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H ypertension is one of the most common and important
health problems worldwide.1 It has been estimated that

29% of the world’s adult population, or 1.56 billion people, will
have hypertension by the year 2025.2 The prevalence of high
blood pressure and its adverse consequences result in a
heavy burden for hypertensive patients from high-, middle-,
and low-income countries.2,3 Many monogenic causes of
hypertension have been reported. However, determining the
causes of essential hypertension has been hampered because
it is a complex disorder with genetic, epigenetic, and
environmental determinants. Among numerous environmental
factors, sodium intake is thought to be an important one.

Sodium is essential for cellular homeostasis and fluid
balance. However, excessive sodium in the body, as a
consequence of increased dietary intake and/or impaired
excretion, is the most common risk factor for hypertension.4

There is overwhelming evidence that high dietary sodium
intake increases the risk for incident hypertension and leads
to worse cardiovascular outcomes.4,5 Excess sodium intake
also attenuates the beneficial effects of many antihyperten-
sive drugs, including blockers of the renin–angiotensin
system (RAS).6 A modest reduction in dietary salt intake
causes a significant fall in blood pressure in both hyperten-
sive and normotensive individuals.7 Therefore, a low-sodium
diet is a major preventive and treatment scheme for
hypertension.8

The kidney plays a vital role in the regulation of sodium
balance and blood pressure. However, the gastrointestinal
(GI) tract, which is the organ first exposed to components of
food, has taste receptors and sensors for electrolytes (eg,

sodium, potassium, phosphate).9 Therefore, in addition to
the kidney, there is increasing realization of the importance
of the GI tract in the regulation of sodium balance, and
consequently on blood pressure level. For example, GI tract–
derived hormones and peptides regulate the autocrine
function of renal hormones, affecting renal function, includ-
ing sodium excretion.10 We have reported that the GI tract–
derived hormone, gastrin, and renal receptors synergistically
regulate sodium excretion.11 In this article, we present an
overview of GI tract–mediated regulation of blood pressure,
highlight potential strategies for the prevention and treat-
ment of hypertension, and also attempt a look into the
future.

Renal Regulation of Sodium Homeostasis
The kidney is crucial in the long-term control of blood
pressure by regulating sodium homeostasis.12 This concept
has been confirmed by renal transplantation studies in
humans and experimental animals.13–17 For example, trans-
plantation of kidneys from adult stroke-prone spontaneously
hypertensive rats (SPSHR) causes hypertension in normoten-
sive Wistar-Kyoto (WKY) rats, indicating a major role of the
kidney in SPSHR hypertension18; we have also reported that
germline deletion of the D5 dopamine receptor (D5R) causes
salt-sensitive hypertension. Blood pressure was similar
between wild-type mice and wild-type mice transplanted with
wild-type kidneys, while blood pressure was higher in wild-
type mice transplanted with D5R

�/� kidneys than wild-type
kidneys, which also indicates the importance of the kidney in
the development of hypertension.17 All nephron segments of
the kidney, including the proximal tubule and medullary thick
ascending limb of Henle, participate in the regulation of blood
pressure.19–23 The renal proximal tubule (RPT) is responsible
for 65% to 70% of filtered sodium and water reabsorption
under normal conditions. Indeed, several studies have shown
that human essential hypertension is associated with
increased sodium transport in the RPT.21–23 The inappropriate
sodium retention in hypertension results from an enhanced
renal sodium transport per se, as well as a failure to respond
appropriately to signals that decrease renal sodium transport
in the face of increased sodium intake.
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Sodium reabsorption in the RPT is controlled through ion
cotransporters/exchangers/pump,19 such as the sodium
glucose cotransporter, sodium amino acid cotransporter,
sodium hydrogen exchanger (NHE), sodium phosphate
cotransporter type 2, sodium bicarbonate cotransporter,
and NBCe2, located at the luminal/apical membrane, and
NBCe1 and Na+-K+-ATPase located at the basolateral
membrane, among others.19–25 These sodium cotrans-
porters, exchangers, and pump are influenced by numerous
neural, hormonal, and humoral factors. These neural,
hormonal, and humoral factors can be divided into 2 groups
based on their effects on sodium excretion. One group leads
to natriuresis, while the other group leads to antinatriuresis
(ie, decreased sodium excretion). These 2 groups keep the
sodium balance and ultimately blood pressure within the
normal range. Renal dopamine and angiotensin II (Ang II), via
dopamine receptors or AT1 receptor, are examples of
members of these 2 opposing groups. Thus, in general,
activation of renal dopamine receptors leads to diuresis and
natriuresis, whereas activation of renal AT1 receptors
leads to antidiuresis and antinatriuresis. In several hyper-
tensive states, dopamine receptor–induced natriuresis is
decreased and AT1 receptor-mediated antinatriuresis is
augmented, which consequently lead to sodium retention
and hypertension.12,19–23,26,27

