
 

Corresponding author: Tomonobu M. Watanabe, Department of Stem Cell Biology, Research Institute for Radiation 
Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan. ORCID iD: 
https://orcid.org/0000-0002-2420-4230, e-mail: twatanabe@hiroshima-u.ac.jp 
 

Biophysics and Physicobiology 
https://www.jstage.jst.go.jp/browse/biophysico/ 

Special Issue: Singularity Biology and Beyond 

Regular Articles (Invited) 

Yuragi biomarker concept for evaluating human induced pluripotent 
stem cells using heterogeneity-based Raman finger-printing 

Hideaki Fujita1, Takayuki Haruki3, Kazuhiro Sudo4, Yumiko Koga4, Yukio Nakamura4, 
Kuniya Abe4, Yasuhiko Yoshida5, Keiichi Koizumi6, Tomonobu M Watanabe1,2  

1 Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 
Hiroshima 734-8553, Japan 
2 Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 
650-0047, Japan 
3 Faculty of Sustainable Design, Academic Assembly, University of Toyama, Toyama 930-8555, Japan 
4 Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, 
Tsukuba, Ibaragi 305-0074, Japan 
5 Department of Intellectual Information Engineering, Graduate School of Science and Engineering, University of 
Toyama, Toyama 930-8555, Japan 
6 Laboratory of Drug Discovery and Development for Pre-disease, Division of Presymptomatic Disease, Department of 
Re-search and Development and Department of Academia-Industry-Government Collaboration, Institute of Natural 
Medicine, University of Toyama, Toyama 930-0194, Japan 
 
Received December 21, 2023; Accepted March 21, 2024; 
Released online in J-STAGE as advance publication March 22, 2024 
Edited by Hiroko Bannai 
 

Considering the fundamental mechanism causing singularity phenomena, we performed the following 
abduction: Assuming that a multicellular system is driven by spontaneous fluctuation of each cell and dynamic 
interaction of the cells, state transition of the system would be experimentally predictable from cellular 
heterogeneity. This study evaluates the abductive hypothesis by  analyzing cellular heterogeneity to distinguish 
pre-state of state transition of differentiating cells with Raman spectroscopy and human induced pluripotent stem 
cells (hiPSCs) technique. Herein, we investigated the time development of cellular heterogeneity in Raman spectra 
during cardiomyogenesis of six hiPSC lines and tested two types of analyses for heterogeneity. As expected, some 
spectral peaks, possibly attributed to glycogen, correctively exhibited higher heterogeneity, prior to intensity 
changes of the spectrum in the both analyses in the all cell-lines tested. The combination of spectral data and 
heterogeneity-based analysis will be an approach to the arrival of biology that uses not only signal intensity but 
also heterogeneity as a biological index. 
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This study experimentally proved that cellular heterogeneity in Raman spectrum enables to detect the pre-state 
transition of hiPSCs faster than its signal intensity changes. To achieve this, a Raman spectral method with small 
experimental deviations was newly developed. Cellular heterogeneity of Raman peaks attributed glycogen, showed 
significant increase at the 2nd day after induction of cardiomyogenesis, which is significantly earlier than intensity 
changes at the 4th day.  In addition, there are peaks that exhibited a common change in heterogeneity between cell 
lines. The results provide the concept of heterogeneity-based markers to biophysics. 
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Introduction 
 
Singularity phenomenon in a multicellular system is caused by avalanche of cell-cell interaction triggered by sudden 

state transition of a single cell, here called singularity cell. A basic mechanism at work here is that interactions between 
individual cells form a field that influences the cells. This has been discussed in the bioholonics theory proposed in the 
1980s, which states that life phenomena are autonomous cooperative systems whose constituent elements are “holons”, 
which are relationships between individuals and fields, regardless of layer [1]. The driving force of state transition of cell 
in a biological system is spontaneous fluctuation, often called Yuragi [2,3], which has been experimentally confirmed in 
muscle contraction, signal transduction in a cell, and recognition by brain [4]. We previously found that, although ESCs 
does not have any oscillators or circadian rhythm, it exhibits a collective differentiation only with state transition driven 
by fluctuation and slaving by cell-cell interaction: the cell-cell interaction plays a role in maintaining cells in a stable state 
by mutually restricting spontaneous fluctuations with neighboring cells, and appearance-disappearance of cell-cell 
interactions causes collective state transition of cells in a colony [5]. We think that the mechanism for cells to synchronize 
in a multicellular system by collaboration of the fluctuation and the cell-cell interaction is the bottom foundation of 
Singularity phenomenon.  

