac{3}{2}$, $7 + \frac{1}{2}$; (iii)

-x + 1, y + $\frac{1}{2}$, -z + $\frac{3}{2}$; (iv) -x + 2, y - $\frac{1}{2}$, -z + $\frac{3}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This work was supported by the start-up fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (Nos. 2007BSJJ001 and 20801049).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5107).

References

Bania, K., Barooah, N. & Baruah, J. B. (2007). Polyhedron, 26, 2612-2620. Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Comba, P. & Schiek, W. (2003). Coord. Chem. Rev. 21, 238-239.

Liu, C.-S., Shi, X.-S., Li, J.-R., Wang, J.-J. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 656-663.

Marsh, R. E. (2004). Acta Cryst. B60, 252-253.

Paz, F. A. A. & Klinowski, J. (2004). J. Solid State Chem. 177, 3423-3432. Qin, C., Wang, X.-L. & Wang, E.-B. (2008). Acta Cryst. C64, m73-m75. Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shi, X., Zhu, G., Wang, X., Li, G., Fang, Q., Zhao, X., Wu, G., Tian, G., Xue, M., Wang, R. & Qiu, S. (2005). Cryst. Growth Des. 5, 341–346.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Telfer, S. G. & Kuroda, R. (2003). *Coord. Chem. Rev.* **242**, 33–46. Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257-1283.
- Wu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69–75.
- Xu, Y., Yuan, D., Wu, B., Jiang, F., Zhou, Y. & Hong, M. (2005). Inorg. Chem. Commun. 8, 651-655.
- Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.

Acta Cryst. (2009). E65, m1432-m1433 [doi:10.1107/S1600536809043475]

Bis(#-6-hydroxynaphthalene-1-carboxylato)bis[(6-hydroxynaphthalene-1-carboxylato)(1,10-phenanthroline)cadmium(II)] tetrahydrate

C.-S. Liu, M. Hu and L.-Q. Guo

Comment

Metallosupramolecular species built from transition metal ions and organic bridging ligands have been rapidly developed in recent years because of their fascinating structural diversities and potential applications as functional materials (Barnett & Champness, 2003; Comba & Schiek, 2003; Telfer & Kuroda, 2003; Robin & Fromm, 2006; Tranchemontagne *et al.*, 2009). The effective and facile approach for the synthesis of such complexes is still the appropriate choice of well designed organic ligands as bridges or terminal groups with metal ions as nodes. Among various ligands, the versatile carboxylic acid ligands, especially for the benzene- and naphthalene-based di- and multi-carboxylic acids, have been most widely employed in the preparation of various Cd^{II}–carboxylate complexes (Marsh, 2004; Paz & Klinowski, 2004; Qin *et al.*, 2008; Shi *et al.*, 2005; Wu *et al.*, 2006; Xu *et al.*, 2005). In contrast, the skillful use of monocarboxylic acid ligands with the naphthalene skeleton to construct functional Cd^{II}–carboxylate compounds has been less investigated to date (Bania *et al.*, 2007; Liu *et al.*, 2006). In addition, the introduction of 2,2'-bipyridyl-like bidentate chelating molecules, such as 1,10-phenanthroline or 2,2'-bipyridine, as an auxiliary co-ligand into the reaction systems involving carboxylic acids usually leads to new products and commonly reduces dimensionality of the networks formed (Ye *et al.*, 2005). We report here the crystal structure of a Cd^{II} complex with mixed 2-naphthol-5-carboxylic acid and 1,10-phenanthroline as ligands.

The structure of the title complex consists of a centrosymmetric dinuclear unit and four lattice water molecules. The Cd^{II} center is six-coordinated in an distorted octahedral geometry, by two nitrogen donors atoms from one phenanthroline ligand and four O-atoms from three 2-naphthol-5-carboxylate ligands. For 2-naphthol-5-carboxylate, there exist two different kinds of coordination modes with the Cd^{II} center, namely μ_1 - η^1 : η^1 -chelating and μ_2 - η^2 : η^0 -bridging modes. In this manner two Cd^{II} center are connected to form a four-membered ring [Cd(1)–O(3)–Cd(1 A)–O(3 A)] with the Cd(1)···Cd(1 A) separation of 3.671 (1) Å (symmetry operation (A) = 1 - *x*, 1 - *y*, 1 - *z*).

Experimental

A mixed solution of 2-naphthol-5-carboxylic acid (0.05 mmol) and 1,10-phenanthroline (0.05 mmol) in CH₃OH (10 ml) in the presence of excess 2,6-dimethylpyridine (*ca* 0.05 ml for adjusting the pH value to basic condition) was carefully layered on top of a H₂O solution (15 ml) of Cd(ClO₄)₂ (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis of the title complex (I) appeared at the tube wall after *ca* three weeks at room temperature. Yield: ~30% based on 2-naphthol-5-carboxylic acid. Elemental analysis calculated for $C_{68}H_{52}Cd_2N_4O_{16}$: C 58.09, H 3.73, N 3.98%; found: C 59.16, H 3.65, N 3.85%. IR (KBr pellet, cm⁻¹): 3403 s (br), 2977*m*, 2931*m*, 2770w, 2559w, 1597*m*, 1554*m*, 1521 s, 1468w, 1422*m*, 1377 s, 1302*m*, 1243*m*, 1148*m*, 1100w, 1049w, 953*m*, 847*m*, 791*m*, 767*m*, 725*m*, 663*m*, 604w.