Salt Sensing and Absorption in the GI Tract
Salt sensing is a complex physiological response. The
objective of salt sensing is to keep the sodium balance in
the normal range. Indeed, salt sensing occurs in many organs
of the body, including the GI tract, from the tongue, stomach,
and small and large intestines.28–33 As aforementioned, the GI
tract is the first organ exposed to ingested sodium. In the salt-
depleted state, sensing the need for sodium in the tongue and
stomach would lead the person to ingest more salt,34 and in
the addition, make the GI tract secrete hormones that
increase absorption/reabsorption of sodium in different
organs in the body, including the kidney. The converse occurs
in the salt-replete state; less salt is ingested and the GI tract
triggers the mechanisms to induce natriuresis and diuresis.
Sodium given orally is excreted more rapidly than that
administered intravenously in many but not all studies.9,10,35–
38 The negative studies should not be taken to dispute the
presence of a “gastro-renal reflex” because there are sodium
sensors outside the GI tract and kidney (eg, vascular smooth
muscles) that “instruct” the kidney to decrease sodium
transport.39 These mechanisms include the recruitment of
aversive taste pathways by activating the sour- and bitter-
taste-sensing cells, and taste receptors in the kidney.40–42

Therefore, the targeting of sodium sensors in different parts of

the body, including those in the GI tract, may represent new
targets for antihypertensive therapy.

Salt Sensing in the Oral Cavity Controls Salt
Intake
The oral cavity is the first organ in the GI tract to be exposed
to food and nutrients. The taste system is a chemical
detection system in the oral cavity, where tastants act as cues
for salty, sweet, umami, bitter, and sour tastes on taste buds;
a sixth taste (lipid) has also been proposed.43 A single taste
bud contains 50 to 100 taste cells that detect sugars, amino
acids, poisons, acids, and minerals. Taste receptors have been
identified as ion channels (for salt or sour detection) or G-
protein coupled receptors, which are responsive to bitter,
sweet, or umami.44 Interestingly, different from the other 4
tastes, salty taste is unique in that increasing salt concen-
tration fundamentally transforms an innately appetitive stim-
ulus into a powerfully aversive one. This appetitive-aversive
balance helps to maintain appropriate salt consumption.40

Salt (sodium) can also be sensed by taste receptors, via
amiloride-sensitive and -insensitive pathways. Low concen-
trations (attractive) of NaCl (<100 mmol/L) stimulate the
attractive salt taste pathway that is selective for sodium and
blocked by amiloride.40,45,46 High concentration (aversive) of
NaCl (>150 mmol/L) is nonselective for sodium and is
amiloride insensitive.45,47 Mice lacking ENaCa selectively in
taste receptor cells exhibit a complete loss of salt attraction
and sodium taste responses, without affecting taste for sour,
bitter, sweet, and umami or the aversive salt pathway.45

However, high salt in food also recruits the 2 primary aversive
taste pathways, ie, sour and bitter, which may have evolved to
ensure that high levels of salt reliably trigger robust behavioral
rejection, thus preventing its potentially detrimental effect,40

including hypertension. By contrast, the amiloride-insensitive
mechanism, which predominates in circumvallate and foli-
ate taste buds, is involved with a variant of the nonselec-
tive cation channel TRPV1 and other salt transduction
mechanisms.47

The amiloride-sensitive salt taste response is regulated by
hormones and humoral factors,48,49 including Ang II, aldos-
terone, ghrelin, and insulin.50,51 Ang II and aldosterone, which
are stimulated in states of sodium deficit and are important in
the maintenance of a positive sodium balance, also affect salt
appetite. The AT1 receptor and ENaC have been shown to
colocalize in a subset of mouse taste bud cells.50 Whether or
not the mineralocorticoid receptor also colocalizes with ENaC
in this subset of mouse taste buds has not been shown, but
aldosterone has been reported to increase the expression of b
and cENaC and ENaC activity in these cells.51 Shigemura et al
suggested that Ang II may increase sodium intake by reducing
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amiloride-sensitive taste response that is subsequently sup-
pressed by aldosterone via enhancement of the amiloride-
sensitive taste response.50

The taste of salt may be altered in hypertension. Some
hypertensive patients have higher salt taste sensitivity
threshold than normotensives subjects.52–54 A similar phe-
nomenon may be found in some hypertensive animals. Thus,
compared with WKY rats, SHRs have a greater preference for
saline and this preference for saline is not related to the
existing blood pressure.55,56 However, Dahl-salt sensitive
rats have lower salt intake than Dahl-salt resistant rats.57

Salt sensitivity of blood pressure also does not correlate
with salt appetite in mice.58 Interestingly, taste sensitivity is
decreased in smokers.46 Impaired taste of salt has been
reported to be associated with hypertension in Japanese
women; there is a higher prevalence of hypertension in
Japanese men married to Japanese women with impaired
taste of salt.59

