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ABSTRACT: Adequate control of type I error rates will be necessary in the increasing genome-wide search for interactive
effects on complex traits. After observing unexpected variability in type I error rates from SNP-by-genome interaction scans,
we sought to characterize this variability and test the ability of heteroskedasticity-consistent standard errors to correct it.
We performed 81 SNP-by-genome interaction scans using a product-term model on quantitative traits in a sample of 1,053
unrelated European Americans from the NHLBI Family Heart Study, and additional scans on five simulated datasets. We
found that the interaction-term genomic inflation factor (lambda) showed inflation and deflation that varied with sample size
and allele frequency; that similar lambda variation occurred in the absence of population substructure; and that lambda was
strongly related to heteroskedasticity but not to minor non-normality of phenotypes. Heteroskedasticity-consistent standard
errors narrowed the range of lambda, with HC3 outperforming HC0, but in individual scans tended to create new P-value
outliers related to sparse two-locus genotype classes. We explain the lambda variation as a result of non-independence of test
statistics coupled with stochastic biases in test statistics due to a failure of the test to reach asymptotic properties. We propose
that one way to interpret lambda is by comparison to an empirical distribution generated from data simulated under the null
hypothesis and without population substructure. We further conclude that the interaction-term lambda should not be used
to adjust test statistics and that heteroskedasticity-consistent standard errors come with limitations that may outweigh their
benefits in this setting.
Genet Epidemiol 40:144–153, 2016. Published 2015 Wiley Periodicals, Inc.∗
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Introduction

Genome-wide studies of interactive effects on complex traits
are beginning to appear in the human genetics literature as
the potential for interactions to account for trait variation
and to shed light on the biological mechanisms underlying
complex traits is increasingly appreciated [Figueiredo et al.,
2014; Khoury and Wacholder, 2009; Mackay, 2014; Manolio
et al., 2009; Thomas, 2010; Thomas et al., 2012; Wei et al.,
2014; Wu et al., 2012; Zuk et al., 2012]. Although concern has
been raised about the low power to detect such interactions
[Manolio et al., 2009; Zuk et al., 2012], maintenance of appro-
priate type I error rates is a critical first step for any statistical
technique so that its results are interpretable. In the genome-
wide association study (GWAS) era, the predominant mea-
sures of type I error have been the quantile-quantile (Q-Q)
plot and the genomic inflation factor λ [Bacanu et al., 2002;
The Wellcome Trust Case Control Consortium, 2007]. For a
main-effect scan on a quantitative trait, λ is the asymptotic
variance of the test statistics and in practice is typically esti-
mated by comparing the median squared test statistic from a
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GWAS to the median of the χ2 distribution. Lambda usually
shows inflation in the presence of population substructure
but can be influenced by any artifact that creates bias in test
statistics. For genome-wide tests of interaction, the λ statistic
and Q-Q plot are natural starting points as indicators of type
I error rates.

Of many existing methods for detecting interactions in
genetic datasets [An et al., 2009; Cordell, 2002, 2009], in-
ference on a product term in the context of a generalized
linear model appears to be the most commonly employed.
Although product terms can be used to represent four types
of epistasis in a model that includes additive and dominance
terms [Cheverud, 2000], here we focus on the simpler model
y = β0 + β1x + β2z + β3xz + ε, where x and z indicate single-
nucleotide polymorphism (SNP) dosages. While applying
this model in a SNP-by-genome approach to study gene-
gene interactions in the NHLBI Family Heart Study (FamHS)
[Higgins et al., 1996], we found greater variability in type I
error rates for the 1-df test on the product term than we
expected based on values typically observed in main-effect
GWAS.

A handful of recent works have discussed type I error in-
flation in gene-environment interaction scans. Cornelis et al.
[2012] observed type I error inflation in a body mass index
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(BMI)-by-genome interaction scan on type 2 diabetes using
a product term in a logistic regression. They attribute the
inflation to model misspecification. The type I error rate im-
proved when higher orders of BMI were specified, when BMI
was dichotomized, or when a sandwich variance estimator
was used. Tchetgen and Kraft [2011], referring to the same
study, note that misspecification in this model can cause in-
flation or deflation and recommend Huber’s sandwich vari-
ance estimator. Voorman et al. [2011] used simulation to
show that mean model misspecification or heteroskedastic-
ity can cause Q-Q plot inflation from an interaction scan on a
quantitative trait. They reduced the inflation with a sandwich
variance estimator and showed that mean model misspecifi-
cation causes a similar problem in logistic and Cox regression.
Lastly, Almli et al. [2014] jointly tested a SNP and product
term in two environment-by-genome scans on two quanti-
tative traits related to post-traumatic stress disorder. Type I
error was inflated in all four scans, which they attribute to het-
eroskedasticity. They reduced it via the Huber-White sand-
wich variance estimator and used simulation to show that
heteroskedasticity can create Q-Q plot inflation or deflation.