Refinement

All H-atoms were refined as riding with O—H = 0.85Å and C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C,O)$.

Figures

Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (1 - x, 1 - y, 1 - z). Four free water molecules are omitted for clarity.

$Bis (\mu-6-hydroxynaphthalene-1-carboxylato) bis [(6-hydroxynaphthalene-1-carboxylato)(1,10-phenanthroline) cadmium (II)] tetrahydrate$

Crystal data	
$[Cd_2(C_{11}H_7O_3)_4(C_{12}H_8N_2)_2] \cdot 4H_2O$	$F_{000} = 1424$
$M_r = 1405.96$	$D_{\rm x} = 1.611 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 11.7382 (11) Å	Cell parameters from 5160 reflections
<i>b</i> = 15.1433 (14) Å	$\theta = 2.4 - 23.9^{\circ}$
c = 18.2059 (13) Å	$\mu = 0.81 \text{ mm}^{-1}$
$\beta = 116.430 \ (4)^{\circ}$	T = 296 K
$V = 2897.9 (4) \text{ Å}^3$	Block, yellow
Z = 2	$0.28 \times 0.21 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	5096 independent reflections
Radiation source: fine-focus sealed tube	4064 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 296 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.804, \ T_{\max} = 0.868$	$k = -18 \rightarrow 18$
20423 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.028$ H-atom parameters constrained $wR(F^2) = 0.063$ $w = 1/[\sigma^2(F_o^2) + (0.022P)^2 + 1.6679P]$ $wR(F^2) = 0.063$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.03 $(\Delta/\sigma)_{max} = 0.002$ 5096 reflections $\Delta\rho_{max} = 0.30 \text{ e } \text{Å}^{-3}$ 406 parameters $\Delta\rho_{min} = -0.40 \text{ e } \text{Å}^{-3}$ Primary atom site location: structure-invariant direct Γ_{vel} time time end to be a structure tin the end

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropi	c or e	eauivalent	isotroi	pic dis	placement	parameters	$(Å^2$)
1		0001011101005		noon opr		quintience	1001101		processies	pen enterers	(/	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.648118 (18)	0.537570 (13)	0.499232 (12)	0.03367 (7)
01	0.64852 (18)	0.68046 (12)	0.45742 (12)	0.0398 (5)
02	0.65340 (19)	0.67592 (12)	0.57928 (12)	0.0462 (5)
03	0.56800 (17)	0.45469 (13)	0.57326 (11)	0.0410 (5)
O4	0.51162 (19)	0.46283 (14)	0.67285 (12)	0.0490 (5)
05	0.5108 (2)	1.04569 (13)	0.70518 (13)	0.0550 (6)
H5B	0.5048	1.0182	0.7421	0.082*
O6	1.0184 (2)	0.17488 (14)	0.63847 (15)	0.0648 (7)
H6B	1.0940	0.1780	0.6711	0.097*
N1	0.7308 (2)	0.42210 (15)	0.45474 (14)	0.0359 (5)
N2	0.8635 (2)	0.52345 (14)	0.59125 (13)	0.0332 (5)
C1	0.6666 (3)	0.3693 (2)	0.39153 (19)	0.0494 (8)
H1A	0.5793	0.3778	0.3619	0.059*
C2	0.7228 (3)	0.3020 (2)	0.3672 (2)	0.0591 (9)
H2A	0.6736	0.2655	0.3234	0.071*
C3	0.8509 (3)	0.2903 (2)	0.4086 (2)	0.0570 (9)
НЗА	0.8906	0.2469	0.3920	0.068*
C4	0.9226 (3)	0.34400 (19)	0.47602 (18)	0.0410 (7)
C5	1.0570 (3)	0.3349 (2)	0.5234 (2)	0.0498 (8)
H5A	1.1002	0.2935	0.5075	0.060*
C6	1.1222 (3)	0.3842 (2)	0.5897 (2)	0.0486 (8)
H6A	1.2097	0.3767	0.6191	0.058*
C7	1.0592 (2)	0.44858 (19)	0.61633 (17)	0.0380 (7)
C8	1.1219 (3)	0.4995 (2)	0.6869 (2)	0.0549 (9)