Abductively considering a biological event, cell differentiation in this study, state fluctuation of an individual cell or the 
heterogeneity of the cells should increase prior to a collective differentiation of a cell colony. Cell differentiation can be 
represented by a ball rolling on a sloping surface of ridges and valleys that are dynamically formed by the destruction and 
reconstruction of complicated cross-interplay of elements composing epigenetic, genetic network, etc., as described in 
Waddington's epigenetic landscape [6]. The population distribution of the cell state is larger in the valley, which is called 
an attractor. The cell state stochastically fluctuates even in a stable attractor, and its transition is observed as a stochastic 
switching between different cell states by experimenters [7]. In such a dynamic complex system, the fluctuation of an 
observable/measurable parameter slows down as the switching event approaches, resulting in greater variance, which is 
called critical slowing down [8,9]. According to the above picture, an observable/measurable parameter that exhibits 
increased fluctuation when focusing on time course or an increased cellular heterogeneity when focusing on cell 
population should be present prior to cell state transition, including escape from pluripotency. Many researchers may have 
qualitatively noticed this phenomenon. For example, transcriptome analysis has shown that the expression of certain genes 
was more heterogeneous in mouse embryonic stem cells (ESCs) immediately after losing pluripotency [10]. However, it 
has not yet been quantitatively proven. 

In this study, we demonstrate a quantitative proof of the above-mentioned abductive hypothesis based on a Raman 
fingerprinting technology and human induced pluripotent stem cells (hiPSCs). Even if the hypothesis is true, it is unclear 
what and when will they exhibit fluctuation/heterogeneity. Therefore, measurement and analysis in the proof require 
comprehensiveness. The Raman spectrum emitted from a cell includes many spectral peaks derived from the 
comprehensive chemical status of molecular-bonds vibrations in a cell, and can be predictably linked to transcriptomic 
data [11,12]. So far, we have experimentally demonstrated that the spectral feature in Raman spectroscopy can be used to 
discriminate between cell states, similar to fingerprinting [13–15]. Moreover, even if the proof is achieved with only in 
an experimental model cell, it does not necessarily mean that our proof is universal. It is preferable to prove the hypothesis 
using cells in the same state with different genetic backgrounds. Induced pluripotent cells technology it is suitable for this 
purpose. Some research groups have previously reported on the use of Raman fingerprinting for identifying differentiating 
states of human induced pluripotent stem cells (hiPSCs) [16–20]. Naturally, the time course of differentiation of many 
single cells should be measured using multiple cell line types. Simplicity of observation is another reason for the use of 
Raman spectroscopy due to its unnecessity of any staining procedure. 

Here, we prepared six hiPSC-lines derived from different origins, collected Raman spectra of single-cells during 
cardiomyogenesis of them, and finally found that some of Raman spectra peaks exhibit heterogeneous features just before 
a hiPSC loses pluripotency, meaning the proof of our abductive hypothesis. Experimentally, the cellular heterogeneity 
was quantitated by coefficient of variation (CV) as the index of the degree of Yuragi, and the CV in the specific spectral 
peaks, most likely attributed to glycogen, increased more rapidly than signal intensity changes upon loss of pluripotency, 
meaning that the CV can be used as a biomarker for future cell state transition. Thus, our results demonstrated such 
analysis based on the Yuragi concept can detect state transition of a multicellular system prior to the conventional 
intensity-based analysis. Collective differentiation observed in this study is one of the simplest singularity phenomena. 
We believe that the Yuragi-based analysis promises to be a standard research tool in Singularity biology. 

 
Materials and Methods  
 
Raman Spectroscopy 

We acquired Raman spectra from cells using a home-built line-scan Raman microscope based on inverted microscope 
(IX81: Olympus, Tokyo, Japan) equipped with spectrometer (MK-300: Bunkoukeiki, Tokyo, Japan) and a two- 
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dimensional detector (PIX-IS400, Princeton Instruments, Trenton, 
NJ), as described in the previous reports [13–15]. A 532 nm laser 
(Ventus532: Laser Quantum, Stockport, UK) was used for 
illumination. The laser was shaped into a line with a cylindrical 
lens and directed onto the cells on a glass substrate. The laser 
intensity was 2.4 mW/μm2. The backward-scattering light was 
collected by an objective and captured on a 400×1340 pixels 
detector after being passed through a polychromator. The Raman 
spectrum was acquired over a range of 160 cm-1 to 2200 cm-1 on 
the 1340 pixels (1.52 cm-1/pixel). By scanning the line on an axis 
perpendicular to it, we acquired a hyperspectral image (Figure 
1A). The impact of photodamage due to the strong laser irradiation 
is one of the main factors behind the low-reproducibility of Raman 
spectroscopic measurements. To minimize photodamage, we 
limited the exposure time to 15 s and scanned only 10 steps at 3.35 
μm/step. Total time to acquire a single hyperspectral image was 
only 150 s. Number of cells measured for Raman spectra is 
summarized in Supplementary Table S1. 
 