GI Tract and Sodium Absorption
The GI tract is responsible for the digestion and absorption of
ingested food and nutrients. Another essential function of the
GI tract is the coordinated regulation of the secretion and
absorption of electrolytes, minerals, and fluids. In healthy
adult humans, the GI tract is filled with secreted fluid
amounting to 8 to 10 L per day with an additional 1.5 to 2 L
per day from ingested food. Most of the electrolytes and fluids
are absorbed by the small (�95%) and large (�4%) intestines.
The intestinal absorption of fluid by GI epithelial cells occurs
via active transport of Na+ and Cl�60,61; NaCl absorption
occurs from the small intestine to the distal colon. Healthy
adult humans ingest about 250 to 300 mmol sodium per day.
However, there is less than 4 mmol sodium in the excrement,
suggesting that almost all of NaCl is absorbed in the GI tract.
Apparently, there is no difference in sodium absorption
between hypertensive patients and healthy controls and Dahl
salt-sensitive and salt-resistant rats.62 Thus, an augmented
ability of the intestines to absorb sodium does not participate
in the pathogenesis of most cases of hypertension. However,
dietary fructose increases sodium absorption by the intes-
tines.63 Increased intestinal sodium absorption is associated
with increased blood pressure in elderly humans.64 However,
NHE activity is increased in the jejunum and ileum of younger
(6–9 weeks) but not older (12 weeks) spontaneously hyper-
tensive rats.65,66 NHE2, NHE3, and NHE8 are found at the
brush border membrane of the small intestinal epithelium.
Studies in Nhe2�/� and Nhe3�/� mice have demonstrated
that NHE3 accounts for most of the neutral NaCl absorption in
the small intestine.60,67 Inhibition of NHE3 activity only in the
GI tract decreased urinary sodium excretion and increased
stool sodium by similar amounts but to a lesser degree

(�20–50 mmol sodium/day) in humans than in rats.61,68

Angiotensin-converting enzyme inhibition by ramipril plus
intestinal NHE3 inhibition results in an additive blood pres-
sure–lowering effect.68 In the colon, sodium absorption is
mediated by ENaC; a high salt diet decreases the expression of
b and c ENaC.69 These suggest that intestinal NHE3 and ENaC
blockade could be new treatment strategies for hypertension.

Gut-Derived Hormones, Secreted in Response to
Salt Sensors, Modulate Renal Sodium Excretion
The theories and findings underpinning the GI-mediated
natriuretic signaling still remain partially solved or incomplete.
Nevertheless it is now clear that GI-derived hormones and
peptides play important roles in the regulation of renal sodium
transport and blood pressure.10 The GI-derived hormones
could be grouped into 3 classes, namely, GI hormones,
pancreatic hormones, and GI neuropeptides. According to
their ability to affect sodium excretion, we classify these
hormones and neuropeptides into 2 classes; 1 increases and
the other decreases sodium excretion (Table).70–101

In the hypertensive state, GI hormone plasma levels are
altered. For example, the basal plasma levels of amylin,102

glucagon,103 and insulin104 are higher, but circulating ghrelin
is lower in hypertensive than normotensive humans.105 We
have reported that plasma glucose and insulin levels are not
different between salt-resistant and salt-sensitive hyperten-
sive humans. However, oral glucose administration increases
plasma insulin levels to a greater extent in salt-sensitive than
salt-resistant subjects.106 The fasting serum gastrin levels are
similar in normotensive and hypertensive adult humans, but a
mixed meal increased plasma gastrin to greater levels in
hypertensive patients than normotensive controls.107 We
have suggested that the greater increase in plasma gastrin in
hypertensive than normotensive subjects may be a compen-
satory response to the impaired natriuretic effect of gastrin, if
the studies in the SHRs could be translated to hypertensive
humans. In addition, antihypertensive medications also alter
circulating GI hormone concentrations.102,108 It is still
unknown what mechanisms produce different GI hormone
levels between normotensive and hypertensive status. How-
ever, recent studies showed that the inherent differences in
gut architecture between WKY rats and SHRs may lead to
changes of gut hormones. SHR proximal colon has a mean
steady-state modulus almost 3 times greater than WKY rat
colon, which is associated with an increase in the vascular
smooth muscle cells layer and collagen deposition in the
intestinal wall in SHRs.109 Moreover, the increase in blood
pressure in SHRs is also associated with gut pathology such
as increasing intestinal permeability and decreasing tight
junction proteins.110 These phenomena that cause stiffening
in relation to changes of gut hormones and hypertension is
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unknown. However, these changes in gut pathology in
hypertension are associated with alterations of gut micro-
biota,110 which has been reported to play an important role in
the regulation of gut or renal hormones/peptides (vide infra).

In the kidney, there are also differences of GI hormone
levels and their receptor expression and function between the
hypertensive and normotensive state. For example, renal
amylin receptor expression is increased111 but renal gluca-
gon-like peptide-1 (GLP-1) receptor (GLP-1R) expression is
decreased in SHRs and hypertensive patients.112 The renal
expression of insulin receptors is not different between WKY
and SHRs, but a high-salt diet decreases insulin receptor
expression in WKY but not SHRs.113 Of note is that insulin-
resistant rats have decreased renal insulin expression.114 We
have reported that there is no difference of cell surface
membrane expression of gastrin receptor, also called chole-
cystokinin (CCK) B receptor (CCKBR), in RPT cells between
WKY rats and SHRs. However, the infusion of gastrin induces
a natriuresis and diuresis in WKY rats but not in SHRs.11

Gastrin inhibits Na+-K+-ATPase activity in RPT cells from WKY
rats but not SHRs.11 However, gastrin-containing cells are
increased in the stomach of SHRs and rats with renovascular
hypertension.115,116

In this report, we only discuss 2 GI hormones, gastrin and
GLP-1, which have received increasing attention because of
their ability to regulate renal sodium handling and blood
pressure, by themselves and in interaction with other
hormones.