H8A	1.2089	0.4925	0.7190	0.066*
C9	1.0569 (3)	0.5592 (2)	0.7088 (2)	0.0566 (9)
H9A	1.0981	0.5926	0.7563	0.068*
C10	0.9269 (3)	0.5697 (2)	0.65892 (18)	0.0433 (7)
H10A	0.8828	0.6113	0.6740	0.052*
C11	0.9278 (2)	0.46242 (17)	0.56963 (16)	0.0307 (6)
C12	0.8583 (3)	0.40913 (17)	0.49782 (16)	0.0323 (6)
C13	0.6536 (2)	0.71904 (18)	0.52027 (18)	0.0363 (7)
C14	0.6668 (2)	0.81874 (18)	0.52391 (16)	0.0347 (6)
C15	0.7268 (3)	0.85596 (19)	0.48148 (17)	0.0386 (7)
H15A	0.7517	0.8200	0.4498	0.046*
C16	0.7511 (3)	0.94664 (19)	0.48501 (18)	0.0427 (7)
H16A	0.7918	0.9704	0.4559	0.051*
C17	0.7152 (3)	1.0001 (2)	0.53121 (17)	0.0423 (7)
H17A	0.7340	1.0601	0.5347	0.051*
C18	0.6500(2)	0.96592 (18)	0.57379 (16)	0.0340 (6)
C19	0.6096 (3)	1.02198 (19)	0.61936 (17)	0.0404 (7)
H19A	0.6262	1.0822	0.6213	0.048*
C20	0.5467 (3)	0.98935 (19)	0.66048 (17)	0.0398 (7)
C21	0.5185 (3)	0.89926 (19)	0.65634 (18)	0.0442 (7)
H21A	0.4743	0.8774	0.6840	0.053*
C22	0.5550 (3)	0.84284 (19)	0.61223 (18)	0.0410 (7)
H22A	0.5339	0.7833	0.6095	0.049*
C23	0.6245 (2)	0.87360 (17)	0.57055 (16)	0.0335 (6)
C24	0.5938 (3)	0.44834 (18)	0.64928 (17)	0.0367 (7)
C25	0.7267 (3)	0.42322 (18)	0.70921 (16)	0.0347 (6)
C26	0.7973 (3)	0.35801 (17)	0.69061 (16)	0.0338 (6)
C27	0.7474 (3)	0.30337 (18)	0.61980 (18)	0.0424 (7)
H27A	0.6619	0.3082	0.5827	0.051*
C28	0.8219 (3)	0.24406 (19)	0.60497 (19)	0.0480 (8)
H28A	0.7865	0.2093	0.5580	0.058*
C29	0.9512 (3)	0.23452 (19)	0.6594 (2)	0.0472 (8)
C30	1.0025 (3)	0.28396 (19)	0.72909 (18)	0.0435 (7)
H30A	1.0880	0.2771	0.7655	0.052*
C31	0.9281 (3)	0.34535 (18)	0.74713 (17)	0.0365 (7)
C32	0.9808 (3)	0.3957 (2)	0.81986 (17)	0.0436 (7)
H32A	1.0659	0.3879	0.8567	0.052*
C33	0.9095 (3)	0.4554 (2)	0.83720 (17)	0.0464 (8)
H33A	0.9455	0.4872	0.8859	0.056*
C34	0.7818 (3)	0.4687 (2)	0.78147 (17)	0.0426 (7)
H34A	0.7335	0.5093	0.7939	0.051*
O1W	0.5418 (2)	0.73556 (15)	0.79947 (13)	0.0609 (6)
H1	0.5421	0.6825	0.8149	0.073*
H2	0.5660	0.7580	0.8469	0.073*
O2W	0.7302 (2)	0.68503 (16)	0.75316 (14)	0.0703 (7)
Н3	0.6802	0.7035	0.7721	0.084*
H4	0.7056	0.6987	0.7031	0.084*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02669 (11)	0.03283 (12)	0.04132 (13)	0.00375 (9)	0.01496 (9)	0.00190 (10)
01	0.0447 (12)	0.0340 (11)	0.0414 (12)	0.0026 (9)	0.0198 (10)	-0.0031 (9)
02	0.0598 (14)	0.0343 (11)	0.0479 (13)	0.0056 (10)	0.0270 (11)	0.0014 (10)
03	0.0316 (10)	0.0542 (13)	0.0301 (11)	-0.0029 (9)	0.0075 (9)	0.0117 (9)
O4	0.0383 (12)	0.0630 (14)	0.0435 (12)	0.0081 (11)	0.0163 (10)	-0.0038 (11)
05	0.0792 (16)	0.0432 (13)	0.0489 (13)	0.0118 (12)	0.0342 (12)	-0.0012 (10)
O6	0.0744 (16)	0.0466 (14)	0.0730 (17)	0.0131 (12)	0.0324 (14)	-0.0038 (12)
N1	0.0318 (13)	0.0312 (13)	0.0397 (14)	0.0015 (10)	0.0115 (11)	0.0006 (11)
N2	0.0292 (12)	0.0337 (13)	0.0361 (13)	0.0014 (10)	0.0139 (10)	-0.0006 (10)
C1	0.0446 (18)	0.0463 (19)	0.0471 (19)	-0.0024 (15)	0.0114 (16)	-0.0044 (16)
C2	0.067 (2)	0.046 (2)	0.056 (2)	-0.0020 (18)	0.0203 (19)	-0.0174 (17)
C3	0.069 (2)	0.0444 (19)	0.061 (2)	0.0089 (18)	0.033 (2)	-0.0127 (17)
C4	0.0452 (18)	0.0364 (16)	0.0466 (18)	0.0077 (14)	0.0252 (15)	0.0014 (14)
C5	0.050 (2)	0.0442 (19)	0.066 (2)	0.0179 (16)	0.0366 (18)	0.0073 (17)
C6	0.0339 (17)	0.057 (2)	0.058 (2)	0.0144 (15)	0.0232 (16)	0.0130 (17)
C7	0.0286 (15)	0.0434 (17)	0.0413 (17)	0.0048 (13)	0.0150 (13)	0.0091 (14)
C8	0.0307 (16)	0.073 (2)	0.048 (2)	0.0028 (16)	0.0065 (15)	-0.0003 (18)
С9	0.0446 (19)	0.070 (2)	0.0421 (19)	-0.0030 (17)	0.0071 (16)	-0.0167 (17)
C10	0.0415 (18)	0.0455 (17)	0.0406 (18)	0.0021 (14)	0.0163 (15)	-0.0077 (14)
C11	0.0273 (14)	0.0303 (14)	0.0359 (15)	0.0041 (12)	0.0153 (12)	0.0036 (13)
C12	0.0336 (15)	0.0288 (14)	0.0366 (15)	0.0026 (12)	0.0175 (13)	0.0048 (13)
C13	0.0286 (15)	0.0334 (16)	0.0427 (18)	0.0056 (12)	0.0121 (14)	0.0006 (14)
C14	0.0280 (14)	0.0348 (15)	0.0349 (16)	0.0049 (12)	0.0083 (13)	0.0021 (12)
C15	0.0352 (16)	0.0419 (17)	0.0360 (16)	0.0018 (13)	0.0134 (13)	0.0005 (13)
C16	0.0426 (17)	0.0462 (19)	0.0410 (17)	-0.0068 (14)	0.0202 (15)	0.0031 (14)
C17	0.0462 (18)	0.0326 (15)	0.0426 (18)	-0.0050 (14)	0.0148 (15)	0.0028 (14)
C18	0.0309 (14)	0.0323 (15)	0.0297 (14)	0.0017 (13)	0.0053 (12)	0.0023 (13)
C19	0.0437 (17)	0.0351 (17)	0.0333 (16)	0.0014 (14)	0.0091 (14)	0.0011 (13)
C20	0.0432 (17)	0.0392 (17)	0.0327 (16)	0.0085 (14)	0.0130 (14)	0.0006 (13)
C21	0.0475 (18)	0.0427 (18)	0.0476 (18)	0.0024 (15)	0.0259 (15)	0.0053 (15)
C22	0.0408 (17)	0.0339 (16)	0.0490 (18)	0.0008 (13)	0.0206 (15)	0.0017 (14)
C23	0.0309 (15)	0.0321 (15)	0.0309 (15)	0.0026 (12)	0.0078 (12)	0.0038 (12)
C24	0.0340 (16)	0.0339 (16)	0.0351 (16)	-0.0029 (13)	0.0091 (13)	0.0011 (13)
C25	0.0339 (15)	0.0378 (15)	0.0297 (15)	0.0010 (13)	0.0118 (13)	0.0065 (13)
C26	0.0359 (15)	0.0317 (15)	0.0300 (15)	-0.0030 (12)	0.0111 (13)	0.0048 (12)
C27	0.0440 (17)	0.0339 (16)	0.0391 (17)	-0.0035 (14)	0.0095 (14)	0.0031 (14)
C28	0.062 (2)	0.0311 (16)	0.0436 (18)	-0.0045 (15)	0.0170 (17)	-0.0027 (14)
C29	0.062 (2)	0.0304 (16)	0.055 (2)	0.0074 (15)	0.0315 (18)	0.0066 (15)
C30	0.0400 (17)	0.0386 (17)	0.0448 (19)	0.0066 (14)	0.0124 (15)	0.0089 (15)
C31	0.0370 (16)	0.0338 (16)	0.0342 (16)	0.0014 (13)	0.0119 (13)	0.0077 (13)
C32	0.0370 (16)	0.0505 (19)	0.0340 (16)	0.0031 (15)	0.0076 (14)	0.0050 (14)
C33	0.0462 (18)	0.055 (2)	0.0288 (15)	-0.0015 (16)	0.0087 (14)	-0.0054 (15)
C34	0.0422 (17)	0.0482 (18)	0.0359 (16)	0.0041 (15)	0.0161 (14)	0.0001 (15)
O1W	0.0763 (16)	0.0583 (15)	0.0430 (13)	-0.0083 (13)	0.0220 (12)	-0.0003 (11)