Cell Culture 

The hiPSC-lines used in the study were purchased from Riken 
Cell Bank (Ibaraki, Japan). Cells were cultured on iMatrix-511 
(Takara Bio, Tokyo, Japan) coated dishes in StemFit AK02N 
medium (Ajinomoto, Tokyo, Japan) at 37°C and 5% CO2. The 
medium was changed daily. For cardiomyocyte differentiation, 
cells were cultured until 70% confluency and induced to 
differentiate using a PSC Cardiomyocyte Differentiation Kit 
(Gibco, Waltham, MA) following the manufacturer’s instructions. For Raman measurements, cells were harvested using 
TrypLE Select (Gibco) and washed with PBS and centrifuged at 150×g for 5 min before being resuspended in FluoroBrite 
DMEM Media (Gibco). 
 
Transcriptomic Analysis 

To analyze the transcriptome of human iPSCs and their differentiated derivatives, SurePrint G3 Human GE microarray 
8×60K Ver.3.0 (Agilent Technologies) was used. The cells were harvested from the same culture dish used for the Raman 
measurement. The RNA was isolated using an RNeasy mini kit (Qiagen, Venlo, Netherlands) and labeled with Cy3-CTP 
using a Low Input Quick Amp Labeling Kit (Agilent Technologies). Microarray hybridization was performed, and the 
hybridized slides were scanned using a microarray scanner (Agilent Technologies) following the supplier’s protocol. The 
fluorescent signals were processed with the Feature Extraction software (Agilent Technologies) and the processed signal 
data were normalized and analyzed using GeneSpring GX software Ver. 14.9 (Agilent Technologies). The microarray 
expression analysis was performed using biologically triplicate samples. 
 
Spectral Analysis 

For spectral analysis, the broad peaks from the glass substrate and auto-fluorescence was subtracted using rolling-circle 
algorithm, as described in supplementary text. For automated identification of spectral peaks, we applied the zero-crossing 
algorism to an averaged spectrum. All processes were performed using a custom-made software programmed in C++ 
(Visual Studio 2008, Microsoft, USA) and image processing was carried out using the OpenCV library (ver. 2.4.3). All 
analyses were performed with blinding information about the data, such as the differentiating days and the cell line, for 
the analyst. The principal component analysis (PCA) was performed using a function in the OpenCV library. Before PCA 
processing, the data were standardized with Z-score normalization. 
 
Dynamic Network Biomarkers (DNB) Analysis 

The procedure for DNB analysis in this study is based on a previous report [21,22]. The first step involved assigning 
each Raman shift to a component of the complex network. Significantly fluctuating components (Raman shifts) were 
identified using the F-test (with a significance level of alpha = 0.05) against Raman intensities of the experimental group 
(each day after differentiation) versus the control group (Day-0) and multiple-test correction was performed using the 
Benjamini-Hochberg method. Next, the Pearson's correlation coefficient (rij) was calculated between the fluctuating 
components with i and j representing different indices of the components. Hierarchical clustering was then performed 

 
 
Figure 1  The present single-cell Raman 
spectroscopy. (A) Explanative cartoon of the 
procedure to acquire hyper spectral image. (B) 
Raman spectra of six cells of 253G1 hiPSC. The 
upper panel is the segmentation results and the 
lower is the spectra. The numbers and colors 
match to the upper and lower. 
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using the average linkage method with for the distance (d) of 
1 - abs(r). A maximum cluster was specified using a distance 
threshold of 0.2 in this study. The average standard deviation 
and average correlation strength of the components in this 
cluster were then analyzed. If both increased and showed a 
peak, it indicated the transition state of the system, and the 
components in this cluster were identified as DNB Raman 
shifts. 
 
Results 
 
Pre-investigation of Reproducibility in the Biological 
Replicate 

The greatest concern in Raman spectroscopy of living cells 
is the potential for cell damage due to intense light exposure, 
as the Raman scattering signal is weak. Exposure to radiation, 
including laser irradiation, can stimulate collagen and 
glycogen production in cells, which may alter the shape of the 
acquired Raman spectra, as shown in previous studies  
[23,24]. Therefore, in this study, a line-confocal Raman 
spectroscopy system was used instead of a point-focus system 
to minimize exposure time and reduce the risk of cell damage 
[13,25]. 