Glucagon-Like Peptide-1
GLP-1 is secreted by intestinal L-cells. Under normal condi-
tions, GLP-1 is rapidly degraded at the N-terminal penultimate
position by dipeptidyl peptidase-4. There is no difference in
circulating levels of GLP-1 between young (5-week-old) WKY
and SHRs. However, there is a nonsignificant trend towards a
decrease in plasma levels of total GLP-1 in adult (20-week-old)
SHRs compared to adult WKY rats, which may be because of
the higher plasma level and activity of dipeptidyl peptidase-4
in SHRs than age-matched WKY rats.117 The actions of GLP-1
are primarily mediated by its receptor GLP-1R, which is widely
distributed throughout the body, including the kidney. GLP-1R
is expressed in the brush border of RPT. In rodents, GLP-1R
stimulation suppresses RPT sodium transport, resulting in a
natriuresis,88 which is also aided by GLP-mediated increase in
glomerular filtration rate in rodents. GLP-1R is constitutively
active because the intravenous administration of exendin-9, a
GLP-1R antagonist, decreased glomerular filtration rate,
lithium clearance, urine flow, and sodium excretion in male
Wistar rats. The inhibition of RPT sodium transport by GLP-1 is
caused by inhibition of NHE3 activity via a protein kinase A–
dependent mechanism.88 GLP-1R expression is decreased in

renal arteries of SHRs and hypertensive patients.112 GLP-1R
antagonist exendin 9 to 39 inhibits GLP-1R-mediated relax-
ation in WKY arteries, whereas the relaxations are significantly
less in SHR arteries.112 GLP-1 has antihypertensive effects
that may be related to both an increase in sodium excretion
and vasodilatory effect in rodents.118

In humans, as in rodents, GLP-1 induces natriuresis in
healthy subjects and in insulin-resistant obese men.119,120

GLP-1-mediated natriuresis in humans is related to inhibition of
renal proximal sodium transport.119 However, in contrast to
rodents, the natriuretic effect of GLP-1 is not associated with an
increase in renal plasma flow or glomerular filtration rate.119,120

The natriuretic effect of GLP-1 in humans is also associatedwith
a decrease in plasma Ang II but not plasma renin, aldosterone,
or urinary excretion of angiotensinogen.119 The natriuretic and
antihypertensive effect of exendin-4, a GLP-1 agonist, is also
related to a decrease in renal Ang II concentration in salt-
sensitive obese db/db mice.121 Exendin-4 also prevents Ang II-
induced hypertension in nondiabetic mice.121 A synergism
between GLP-1 and atrial natriuretic peptide is found in rodents
but not in humans.122 In a 24-week, double-blind, placebo-
controlled, parallel-group study at 23 centers, exenatide, a GLP-
1 agonist, reduced systolic and diastolic blood pressure.123

Similar results were found with ambulatory blood pressure.124

A meta-analysis of clinical trials including 16 randomized
controlled trials that enrolled 3443 patients showed that
treatment with the GLP-1R agonist reduced systolic and
diastolic blood pressure in patients with type 2 diabetes.125

Another meta-analysis also showed a beneficial effect of GLP-
1R agonists on major cardiovascular events.126

The above studies would suggest that GLP-1 would have an
antihypertensive action. Indeed, in humans and mice GLP-1
has antihypertensive effects.124,127,128 However, several
studies in rats have reported that GLP-1 injection increases
blood pressure in a short time.129,130 The reason may be
associated with the fact that GLP-1 also acutely increases
heart rate and cardiac output, and activates autonomic
regulatory neurons.129,131 Plasma levels of GLP-1 have been
associated with systolic and diastolic blood pressure in awake
and sleeping healthy human subjects.132 The positive corre-
lation between plasma GLP-1 and blood pressure was not
related to blood glucose or insulin but could be related to
insulin resistance.

Decreased GLP-1 and renal GLP-1R expression may be
involved in the pathogenesis of hypertension. As stated
above, renal arteries from SHRs and humans with essential
hypertension have decreased GLP-1Rs, and GLP-1-mediated
renal arterial vasorelaxation is impaired in SHRs.112 In rats,
serum level of GLP-1, as well as renal GLP-1R expression, is
decreased in N(G)-nitro-L-arginine methyl ester (L-NAME)-
induced hypertension, relative to controls.133 Sitagliptin, a
dipeptidyl peptidase-4 inhibitor, protects against L-NAME-
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induced hypertensive nephropathy by increasing the serum
level of GLP-1 and upregulation of GLP-1 receptors.133