O2W	0.0676 (16)	0.0829 (18)	0.0647 (16)	0.0084 (14)	0.0332 (13)	0.0077 (14)
Geometric parar	neters (Å, °)					
Cd1_03 ⁱ		2 2827 (18)	C11-	-C12	1 4	41 (4)
Cd1=03		2.2027(10) 2 2945(18)	C13_	-C14	1.1	16 (4)
Cd1 = N1		2.2943(10) 2 314(2)	C14—	-C15	1.3	77 (4)
Cd1-03		2.317(2) 2 3247 (18)	C14-	-C23	1.5	26 (4)
Cd1 = N2		2 339 (2)	C15-	-C16	1.3	98 (4)
Cd102		2.537(2)	C15-	-H15A	0.9	300
Cd1-C13		2.771 (3)	C16-	-C17	1.3	53 (4)
Cd1—O4 ⁱ		2.846 (2)	C16–	-H16A	0.93	300
Cd1—Cd1 ⁱ		3.6706 (5)	C17–	-C18	1.4	08 (4)
01-C13		1.262 (3)	C17–	-H17A	0.9	300
02—C13		1.258 (3)	C18-	-C19	1.4)9 (4)
O3—C24		1.282 (3)	C18–	-C23	1.42	25 (4)
O3—Cd1 ⁱ		2.2827 (18)	C19–	-C20	1.3	57 (4)
O4—C24		1.238 (3)	C19–	-H19A	0.9	300
O4—Cd1 ⁱ		2.846 (2)	C20–	-C21	1.3	98 (4)
O5—C20		1.369 (3)	C21–	-C22	1.3	66 (4)
O5—H5B		0.8200	C21–	-H21A	0.9	300
O6—C29		1.360 (3)	C22–	-C23	1.4	18 (4)
O6—H6B		0.8200	C22–	-H22A	0.9	300
N1—C1		1.326 (4)	C24—	-C25	1.5	01 (4)
N1-C12		1.360 (3)	C25–	-C34	1.3	66 (4)
N2-C10		1.322 (3)	C25–	-C26	1.42	24 (4)
N2—C11		1.358 (3)	C26–	-C27	1.42	20 (4)
C1—C2		1.389 (4)	C26–	-C31	1.4.	31 (4)
C1—H1A		0.9300	C27–	-C28	1.3	62 (4)
C2—C3		1.361 (4)	C27—	-H27A	0.9	300
C2—H2A		0.9300	C28—	-C29	1.40	03 (4)
C3—C4		1.399 (4)	C28–	-H28A	0.9.	300
С3—НЗА		0.9300	C29–	-C30	1.30	62 (4)
C4—C12		1.402 (4)	C30–	-C31	1.4	11 (4)
C4—C5		1.428 (4)	C30–	-H30A	0.93	300
C5—C6		1.334 (4)	C31–	-C32	1.4	10 (4)
C5—H5A		0.9300	C32—	-C33	1.3	60 (4)
C6—C7		1.432 (4)	C32—	-H32A	0.93	300
С6—Н6А		0.9300	C33–	-C34	1.4	02 (4)
С7—С8		1.394 (4)	C33–	-H33A	0.93	300
C7—C11		1.406 (4)	C34—	-H34A	0.9.	300
С8—С9		1.353 (4)	O1W-	—H1	0.8	500
C8—H8A		0.9300	O1W-	—H2	0.8	500
C9—C10		1.395 (4)	O2W-	—Н3	0.84	199
С9—Н9А		0.9300	O2W-	—H4	0.83	502
C10—H10A		0.9300				
O3 ⁱ —Cd1—O1		85.73 (7)	С9—	C10—H10A	118	.5