We acquired a hyperspectral Raman image of 400×10 
pixels (corresponding to 125 μm×33.5 μm) including one to 
six hiPSCs of the 253G1 cell-line. Each pixel had a spectrum 
from 160 to 2200 cm-1 (Figure 1A), and we obtained an 
average Raman spectrum within each segmented cell area in 
the image (Figure 1B). However, the low-reproducibility of 
Raman spectrum measurement of living hiPSCs is often due 
to slight deviations in the optical adjustment, contamination 
from undesired background signal in the obtained spectrum, 
photodamage due to prolonged or intense laser irradiation, 
among other factors. This disturbance hinders the 
quantification of cellular heterogeneity. Therefore, we 
established an analysis protocol to realize technical-
deviation-free Raman finger-printing by mathematically 
predicting background signals on cell-existing areas 
(Supplementary Text S1–S4, and Figures S1–S6). 

Even if the technical reproducibility of the measurement 
system is high enough, reproducibility in biological replicates 
must also be ensured in biological assays/experiments. In 
many cases, cells are removed from the deep freezer for each 
data set, thawed, and then processed for proliferation culture. 
During the interval time between experimental replicates, 
optical aberrations could occur, and/or the cell condition 
could vary depending on the analyst’s experimental skills. 
This can also affect the quantification of cellular 
heterogeneity. 

We collected single-cell spectra in total of seven culture dishes in two independent experiments, with an interval of 
three months, and investigated the difference in the average Raman spectrum in each dish (Figure 2A). At first glance, 
there was no apparent difference in the mean spectra in the dishes (Figure 2B), indicating high reproducibility. 
Nevertheless, a heatmap of differences from the total averaged spectrum highlighted the slight differences in biological 
replication (Figure 2C). To investigate this slight difference in more detail, we performed a principal component analysis 
(PCA) of all single-cell Raman spectra. The difference was represented on the second principal component (PC2; 
contribution rate = 20%), not on the first principal component (PC1; contribution rate = 34%) (Figure 2D). Thus, the 
variation in biological replicates was not the primary principal component in single-cell Raman spectra of hiPSC-lines. 

 
Figure 2  Pre-investigation of reproducibility in 
biological replicate. (A) Explanative cartoon of the 
investigation of biological-duplicate reproducibility. 
(B) Average Raman spectra of 253G1 hiPSC of seven 
dishes obtained in two distinct sample preparations. 
Different color, different dish. Blueness, the first 
preparation (Exp.1); Redness, the second preparation 
(Exp.2). (C) A heatmap of the differences from the 
total average spectrum among seven dishes. Total 
average spectrum calculated from all 7 dishes were 
subtracted from average spectrum of each dish 
(#1~#7). The color indicates the difference of mean 
spectrum of each dish and the average spectrum of all 
seven dishes. (D) Principal component analysis of 
Raman spectra of single cells in seven dishes. Color 
indicates each dish number. The left panel is PC2 vs 
PC1 plot and the right is the dish dependence of the 
PC2 value. Error bars are standard deviations. 
Asterisks indicate less than 0.05 of the p-value in the 
Student’s t-test. 

Biophysics and Physicobiology Vol. 21

e211016_4



 
 
 

Fujita et al.: Cell state change detection by Raman fluctuation 

 

In other words, the heterogeneity in single-cell Raman spectrum 
was greater than the deviation in the biological replicates as 
shown in the PCA score plot because deviation between single 
cells (each dot) is larger in PC1 axis within the dish whereas 
deviation is larger in PC2 axis when compared between dishes 
(Figure 2D). 
 
Comparison Among iPSC-lines in Raman Spectrum 

Supposing that the Raman spectrum obtained from a cell 
corresponds to gene-expression profile [12], it had been 
expected that the Raman spectrum emitted from hiPSCs would 
vary depending on human individuality. To test this possibility, 
we compared the average Raman spectra emitted from six 
hiPSC-lines derived from different origins: two controls (253G1 
and 648A1), two mitochondrial disease-derived (HPS0458 and 
HPS0461), and two Fabry disease-derived (HPS2108 and 
HPS3284).  