CCK and Gastrin
Gastrin is mostly synthetized in the G cells in the mucosa of
the gastric antrum. Small amounts are produced in the
mucosa of the jejunum and outside the GI tract, such as a few
cerebral and peripheral neurons, pituitary gland, and sperma-
tocytes.134–136 CCK, unlike gastrin, is synthesized by I cells in
the upper intestine, but share the same receptors, CCK
receptor type A (CCKAR) and CCKBR. CCKAR is characterized
by a high affinity for CCK and by a low affinity for gastrin; in
contrast, CCKBR has a similar affinity for both peptide
hormones. Because plasma gastrin levels are much higher
than CCK, CCKBR is also considered a gastrin receptor.137

The CCKBR is expressed in specific nephron segments,
including the proximal tubule, distal tubules, and collecting
ducts.74,138 We have reported that CCKBR mRNA but not
CCKAR is expressed in human RPT cells.75 In the isolated
perfused rat kidney, it is the CCKBR, not CCKAR, that
mediates the increase in sodium and decrease in potassium
excretion caused by the infusion of gastrin-17.74

Both CCK and gastrin induce natriuresis and diure-
sis.11,74,79,134 CCK may not increase glomerular filtration
rate79 but can increase renal blood flow that is blunted in
obese-prone and hypertensive rats.139 Although both CCK and
gastrin exert similar effects in kidney, circulating gastrin levels
are 10- to 20-fold higher than CCK.140 Circulating CCK levels
are not or transiently increased by gastric distention or
duodenal saline infusion.141 Moreover, CCK in the circulation
is rapidly degraded by aminopeptidases.142 Of all the gut
hormones, gastrin is the one that is taken up to the greatest
extent by RPTs.143 Food (with Na+) increases serum gastrin
levels, and Na+ given orally, even without food, also increases
serum gastrin levels.144 Therefore, gastrin may be a better
candidate than CCK as the effector of the gastro-renal reflex,
at least regarding sodium balance.

The importance of gastrin in the regulation of sodium
excretion and blood pressure is also supported by the gastrin
(Gast) gene-deficient mice (Gast�/�). Gast�/� mice do not
increase their sodium excretion after ingestion of sodium and
develop salt-sensitive hypertension.145 We and others have
reported the diuretic and natriuretic effects of gastrin in both
rats and humans.11,74,134,146 This may be related to the ability
of gastrin to inhibit Na+-K+-ATPase and NHE3 activities in RPT
cells.11,75,147 Moreover, the inhibition of renal sodium trans-
port by gastrin may be tissue specific because gastrin
increases H+-K+-ATPase activity in gastric parietal cells.148

Our studies also showed that the diuretic and natriuretic
effects of gastrin, as well as its inhibitory effect on Na+-K+-
ATPase activity, are lost in SHRs, suggesting that aberrant

regulation of gastrin on the natriuresis may have a role in the
pathogenesis of hypertension.11,149 The fasting serum gastrin
levels are similar in normotensive and hypertensive adults;
however, the increase of serum gastrin levels is higher in the
latter group than in the former group after a mixed meal.107

Effects of Bariatric Surgery on the Secretion of
GI-Derived Hormones and Blood Pressure
Bariatric surgery may affect the secretion of gut-derived
hormones and blood pressure. Different surgical methods
may have different effects on the secretion of the same GI
hormone. For example, fasting plasma gastrin levels are
normal in laparoscopic gastric bypass surgery,150 while sleeve
gastrectomy results in increased fasting plasma gastrin
levels.151 The postprandial gastrin secretion induced by a
mixed meal is also enhanced by sleeve gastrectomy.152 By
contrast, procedures that reroute the nutrient passage to the
intestines, bypassing the gastric antrum, such as Roux-en-Y
gastric bypass (RYGB), prevent the increase in plasma gastrin
following a mixed meal.152–154

Depending on the subjects or postoperative time, bariatric
surgery has different effects on the GI hormone responses.
The first 2 weeks after RYGB in obese nondiabetic subjects,
fasting plasma levels of insulin, ghrelin, and peptide YY (PYY)
are decreased, but insulin sensitivity increased.153 The post-
prandial response to a mixed meal is increased for C-peptide,
GLP-1, GLP-2, PYY, CCK, and glucagon; by contrast, the
postprandial response was decreased for ghrelin, leptin, and
gastrin and unchanged for glucose-dependent insulinotropic
polypeptide, amylin, pancreatic polypeptide, and somato-
statin.153 In obese patients with type 2 diabetes, 15 days
after RYGB, fasting plasma levels of pancreatic polypeptide,
glucagon, and GLP-1 are increased; but the pancreatic
polypeptide response to a mixed meal is decreased while that
of glucagon and GLP-1 remains increased.155 After 1 year in
these same patients, PYY response to a mixed meal is
increased, while amylin, ghrelin, and GLP-1 are decreased.155

The same study also found that the hormonal responses after
sleeve gastrectomy are similar to those with RYGB except that
fasting and meal-induced plasma pancreatic polypeptide levels
remain increased but unchanged for amylin.155

Both long-term and short-term studies have shown that the
blood pressures are decreased in adults and adolescents who
underwent bariatric surgery, such as RYGB and sleeve
gastrectomy.156–158 Compared with RYGB, sleeve gastrec-
tomy is associated with better early remission rates for
hypertension and improvement in insulin sensitivity.159,160