O3 ⁱ —Cd1—N1	111.57 (8)	N2—C11—C7	121.9 (2)
O1—Cd1—N1	122.24 (7)	N2-C11-C12	118.7 (2)
O3 ⁱ —Cd1—O3	74.38 (7)	C7—C11—C12	119.4 (2)
O1—Cd1—O3	139.69 (7)	N1—C12—C4	122.1 (3)
N1—Cd1—O3	97.80 (8)	N1—C12—C11	118.4 (2)
O3 ⁱ —Cd1—N2	170.86 (7)	C4—C12—C11	119.5 (2)
O1—Cd1—N2	99.36 (7)	O2—C13—O1	121.1 (3)
N1—Cd1—N2	72.17 (8)	O2—C13—C14	121.2 (3)
O3—Cd1—N2	97.04 (7)	O1—C13—C14	117.6 (3)
O3 ¹ —Cd1—O2	91.52 (7)	O2—C13—Cd1	66.08 (15)
O1—Cd1—O2	53.75 (7)	O1—C13—Cd1	55.04 (14)
N1 - Cd1 - O2	156.67 (7)	C14—C13—Cd1	171.5 (2)
$V_3 = Cd_1 = O_2$	91.47 (7)	C15 - C14 - C25	119.8 (3)
	85.51 (7) 88.87 (7)	$C_{13} = C_{14} = C_{13}$	110.0(3) 123.4(3)
03 - Cd1 - Cl3	38.87(7)	C_{23} C_{14} C_{15} C_{16}	123.4(3)
N1-Cd1-C13	20.80(7) 144 11 (8)	C14-C15-H154	121.4 (5)
O3-Cd1-C13	116.46 (8)	C16—C15—H15A	119.3
N2—Cd1—C13	92.32 (8)	C17—C16—C15	119.9 (3)
O2—Cd1—C13	26.95 (7)	C17—C16—H16A	120.0
O3 ⁱ —Cd1—O4 ⁱ	49.13 (6)	C15—C16—H16A	120.0
O1—Cd1—O4 ⁱ	74.60 (6)	C16—C17—C18	121.0 (3)
N1—Cd1—O4 ⁱ	77.68 (7)	C16—C17—H17A	119.5
O3—Cd1—O4 ⁱ	113.50 (6)	C18—C17—H17A	119.5
N2—Cd1—O4 ⁱ	139.51 (7)	C17—C18—C19	120.7 (3)
O2—Cd1—O4 ⁱ	118.02 (6)	C17—C18—C23	119.6 (3)
C13—Cd1—O4 ⁱ	96.75 (7)	C19—C18—C23	119.7 (3)
O3 ⁱ —Cd1—Cd1 ⁱ	37.58 (5)	C20—C19—C18	120.9 (3)
O1—Cd1—Cd1 ⁱ	115.89 (5)	С20—С19—Н19А	119.5
N1—Cd1—Cd1 ⁱ	108.34 (6)	C18—C19—H19A	119.5
O3—Cd1—Cd1 ⁱ	36.79 (4)	C19—C20—O5	119.2 (3)
N2—Cd1—Cd1 ⁱ	133.75 (5)	C19—C20—C21	120.0 (3)
O2—Cd1—Cd1 ⁱ	91.87 (5)	O5—C20—C21	120.8 (3)
C13—Cd1—Cd1 ⁱ	105.66 (6)	C22—C21—C20	120.9 (3)
O4 ⁱ —Cd1—Cd1 ⁱ	81.11 (4)	C22—C21—H21A	119.5
C13—O1—Cd1	98.15 (17)	C20—C21—H21A	119.5
C13—O2—Cd1	86.96 (16)	C21—C22—C23	121.0 (3)
C24—O3—Cd1 ⁱ	107.21 (16)	C21—C22—H22A	119.5
C24—O3—Cd1	134.76 (17)	C23—C22—H22A	119.5
Cd1 ⁱ —O3—Cd1	105.62 (7)	C22—C23—C18	117.4 (3)
C24—O4—Cd1 ⁱ	81.45 (16)	C22—C23—C14	124.3 (3)
С20—О5—Н5В	109.5	C18—C23—C14	118.3 (3)
С29—О6—Н6В	109.5	O4—C24—O3	121.0 (3)
C1—N1—C12	117.9 (2)	O4—C24—C25	120.7 (3)