Interestingly, we could hardly detect apparent difference in 
Raman spectrum between them (Figure 3A), whereas the 
genetic profile exhibited obvious difference between the hiPSC-
lines (Supplementary Figure S7). The tiny difference in the 
hiPSC-lines was visualized on the heatmap of differences from 
the total average spectrum, exhibiting that the difference 
between two independent experiments was comparable to those 
between the hiPSC-lines (Figure 3B). Performing PCA, the 
hiPSC-line dependency was represented onto the PC2, similar 
to the difference seen in biological replication (Figure 3C). 
Comparing the average PC2 values, while the feature of healthy, 
mitochondrial disease and Fabry disease could be statistically 
discriminated on the PC2 axis, there was little difference 
between cell lines in the same axis (Figure 3D). In short, the 
differences among the hiPSC-lines in pluripotent state were not 
large enough to be distinguishable though there were indeed 
small differences on the average. 
 
Coefficient of Variation Analysis in Cellular Raman 
Spectroscopy 

Based on the above results, we concluded that the present 
Raman spectroscopic analysis is highly reproducible in 
technical replicates and, thus, suitable to quantitate cellular 
heterogeneity in a dish and explore a common behavior 
independent of the origin’s individuality. The next step was to 
explore the specific Raman peaks whose intensity become more 
fluctuating/heterogeneous prior to state transition of cell in 
hiPSC early differentiation. 

We induced cardiomyogenesis to the six different hiPSC lines 
using a common protocol and collected single-cell spectra from 
a total of seven culture dishes into two independent experiments, 
with an interval time of three months, at 0th, 1st, 2nd, 4th, 7th and 
10th days after the differentiation induction (Figure 4A). 
Intensity changes of the 38 main Raman peaks in the mean 
intensity spectrum in a dish were clearly visualized during 

myocardial differentiation of the six different hiPSC-lines (Figure 4B, upper, and Supplementary Figure S8). Some of the 
peaks showed common changes regardless of hiPSC-line. For example, the peak indicating cytochrome-C (755 cm-1) 
decreased (Figure 4B, upper, yellow arrow) and that of lipids (1448 cm-1) increased (Figure 4B, upper, green arrow), 
respectively. Changes in these peaks, which were mostly common among the cell lines, were observed on the 2nd or the 
4th day after the differentiation induction (Supplementary Figure S9A–C). On the other hand, in the spectrum of standard 

 
Figure 3  Comparison among average Raman 
spectra of six different hiPSC-lines. (A) Mean 
Raman spectra of six hiPSC-lines. Different color, 
different hiPSC-line. (B) A heatmap of the 
differences from the total averaged spectrum 
among six hiPSC-lines and two distinct sample 
preparations. The color indicates the difference of 
mean spectrum of each hiPSC-line and each 
preparation (e1 or e2) and the average spectrum of 
all 12 collections. (C) Principal component analysis 
of Raman spectra of single cells in six hiPSC-lines 
(left) and in two sample preparations of 253G1 
(right). Different color, different hiPSC-line in the 
left panel. The gray plots in the right panel are 
superimpose of the left panel. (D) hiPSC-line and 
sample preparation dependences of the PC2 value 
in C. Error bars are standard deviations. Asterisks 
indicate less than 0.05 of the p-value in the 
Student’s t-test. 
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deviation in a dish, peaks showing large change were observed 
at earlier days than the intensity change after the induction of 
differentiation (Figure 4B, lower). 

As a metric for quantifying cellular heterogeneity in a dish, 
we used the coefficient of variation (CV), which is the 
standard deviation over the mean intensity. Similar to the 
intensity spectrum, there was no obvious hiPSC-line 
dependence in the CV spectrum before the myocardial 
differentiation (Figure 5A). Cell-to-cell variation was small in 
most of the peaks in all cell-lines tested (Figure 5A) Using the 
CV metric, we investigated the time development of cellular 
heterogeneity with the differentiation progression 
(Supplementary Figure S9B). While 755 cm-1 peaks did not 
largely change throughout the progression of differentiation 
(Figure 5B, left), 707 cm-1 peak, attributed to cholesterol [26], 
increased from the 4th day after the induction of differentiation 
(Figure 5B, middle). High correlations between the hiPSC-
lines in the time development of the CV were observed for 
almost all peaks (Supplementary Figure S9D). Among them, 
we identified peaks at 857, 940, 1084, and 1340 cm-1 as early 
differentiation markers that increased more than two-fold 
immediately after the induction and decreased in the latter half 
in all hiPSC-lines (Figure 5B, right and Supplementary Figure 
S9B, red characters). The time courses of the CV at 857, 940, 
and 1084 cm-1 peaks during the 10 days of early differentiation 
were commonly correlated in all cell lines (Figure 5C, upper), 
which is reasonable because those peaks derive from C-C 
bond-related vibration modes [27,28]. That of the 1340 cm-1 
peak, attributing CH deformation [11], was loosely linked to 
those of various peaks such as 940, 1006, 1084, 1208, and 
1260 cm-1 peaks (Figure 5C, lower). By performing principal 
component analysis using all spectra data of all cell lines, 
distribution shift in the PC space could be detected on the 4th 
day after the induction in the conventional intensity-based 
analysis (Figure 5D, upper) and on the 1st day in the present 
heterogeneity-based analysis (Figure 5D, lower). In the gene 
expression profile, we confirmed the expression changes of 
some genes prior to those of core transcription factors 
characterized to pluripotent state (Supplementary Figure S7, 
CXCL1, HESX1, WNT3A, etc.). 
 