This may be related to the ability of bariatric surgery to
increase the plasma levels of natriuretic enterokines such as
GLP-1,155,160,161 which is natriuretic.88,118,119 In a study of 33
patients that lasted for 14 to 41 months after RYGB, 11 had
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increased sodium excretion while 22 had decreased sodium
excretion that was related to “excess weight loss” and could
also have been related to decreased sodium intake.162,163

Rats that are undergoing RYGB surgery also have increased
sodium excretion following oral salt loading.164 The decrease
in glomerular filtration from high values with bariatric surgery
could also be considered a beneficial rate.165,166

Interaction Between GI and Renal Hormones
in the Regulation of Blood Pressure
Depending on the state of sodium balance, an oral NaCl load
may induce a greater natriuresis and diuresis than an
intravenous infusion of the same amount of NaCl in some
but not all studies.35–38 As stated above, the negative studies
should not be taken to dispute the presence of a “gastro-renal
axis” because there are sodium and chloride sensors167

outside the GI tract and kidney (eg, vascular smooth muscles,
heart, and nervous system) that “instruct” the kidney to
decrease sodium transport.29,168,169

Interaction Between GI Hormones and Renal
Dopamine
Dopamine, a neurotransmitter in neural tissue, also acts as an
autocrine/paracrine substance in nonneural tissues including
the kidney. Dopamine, produced locally in the kidney, is now
recognized to serve an important role in the regulation of
blood pressure and sodium balance by direct actions on renal
and intestinal epithelial ion transport, interaction with other
receptors, and modulation of the secretion of hormonal/
humoral agents.26,170–174 Dopamine receptors are classified
into D1- and D2-like receptor subtypes: D1-like receptors (D1R
and D5R) couple to stimulatory G protein GaS and stimulate
adenylyl cyclase activity, whereas D2-like receptors (D2R, D3R,
and D4R) couple to inhibitory G protein Gai/Gao and inhibit
adenylyl cyclase activity. These receptors can also couple to
other G protein subunits, including Gq and Golf.175–177 All of
the 5 dopamine receptor subtypes are expressed in the
nephron. Disruption of any of the dopamine receptor genes in
mice results in hypertension, the pathogenesis of which is
specific for each receptor subtype.173 In hypertensive states,
dopamine receptor–mediated natriuresis and diuresis are
impaired. The dopaminergic effect on renal water and sodium
transport is modulated by interaction with GI hormones (vide
infra).

CCK/Gastrin and Dopamine Interaction
Gastrin is the major GI hormone taken up by RPT cells.143

Disruption of gastrin receptor (CCKBR) in mice caused

hypertension and decreased sodium excretion.178 We tested
the hypothesis that gastrin may interact with renal dopamine
receptors to increase sodium excretion, an impairment of
which may result in hypertension.11,178 We found that gastrin
synergistically interacts with renal D1-like receptors to
increase water and sodium excretions in normotensive WKY
rats, effects that were not observed in SHRs. The interaction
between gastrin and dopamine in the kidney occurred at the
receptor level because blockade of D1-like or CCKBR
abolished the natriuresis and diuresis caused by gastrin or
D1-like receptor agonist fenoldopam, in WKY rats and BALB/c
mice.11,178 The gastrin/D1-like receptor interaction was
confirmed in RPT cells. In RPT cells from WKY but not SHRs,
stimulation of either D1-like receptor or CCKBR inhibited Na+-
K+-ATPase activity, an effect that was blocked by D1-like
receptor or CCKBR antagonist.11 We also found that CCKBR
colocalized and coimmunoprecipitated with D1R or D5R in RPT
cells, which was increased after stimulation of either D1-like
receptor agonist or gastrin.11,178 Moreover, stimulation of 1
receptor increased the RPT cell membrane expression of the
other receptor, effects that were not observed in SHRs.11 The
natriuresis induced by a high sodium diet can also be blocked
by D1-like receptor agonist or CCKBR antagonist.178 These
data suggest that there is a synergism between CCKBR and
D1R or D5R to increase sodium excretion. An aberrant
interaction between the renal CCKBR and both D1-like
receptors may play a role in the pathogenesis of hypertension.

Insulin and Renal Dopamine Interaction
Insulin is secreted from pancreatic b cells, and exerts its
physiological functions via its receptors. Insulin receptors are
widely distributed in the kidney and affect multiple aspects of
renal function. Besides its action on glucose metabolism,
insulin acts on almost all of the nephron segments and has
been associated with anti-natriuresis at the whole-animal
level, sodium retention in isolated, perfused tubule studies,
and sodium uptake in cell culture.179–181 In kidney, insulin
stimulates sodium and volume absorption by directly stimu-
lating some specific sodium transporters, exchangers, and
channels in renal tubule segments.179–181 Compensatory
hyperinsulinemia in individuals with insulin resistance
enhances salt absorption in the RPT, resulting in a state of
salt overload and hypertension. On the other hand, a high
sodium diet causes an increase in insulin resistance.182