C1—N1—Cd1	126.5 (2)	O3—C24—C25	118.3 (2)
C12—N1—Cd1	115.64 (17)	C34—C25—C26	120.2 (3)
C10-N2-C11	118.4 (2)	C34—C25—C24	117.8 (3)
C10—N2—Cd1	126.87 (19)	C26—C25—C24	122.0 (2)
C11—N2—Cd1	114.69 (16)	C27—C26—C25	124.9 (3)
N1—C1—C2	123.5 (3)	C27—C26—C31	116.8 (3)
N1—C1—H1A	118.3	C25—C26—C31	118.3 (2)
C2—C1—H1A	118.3	C28—C27—C26	121.5 (3)
C3—C2—C1	119.0 (3)	С28—С27—Н27А	119.2
C3—C2—H2A	120.5	С26—С27—Н27А	119.2
C1—C2—H2A	120.5	C27—C28—C29	121.1 (3)
C2—C3—C4	119.6 (3)	C27—C28—H28A	119.4
С2—С3—НЗА	120.2	C29—C28—H28A	119.4
С4—С3—НЗА	120.2	O6—C29—C30	123.7 (3)
C3—C4—C12	117.9 (3)	O6—C29—C28	116.8 (3)
C3—C4—C5	123.0 (3)	C30—C29—C28	119.5 (3)
C12—C4—C5	119.1 (3)	C29—C30—C31	121.1 (3)
C6—C5—C4	121.9 (3)	С29—С30—Н30А	119.4
С6—С5—Н5А	119.1	С31—С30—Н30А	119.4
С4—С5—Н5А	119.1	C32—C31—C30	121.1 (3)
C5—C6—C7	120.8 (3)	C32—C31—C26	119.0 (3)
С5—С6—Н6А	119.6	C30—C31—C26	119.9 (3)
С7—С6—Н6А	119.6	C33—C32—C31	121.3 (3)
C8—C7—C11	117.5 (3)	C33—C32—H32A	119.4
C8—C7—C6	123.2 (3)	C31—C32—H32A	119.4
C11—C7—C6	119.3 (3)	C32—C33—C34	119.9 (3)
C9—C8—C7	120.4 (3)	С32—С33—Н33А	120.1
С9—С8—Н8А	119.8	С34—С33—Н33А	120.1
С7—С8—Н8А	119.8	C25—C34—C33	121.3 (3)
C8—C9—C10	118.8 (3)	C25—C34—H34A	119.3
С8—С9—Н9А	120.6	C33—C34—H34A	119.3
С10—С9—Н9А	120.6	H1—O1W—H2	95.3
N2—C10—C9	123.1 (3)	H3—O2W—H4	112.8
N2-C10-H10A	118.5		
O3 ⁱ —Cd1—O1—C13	95.96 (16)	C3—C4—C12—N1	-1.3 (4)
N1-Cd1-01-C13	-151.16 (15)	C5-C4-C12-N1	179.1 (3)
O3—Cd1—O1—C13	36.3 (2)	C3—C4—C12—C11	176.6 (3)
N2-Cd1-01-C13	-76.40 (17)	C5-C4-C12-C11	-3.0 (4)
O2-Cd1-O1-C13	0.94 (15)	N2-C11-C12-N1	-0.2 (4)
O4 ⁱ —Cd1—O1—C13	144.66 (17)	C7—C11—C12—N1	178.4 (2)
Cd1 ⁱ —Cd1—O1—C13	72.82 (16)	N2—C11—C12—C4	-178.1 (2)
O3 ⁱ —Cd1—O2—C13	-84.52 (16)	C7—C11—C12—C4	0.4 (4)
O1—Cd1—O2—C13	-0.94 (15)	Cd1—O2—C13—O1	1.6 (3)
N1—Cd1—O2—C13	87.3 (2)	Cd1—O2—C13—C14	-175.2 (2)
O3—Cd1—O2—C13	-158.93 (16)	Cd1—O1—C13—O2	-1.8 (3)
N2—Cd1—O2—C13	104.13 (16)	Cd1-01-C13-C14	175.09 (19)
O4 ⁱ —Cd1—O2—C13	-41.20 (17)	O3 ⁱ —Cd1—C13—O2	95.57 (16)