Dynamical Network Biomarkers (DNB) Analysis in Cellular Raman Spectroscopy 

The DNB theory proposes a more theoretical method for the use of the early-warning signals [29,30], and it has been 
successful in identifying a group of genes whose expression fluctuates prior to the onset of metabolic syndrome in mice 
[21]. The DNB theory is based on the idea that there should be elements that collectively fluctuate just before the critical 
slowing down [29,30]. Assuming that a cell is a system consisting of a large number of elements and their interactions, 
the DNB theory has the potential to be applied to predict state transitions of the cell system. In an analysis based on the 
DNB theory, "fluctuating" variables that are correlated and fluctuate collectively in measured multivariate data can be 
statistically identified. Evaluating the significantly fluctuating and highly correlated components of a biological system 
provides an early signal of the state transitions in the system (earlier than ordinary intensity-based biomarkers) and 
simultaneously identifies groups of signature components [29,30]. Corresponding to experiments in cell biology such as 
this study, the analysis based on DNB theory can automatically identify a group of Raman peak spectra with cooperative 
transitions in the degree of single-cell heterogeneity along a time development before the state transition of a cell. Recently, 
we reported that analysis based on DNB theory could detect early-state transition of immune T cells in antigen-presenting 
cell (APC) activation in Raman spectrum measurement [21]. Finally, we investigated the feasibility of the DNB analysis 
to screen the peaks identified shown in Figure 5 in a human-independent manner. 

 
Figure 4  Raman spectra measurement during 
myocardial differentiation of six hiPSC-lines. (A) 
Explanative cartoon of the Raman observation in 
cardiomyogenesis of distinct 6 hiPSC strains. (B) 
Mean intensity (upper) and mean standard deviation 
(lower) of Raman spectra of 253G1 before (Day-0, 
magenta) and on 1st (Day-1, blue), 2nd (Day-2, green), 
4th (Day-4, green), 7th (Day-7, orange) and 10th (Day-
10, red) day after differentiation induction. Red 
arrows show peaks that was identified as early 
differentiation marker in CV analysis. Combined 
data of two experimental batches was used. 
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The DNB analysis was applied to the present dataset to investigate the intercorrelation of Raman peak heterogeneity. 
The DNB analysis identified mainly four groups as fluctuating elements on the 2nd and 4th day after induction, which are 
attributed to C-C bond related modes (Figure 6A and Supplementary Figure S9), consistent with the result of the CV 
analysis. The average intensity of these peaks reached the maximum on the 4th day and then monotonically decreased 
(Figure 6B, top). The average standard deviation immediately increased to the maximum on the 1st day and then decreased 
after being maintained until the 4th day (Figure 6B, middle). The correlation strength of those peaks behaved in a manner 
between the maximum intensity and the standard deviation (Figure 6B, bottom). Notably, on the 10th day, the intensity 
and the correlation stopped decreasing to approximately half of the maximum values, while the standard deviation 
returned to the initial value. To visualize the time development of the correlations among the identified marker groups, 
heatmaps were displayed showing the correlation strength between each two markers at each elapsed day (Figure 6C). 
Correlation strength was derived by first calculating the correlation coefficient for all combinations of Raman shifts 
extracted in DNB analysis (Figure 6A). By taking the sum of absolute values of the correlation coefficients and dividing 
it by the number of Raman shifts, average correlation strength can be calculated. Before the myocardial differentiation, 
the heatmap exhibited each cluster of four groups shown in Figure 6A (Figure 6C, Day-0). The correlation between groups 
increased from the 1st day to the 4th day after the myocardial induction and then returned (Figure 6C, Day-1 to Day-10). 
Thus, the correlation among four groups increased before the 4th day in the conventional intensity-based analysis. 
 