Insulin and dopamine have counterregulatory effects on
renal sodium transport. Insulin interacts with dopaminergic
system at 2 different levels in the kidney. First, insulin
positively regulates the uptake of L-dihydroxyphenylalanine,
the immediate precursor of catecholamines, including dopa-
mine, through the increase in the number of high-affinity
transport sites in the RPT.183 Second, insulin impairs
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dopamine receptor expression and function in the kidney.
Studies in both RPTs from hyperinsulinemic animals and renal
cell cultures treated with insulin show reduced D1R number,
defective receptor-G protein coupling, and blunted D1-like
agonist-induced Na+-K+-ATPase inhibition.184,185 Moreover,
insulin resistance leads to hyperphosphorylation of D1R and
their uncoupling from Gs proteins in obese Zucker rats, which
can be restored by an insulin sensitizer, rosiglitazone.186 It is
possible that the insulin-mediated increase in RPT cell uptake
of L-dihydroxyphenylalanine could be a compensatory mech-
anism for the insulin-mediated blunting of D1R function.

In addition to the interaction between insulin and D1R,
insulin also interacts with D5R and D2R. Insulin increases D5R
expression and its mediated inhibition of Na+-K+-ATPase
activity in RPT cells, which may be an important counterbal-
ance to the increase in renal tubular sodium reabsorption
induced by insulin. However, the compensatory increase in
D5R expression following insulin treatment is lost in RPT cells
from SHRs.187 Dopamine also regulates insulin receptor
expression and function. Thus, the D1-like receptor agonist
fenoldopam increases the expression of insulin receptor in
human RPT cells. Moreover, D1R interacts with sorting nexin 5
to increase the sensitivity to insulin via a positive regulation of
insulin receptor expression and insulin signaling.188 Addition-
ally, activation of D2R also regulates insulin secretion. Acute
administration of a D2-like receptor agonist quinpirole or an
agonist bromocriptine inhibits glucose-stimulated insulin
secretion by a D2R-dependent or -independent mecha-
nism.189,190 Disruption of the D2R in mice also shows the
impaired insulin secretion and glucose intolerance.191

Interaction Between GI Hormones and the RAS
It is well known that the RAS plays a key role in the
development and maintenance of hypertension.192,193 The
classical view of the products of the RAS as a circulating
hormone has evolved to organ-based systems that perform
paracrine/autocrine functions. Local RAS exists in different
organs including the kidney. Ang II is classically considered
the main mediator of the RAS. The renal tubules and
interstitial compartments contain much higher levels of Ang
II than plasma.194 The majority of intrarenally produced Ang II
functions as a paracrine hormone. AT1R mediates the vast
majority of renal actions of Ang II, including renal tubular
sodium transport.27 The RAS is broadly activated in hyper-
tensive status, including increased angiotensin-converting
enzyme activity and Ang II levels in plasma, and enhanced
renal AT1R expression and intrarenally generated Ang II.195,196

The counteraction of some endogenous factors may be novel
therapies to combat RAS-dependent hypertension. There are
increasing evidences of interactions between intrarenal RAS
and the GI-derived hormones in the kidney.

GLP-1 and the RAS
GLP-1 can interact with the RAS.119,121,122 GLP-1R agonists
counteract the hypertensive action of Ang II. Rodent studies
have shown that GLP-1R stimulation ameliorates Ang II-
induced hypertension.121,122 Exendin-4, a GLP-1R agonist,
attenuated Ang II-induced high-salt sensitivity and minimized
the increase in blood pressure caused by Ang II infusion.121

Another GLP-1R agonist, liraglutide, also normalized both
systolic and diastolic blood pressure in mice with Ang II-
induced hypertension.122 Exendin-4 was also reported to
decrease the Ang II-induced ERK1/2 phosphorylation in
opossum RPT cells.121

There is also evidence of a renal beneficial role of the
combination of GLP-1R agonists with inhibitors of the RAS
components, such as angiotensin-converting enzyme inhibi-
tors and Ang II receptor blockers. An exenatide analog,
AC3174, lowered blood pressure in Dahl salt-sensitive rats
fed a high-salt diet. Moreover, the ability of AC3174 to
attenuate renal damage was enhanced by captopril, an
angiotensin-converting enzyme inhibitor, in these Dahl salt-
sensitive rats that were fed a high salt diet.197 The
combination of an Ang II receptor blocker (telmisartan) and
a dipeptidyl peptidase-4 inhibitor (linagliptin) reduced urinary
albumin excretion and renal oxidative stress in diabetic
endothelial nitric oxide synthase knockout mice, indicating
that linagliptin in addition to an Ang II receptor blocker may be
a new therapeutic approach for patients with diabetic
nephropathy.198

A randomized, double-blinded, single-day, crossover trial
showed that the infusion of GLP-1 in healthy young males
decreased Ang II but not plasma renin or aldosterone levels or
urinary excretion of angiotensinogen.119 However, the intra-
venous administration of GLP-1 increased aldosterone secre-
tion in rats.199