Cd1 ⁱ —Cd1—O2—C13	-122.12 (15)	O1—Cd1—C13—O2	178.3 (3)
O3 ⁱ —Cd1—O3—C24	-135.2 (3)	N1—Cd1—C13—O2	-137.55 (16)
O1—Cd1—O3—C24	-71.9 (3)	O3—Cd1—C13—O2	23.67 (17)
N1—Cd1—O3—C24	114.5 (3)	N2—Cd1—C13—O2	-75.37 (16)
N2-Cd1-O3-C24	41.6 (3)	O4 ⁱ —Cd1—C13—O2	144.16 (15)
O2—Cd1—O3—C24	-44.1 (3)	Cd1 ⁱ —Cd1—C13—O2	61.53 (16)
C13—Cd1—O3—C24	-54.6 (3)	O3 ⁱ —Cd1—C13—O1	-82.76 (16)
O4 ⁱ —Cd1—O3—C24	-165.6 (2)	N1-Cd1-C13-O1	44.1 (2)
Cd1 ⁱ —Cd1—O3—C24	-135.2 (3)	O3—Cd1—C13—O1	-154.66 (15)
O3 ⁱ —Cd1—O3—Cd1 ⁱ	0.0	N2-Cd1-C13-O1	106.30 (16)
O1—Cd1—O3—Cd1 ⁱ	63.32 (13)	O2—Cd1—C13—O1	-178.3 (3)
N1—Cd1—O3—Cd1 ⁱ	-110.30 (9)	O4 ⁱ —Cd1—C13—O1	-34.17 (16)
N2—Cd1—O3—Cd1 ⁱ	176.82 (8)	Cd1 ⁱ —Cd1—C13—O1	-116.79 (15)
O2—Cd1—O3—Cd1 ⁱ	91.16 (8)	O2—C13—C14—C15	148.9 (3)
C13—Cd1—O3—Cd1 ⁱ	80.68 (9)	O1—C13—C14—C15	-28.0 (4)
O4 ⁱ —Cd1—O3—Cd1 ⁱ	-30.40 (10)	O2—C13—C14—C23	-28.9 (4)
O3 ⁱ —Cd1—N1—C1	4.9 (3)	O1—C13—C14—C23	154.2 (3)
O1—Cd1—N1—C1	-94.0 (2)	C23-C14-C15-C16	2.0 (4)
O3—Cd1—N1—C1	81.1 (2)	C13-C14-C15-C16	-175.9 (3)
N2—Cd1—N1—C1	176.0 (3)	C14—C15—C16—C17	0.0 (4)
O2-Cd1-N1-C1	-166.4 (2)	C15-C16-C17-C18	-2.0 (4)
C13—Cd1—N1—C1	-115.8 (2)	C16-C17-C18-C19	-178.0 (3)
O4 ⁱ —Cd1—N1—C1	-31.4 (2)	C16—C17—C18—C23	1.9 (4)
Cd1 ⁱ —Cd1—N1—C1	44.8 (2)	C17—C18—C19—C20	180.0 (3)
O3 ⁱ —Cd1—N1—C12	-176.18 (17)	C23—C18—C19—C20	0.1 (4)
O1-Cd1-N1-C12	84.91 (19)	C18—C19—C20—O5	178.9 (2)
O3—Cd1—N1—C12	-99.96 (18)	C18—C19—C20—C21	-1.6 (4)
N2-Cd1-N1-C12	-5.04 (18)	C19—C20—C21—C22	0.9 (4)
O2-Cd1-N1-C12	12.6 (3)	O5-C20-C21-C22	-179.6 (3)
C13—Cd1—N1—C12	63.1 (2)	C20—C21—C22—C23	1.2 (4)
O4 ⁱ —Cd1—N1—C12	147.59 (19)	C21—C22—C23—C18	-2.5 (4)
Cd1 ⁱ —Cd1—N1—C12	-136.24 (17)	C21—C22—C23—C14	179.5 (3)
O1-Cd1-N2-C10	61.9 (2)	C17—C18—C23—C22	-178.0 (3)
N1-Cd1-N2-C10	-177.1 (2)	C19—C18—C23—C22	1.9 (4)
O2-Cd1-N2-C10	9.8 (2)	C17-C18-C23-C14	0.2 (4)
C13—Cd1—N2—C10	35.9 (2)	C19-C18-C23-C14	-180.0 (2)
O4 ⁱ —Cd1—N2—C10	139.1 (2)	C15—C14—C23—C22	176.0 (3)
Cd1 ⁱ —Cd1—N2—C10	-78.5 (2)	C13—C14—C23—C22	-6.3 (4)
O1—Cd1—N2—C11	-116.08 (18)	C15—C14—C23—C18	-2.1 (4)
N1-Cd1-N2-C11	4.91 (17)	C13-C14-C23-C18	175.7 (2)
O2—Cd1—N2—C11	-168.20 (18)	Cd1 ⁱ —O4—C24—O3	9.9 (2)
C13—Cd1—N2—C11	-142.10 (18)	Cd1 ⁱ —O4—C24—C25	-170.3 (3)
O4 ⁱ —Cd1—N2—C11	-38.9 (2)	Cd1 ⁱ O3C24O4	-12.9 (3)
Cd1 ⁱ —Cd1—N2—C11	103.51 (17)	Cd1O3C24O4	121.9 (3)