Discussion 
 

In summary, we have clearly demonstrated the increased single-cell heterogeneity in the Raman spectrum before the 
escape from the pluripotent state, defined by the intensity profile with the development of a highly-reproducible single-

 
Figure 5  Coefficient of variation analysis of Raman spectra during myocardial differentiation of six hiPSC-lines before 
induction of differentiation (Day-0). (A) Spectra of coefficient of variation (CV) of six hiPSC-lines. Color from yellow 
to green correspond to value from 0 to 1.0. (B) Time developments of histogram of CV at the peaks of 755 cm-1 peaks 
(left), 707 cm-1 peak (middle) and 940 cm-1 peak (right). Scale bar indicates 10 % frequency. All six cell-lines were used 
for analysis. (C) A heatmap of the correlations of time development of CV Correlation of CV time development between 
940 cm-1 (upper) or 1340 cm-1 (lower) was calculated against other peaks and visualized. Color from blue to red 
correspond to value from -1.0 to 1.0. (D) Principal component analysis of mean intensity of Raman spectra in a dish 
(upper) and that of CV (lower). Each plot indicates each dish. Color is the same to Figure 4B. 

e211016_7



cell Raman spectroscopic protocol. This study experimentally proves the abductive hypothesis that cellular heterogeneity 
represented in Raman spectrum of hiPSCs increases faster than signal intensity changes immediately after losing 
pluripotency, independent of hiPSC-lines tested.  

If the transient increase in standard deviation observed in Figure 4B was derived from deviations and/or vibrations in 
the measurement system, the increase in standard deviation should be confirmed not only for specific peaks but also for 
all peaks or the entire spectrum. Therefore, we concluded that the single-cell heterogeneity observed here was derived 
from the fluctuation of cellular state. Then, the Yuragi-based analysis such as CV analysis and DNB analysis can detect 
the state transition prior to the conventional intensity-based analysis. Those Raman peaks identified by CV analysis and 
DNB analysis can be used as markers to define a cell state corresponding to pre-transition state defined by intensity-based 
analysis. In retrospect, upon reviewing our previous data, we found that cellular heterogeneity in Raman spectrum 
increased before the cells entered a stable state, in all cases including muscle differentiation, early embryonic stem cell, 
and T cell differentiation in mouse cell lines [11–15]. Increased heterogeneity of Raman spectra before the change in 
Raman peak intensity demonstrates that although intracellular concentration of chemical component became 
heterogeneous before the change in cell state, averaged concentration within the population does not change, indicating 
the difficulty in detecting the pre-transition state by traditional assay methods which measure the average concentration 
of the cell component. Interestingly, another group previously reported that Raman spectral signals collected from fetal 
mouse heart tissue were noisier and more heterogeneous than those obtained from adult mice [31]. Given this study and 
the previous results, we here propose the use of heterogeneity as an indicator to define pre-transition state of a cell. 

The heterogeneity-based analyses, including CV analysis and DNB analysis, identified some peaks correctively 
fluctuated between the 1st and 2nd day after myocardial differentiation induction: 857, 940, 1084, and 1340 cm-1 in the CV 
analysis (Figure 5A), and 857, 940, 1084, and 1110 cm-1 in the DNB analysis (Figure 6A). The intracellular component 
with characteristic peaks at these wavelengths is glycogen [32,33]. This result was consistent with the previous report that 
standard deviation of Raman peaks attributed to glycogen (852 cm-1 and 938 cm-1 in this report) of human ESCs (hESCs) 
was greater than that of hiPSCs [16]. In general, it is experimentally difficult to stably maintain human cells in a fully-
pluripotent state, called naïve state, so reprogrammed stem cells called “iPS cells” are typically in a partially–pluripotent, 
or primed state. We hypothesize that glycogen expression fluctuates when cells exit the stable primed state, regardless of 
whether they are undergoing reprogramming or differentiating. 