The Role of Gut Microbiota in the Regulation of
Gastro-Renal Axis and Blood Pressure
In recent years, an increasing number of studies have focused
on the association between gut microbiota and cardiovascular
diseases, including hypertension. There is a significant
decrease in gut microbial richness, diversity, and evenness
in addition to an increase in the Firmicutes/Bacteroidetes
ratio in the SHRs and a small cohort of human hypertension
patients.200 The oral administration of minocycline attenuates
high blood pressure, and rebalances the dysbiosis of gut
microbiota in the Ang II infusion hypertension model by
reducing the Firmicutes/Bacteroidetes ratio.200 Similar dif-
ferences of gut microbiotal genomic composition have been
found between the Dahl salt-sensitive and Dahl salt-resistant
rats.201 High blood pressure is induced in WKY rats after
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exchanging the gut microbiota between the WKY rats and
SHRs.202 Gut microbial metabolites, such as short-chain fatty
acids (SCFAs), were found to influence host physiological
functions including blood pressure.203 SCFAs influence blood
pressure via activating sensory receptors such as olfactory
receptor 78 (Olfr78), GPR41, and GPR43.203,204 Olfr78 is
expressed well in the renal juxtaglomerular apparatus, where
activation of Olfr78 induces renin secretion. Treatment with
antibiotics reduces the biomass of the gut microbiota and
elevates blood pressure in Olfr78 knockout mice.205 These
studies indicate the role of gut microbiota in the pathophys-
iology of hypertension.

Although the mechanisms of gut microbiota on regulation
of blood pressure are complex, effects on gut or renal
hormones/peptide synthesis or release might be involved.
The gut microbiota, via various metabolites such as SCFA, can
influence the number and function of enterochromaffin cells,
thereby promoting the release of serotonin that in turn
impacts host physiological functions.206 It is reported that gut
microbiota affect the generation of free dopamine and
norepinephrine in the gut lumen.207 The levels of dopamine
and norepinephrine in the lumen of the cecum are higher in
control mice than the germ-free mice.207 The absence of the
gut microbiota has been reported to exacerbate the neuroen-
docrine and behavioral responses to acute stress and
decreased dopamine turnover in the frontal cortex, hippocam-
pus, and striatum in response to acute stress in F344 rats.208

However, in BALB/c mice, administration of oral antimicro-
bials increases exploratory behavior that is independent of

changes in levels of GI neurotransmitters such as serotonin,
dopamine, and norepinephrine.209 In addition, SCFAs, via
activation of Olfr78, induce renin release from the afferent
arteriole and increase blood pressure, which is confirmed in
Olfr78-deficient mice displaying lower renin concentrations,
and decreased blood pressure.205 Resistant starch is fer-
mented to SCFAs by microflora in the large intestine. High-
amylose resistant starch is associated with increased gene
expression of proglucagon (gene for GLP-1) and PYY in the
cecal and large intestine, and increased plasma levels of PYY
and GLP-1, which play important roles in the regulation of
blood pressure.210 Dietary factors such as high fiber diet, and
acetate supplementation change the gut microbiota, down-
regulate renal RAS, and prevent the development of hyper-
tension in desoxycorticosterone acetate–salt hypertensive
mice.211 These indicate that targeting the gut microbiota may
be a potential and novel strategy for the regulation of gastro-
renal axis and treatment of hypertension.

Conclusions and Perspectives
In summary, increasing evidences support the concept of a
gastro-renal communication in the excretion of a sodium load.
Enterokines are released from the intestine into the circula-
tion in response to sodium intake that interacts with
dopamine receptors in the kidney to regulate sodium
excretion and keep the blood pressure in the normal range
(Figure). The aberrant gastro-renal natriuretic signaling axis
may be involved in the pathogenesis of hypertension.

GLP-1

GLP-1R

Inhibition of  
NHE3 in kidney

Interactions with 
renal RAS

Ameliorates Ang II-induced high-
salt sensitivity and  hypertension;
Decreases plasma Ang II;
Combined  renal beneficial effects 
with ARB/ACEI, including 
reducing urinary albumin 
excretion and renal oxidative stress

Anti-natriuresis

Gastrin

CCKBR

Inhibition of  NKA 
and NHE3 in kidney

Interactions with renal 
dopamine

Increases D1R/D5R 
expressions;
Synergistically inhibits 
NKA activity and 
increases water and 
sodium excretions

Insulin

IR

Stimulation of  NKA 
and NHE3 in kidney

Impairs D1R expression 
and its mediated-
inhibition of NKA activity;
Increases D5R expression;
Enhances L-DOPA uptake 
in RPT cells 
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Figure. Schematic representation of the interaction of gut-derived hormones with renal hormones/peptides in the regulation of natriuresis and
blood pressure. ACEI indicates angiotensin converting enzyme inhibitor; Ang II, angiotensin II; ARB, angiotensin II receptor blocker; CCKBR,
cholecystokinin A receptor; D1R, dopamine D1 receptor; D5R, dopamine D5 receptor; GLP-1, glucagon-like peptide-1; GLP-1R, glucagon-like
peptide-1 receptor; IR, insulin receptor; L-DOPA, L-dihydroxyphenylalanine; NHE3, Na+-H+ exchanger 3; NKA, Na+-K+-ATPase; RAS, renin–
angiotensin system; RPT, renal proximal tubule.
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Increased understanding of the role of the gastro-renal axis in
the regulation of renal function may give us a novel insight
into the pathogenesis of hypertension and provide a new
treatment strategy for hypertension.
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