-0.1 (4)	Cd1 ⁱ	167.38 (19)
178.8 (2)	Cd1—O3—C24—C25	-57.8 (4)
-1.8 (5)	O4—C24—C25—C34	-43.3 (4)
2.1 (5)	O3—C24—C25—C34	136.4 (3)
-0.7 (5)	O4—C24—C25—C26	140.3 (3)
178.9 (3)	O3—C24—C25—C26	-40.0 (4)
-176.8 (3)	C34—C25—C26—C27	176.1 (3)
2.8 (5)	C24—C25—C26—C27	-7.6 (4)
0.2 (5)	C34—C25—C26—C31	-3.4 (4)
177.5 (3)	C24—C25—C26—C31	172.8 (2)
-2.8 (4)	C25—C26—C27—C28	178.1 (3)
0.5 (5)	C31—C26—C27—C28	-2.4 (4)
-179.9 (3)	C26—C27—C28—C29	0.1 (4)
-1.1 (5)	C27—C28—C29—O6	-178.7 (3)
0.4 (4)	C27—C28—C29—C30	1.5 (5)
-177.5 (2)	O6—C29—C30—C31	179.5 (3)
0.7 (5)	C28—C29—C30—C31	-0.7 (4)
-1.0 (4)	C29—C30—C31—C32	179.1 (3)
177.1 (2)	C29—C30—C31—C26	-1.6 (4)
177.4 (2)	C27—C26—C31—C32	-177.7 (2)
-4.4 (3)	C25—C26—C31—C32	1.9 (4)
0.6 (4)	C27—C26—C31—C30	3.1 (4)
-179.0 (3)	C25-C26-C31-C30	-177.3 (2)
-177.9 (3)	C30-C31-C32-C33	179.6 (3)
2.5 (4)	C26—C31—C32—C33	0.3 (4)
1.7 (4)	C31—C32—C33—C34	-1.1 (5)
-177.4 (2)	C26—C25—C34—C33	2.7 (4)
-176.2 (2)	C24—C25—C34—C33	-173.7 (3)
4.7 (3)	C32—C33—C34—C25	-0.4 (5)
	$\begin{array}{c} -0.1 \ (4) \\ 178.8 \ (2) \\ -1.8 \ (5) \\ 2.1 \ (5) \\ -0.7 \ (5) \\ 178.9 \ (3) \\ -176.8 \ (3) \\ 2.8 \ (5) \\ 0.2 \ (5) \\ 177.5 \ (3) \\ -2.8 \ (4) \\ 0.5 \ (5) \\ -179.9 \ (3) \\ -1.1 \ (5) \\ 0.4 \ (4) \\ -177.5 \ (2) \\ 0.7 \ (5) \\ -1.0 \ (4) \\ 177.1 \ (2) \\ 177.4 \ (2) \\ -4.4 \ (3) \\ 0.6 \ (4) \\ -177.9 \ (3) \\ 2.5 \ (4) \\ 1.7 \ (4) \\ -177.4 \ (2) \\ -176.2 \ (2) \\ 4.7 \ (3) \end{array}$	-0.1 (4) $Cd1^i - O3 - C24 - C25$ 178.8 (2) $Cd1 - O3 - C24 - C25$ -1.8 (5) $O4 - C24 - C25 - C34$ 2.1 (5) $O3 - C24 - C25 - C34$ -0.7 (5) $O4 - C24 - C25 - C26$ 178.9 (3) $O3 - C24 - C25 - C26$ -176.8 (3) $C34 - C25 - C26 - C27$ 2.8 (5) $C24 - C25 - C26 - C27$ 0.2 (5) $C34 - C25 - C26 - C31$ 177.5 (3) $C24 - C25 - C26 - C31$ -2.8 (4) $C25 - C26 - C27 - C28$ 0.5 (5) $C31 - C26 - C27 - C28$ 0.5 (5) $C31 - C26 - C27 - C28$ -179.9 (3) $C26 - C27 - C28 - C29 - C30$ -177.5 (2) $O6 - C29 - C30 - C31$ 0.7 (5) $C28 - C29 - C30 - C31$ 0.7 (5) $C28 - C29 - C30 - C31$ -1.0 (4) $C29 - C30 - C31 - C32$ 177.1 (2) $C29 - C30 - C31 - C32$ 177.4 (2) $C25 - C26 - C31 - C32$ -4.4 (3) $C25 - C26 - C31 - C32$ 0.6 (4) $C27 - C26 - C31 - C32$ -179.0 (3) $C25 - C26 - C31 - C32$ -177.9 (3) $C30 - C31 - C32 - C33$ 2.5 (4) $C26 - C31 - C32 - C33$ 1.7 (4) $C31 - C32 - C33 - C34$ -177.4 (2) $C26 - C25 - C34 - C33$ -176.2 (2) $C24 - C25 - C34 - C33$ 4.7 (3) $C32 - C33 - C34 - C25$

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O1W—H1···O5 ⁱⁱ	0.85	2.15	2.934 (3)	154
O1W—H2···O1 ⁱⁱⁱ	0.85	2.03	2.872 (3)	170
O2W—H3···O1W	0.85	1.96	2.801 (4)	170
O2W—H4…O2	0.85	2.08	2.883 (3)	156
O5—H5B···O4 ^{iv}	0.82	1.84	2.664 (3)	176
$O6-H6B\cdots O2W^{v}$	0.82	1.91	2.728 (4)	180

Symmetry codes: (ii) -x+1, y-1/2, -z+3/2; (iii) x, -y+3/2, z+1/2; (iv) -x+1, y+1/2, -z+3/2; (v) -x+2, y-1/2, -z+3/2.