 
Figure 6  DNB analyses of Raman spectra during myocardial differentiation of six hiPSC-lines. (A) A table of dynamic 
network biomarker identified by the DNB analysis. The number indicates the wavenumber identified as a marker. (B) 
Time developments of average intensity (top), standard deviation (middle), and correlation strength (bottom) of the peak 
groups identified as the marker. The correlation strength does not include auto-correlation. (C) Time developments of 
heatmap of correlation between the identified markers. Darker, higher; lighter, lower. 
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The CV analysis identified an interesting heterogeneity-based biomarker of 707 cm-1 attributed to cholesterol. The CV 
of 707 cm-1 constantly increased from the 0th day to the 10th day after differentiation induction (Figure 5B, middle) whereas 
the peak intensity decreased (Supplementary Figure S9A). Transcriptomic analysis previously demonstrated that gene 
expressions related to cholesterol efflux and transport are upregulated from the 0th day to the 15th day in hiPSC 
cardiomyogenesis [34]. We speculate that changes in metabolic activity can be detected as cellular heterogeneity at the 
Raman spectral peak reflecting cholesterol. On the other hand, another group reported an increase in cholesterol 
expression before and after cardiomyogenesis [31]. However, they used hESCs instead of hiPSCs and a different 
differentiation protocol. Furthermore, they cultured the cells using ultra-low attachment dishes and collagen-coated dishes 
for differentiating culture and harvested them prior to Raman measurements. In contrast, we used uncoated glass bottom 
dishes to prevent changes in cell state caused by mechanical stimulation during cell reseeding over differentiation 
progression and measured Raman scattering spectra without reseeding. These experimental differences may have resulted 
in differences in the absolute amount of cholesterol expression in cells. Although further validation experiments are 
needed, it is possible that cellular heterogeneity provides a more accurate reflection of gene network activation than the 
increase or decrease in intensity. 

The result of DNB analysis can be interpreted as followed: just after the differentiation induction, the low collectiveness 
allowed independent fluctuation of each element. With the progression of differentiation, these elements interacted with 
each other, resulting in a positive feedback loop that increased their intensities. Once the interaction network was 
established on the 4th day, the fluctuation was restricted, and the intensity and correlation transitioned to a constant due to 
the construction of a new stable network. The network reconstruction was clearly highlighted by the time-series changes 
in the correlation heatmap (Figure 6C). The results of DNB analysis indicate that the intermolecular network of C-C bond-
related vibrations, most likely responsible for glycogen, is a key factor in driving hiPSCs out of the pluripotent state. 

The transition of cellular Raman spectrum during hiPSC differentiation has been previously investigated [16–20]. All of 
these studies have demonstrated the clear separation and discrimination of iPSCs and other cells based on unsupervised 
machine learning methods such as PCA and t-distributed stochastic neighbor embedding (tSNE), and/or deep learning 
methods using intensity information. However, to the author’s knowledge, this study is the first example of an analysis 
that actively uses information on cellular heterogeneity in Raman spectrum. Therefore, the results in this study cannot 
simply compare to those previously reported, and the above discussions and hypotheses do not have any previous 
evidences and need to be newly proven in the future. In other words, by considering and quantitating cellular heterogeneity 
based on concept of singularity biology, this study generated a new biological question that has not been discussed so far. 

The concept of Yuragi-based analysis might open the next door in presymptomatic medicine because markers identified 
by the Yuragi-based analysis can detect the state transition of a multi-cellular system in advance, meaning a possibility of 
on-set prediction of disease. This study is also the first comparative investigation of the Raman spectral signatures of 
hiPSCs derived from different individuals. Our findings demonstrate that the differences in origin were minimal compared 
to the cellular heterogeneity in the Raman spectrum, highlighting the advantages of using Raman spectroscopy as a quality 
evaluation tool for hiPSCs. This is because the marker threshold can be determined without depending on individual 
differences. The present method, using Raman spectrum and Yuragi-based analysis, has the potential to become a standard 
technique in hiPSC quality control. 

In this article, we described the new method, the results and the finding, and the proposal of the new biological markers 
to define pre-transition state of cells. In general, Yuragi-concept is basically stands for temporal fluctuations where state 
of the element fluctuates by time. However, assuming that ergodicity is valid within the system, random temporal 
fluctuation of the elements appears as heterogeneity in the population. This assumption that ergodicity is valid in the 
system, however, have to be proven in the future study. Notably, while the abductive hypothesis proven in this study is 
based on the concepts of holons and Yuragi, the idea of the experiments we preformed arose from the first principle of 
Singularity biology, “see the forest for the trees.” The concept of Singularity biology experimentally summarized the two 
fundamental concepts debated for several decades, leading to the new biological question, tool and hypothesis in this 
study.  
 
Conclusion 
 

In conclusion, we propose a new analytical concept that cellular heterogeneity in Raman spectrum could detect pre-state 
transition of cells. The Yuragi-based biomarker is perhaps applicable to any kinds of single-cell omics technologies, not 
just in hiPSC quality evaluation and Raman spectroscopy. We hope for the emergence of biology that uses not only signal 
intensity but also fluctuation/heterogeneity as a biological index. This study demonstrated the possibility that analysis 
based on “Singularity biology” contribute to not only basic science but also future medicines, including presymptomatic 
medicine and regenerative medicine. 
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