The sandwich variance estimators were devised to ac-
commodate violations of the homoskedasticity assumption
of regression. In a linear regression, heteroskedastic-
ity leaves least-squares parameter estimates unbiased
but renders their standard error estimates inconsistent,
which makes inferential tests misleading. The asymptotic
heteroskedasticity-consistent covariance matrix estimator
HC0—known synonymously by the names Huber, Eicker, or
White, and the first in the family of “sandwich” covariance
matrix estimators—is an alternative to the least-squares
covariance matrix estimator and is consistent in the presence
of heteroskedasticity [MacKinnon, 2012; White, 1980]. The
adjusted estimators HC1–HC3 were developed for use in
small samples [Davidson and MacKinnon, 1993; MacKinnon
and White, 1985]. The need for adjusted estimators arises
because in finite samples HC0 standard errors tend to be
biased downward, especially when the regression design
contains points of high leverage as occurs in unbalanced
designs [Chesher and Jewitt, 1987]. HC3 is adjusted for
leverage and has been shown to perform best among HC0-
HC3 [Davidson and MacKinnon, 1993; Long and Ervin,
2000].

Here we place the type I error variability problem into a
broader context to better understand its causes and possible
solutions including heteroskedasticity-consistent (HC) stan-
dard errors. We focus on gene-gene interactions though our
results have implications for the gene-environment setting as
well. We randomly choose nine SNPs throughout the genome
and perform SNP-by-genome interaction scans for each of
nine quantitative phenotypes on a set of 1,053 unrelated sub-
jects in FamHS. We then perform >400 scans on each of five
datasets simulated under the null hypothesis. This allows us
to construct empirical distributions of the product-term λ

value and to observe the impact of minor allele frequency
(MAF), sample size, stochastically-occurring heteroskedas-
ticity, phenotype non-normality and outliers, and HC0 and
HC3 standard errors on these distributions.

Methods

Family Heart Study

The NHLBI Family Heart Study [Higgins et al., 1996] is
a population-based study begun in 1992 that used partici-
pant data from three parent studies to identify and recruit
588 randomly-sampled families and 657 families with high
risk of coronary heart disease. About 6,000 subjects com-
pleted a clinic examination between 1994 and 1996 (Visit
1) during which written informed consent was given and a
broad range of phenotype information was collected. Fast-
ing blood samples were taken for a variety of laboratory
tests as well as for DNA collection. Genotyping of 4,135
European-American FamHS subjects was performed on Il-
lumina platforms (HumanHap550, Human610-Quad v1.0,
and Human1M-Duo v3.0) and genotypes were called with
BeadStudio (Illumina). Quality control measures included
identification of Mendelian errors by LOKI [Heath, 1997]
and of incorrect familial relationships using GRR [Abeca-
sis et al., 2001]. Additional SNPs were removed if they were
flagged by Illumina, had call rate <98% or MAF < 1%, deviated
from Hardy-Weinberg equilibrium with P < 1 × 10–6, or were
not present in HapMap [The International HapMap Consor-
tium, 2003]. In the present study, we only analyzed autosomal
SNPs that met these criteria and were genotyped on all three
platforms. This resulted in 493,865 SNPs with MAF � 1%
(the cutoff used in Fig. 4A and C) whose MAF distribution is
shown in supplementary Figure S1; and 469,763 SNPs with
MAF � 5% (the cutoff used for all other FamHS analyses
presented here, including main-effect and two-locus anal-
yses). The Family Heart Study received IRB approval from
each field center; current use of the data is with local IRB
approval.

Statistical Analysis

Family Heart Dataset

Only unrelated subjects from Visit 1 of FamHS were ana-
lyzed in this study. We selected nine quantitative traits from
FamHS for their approximate normality (after log transfor-
mation if necessary) and low pairwise correlations. We ex-
cluded subjects with diabetes (those with fasting serum glu-
cose � 126 mg/dL or currently taking medications for dia-
betes). Principal components were calculated on this sam-
ple (n = 1,130) using EIGENSTRAT [Price et al., 2006].
To choose “repeating” SNPs for SNP-by-genome interaction
scans, we randomly selected one SNP in each of nine MAF
bins (0.05–0.5 in increments of 0.05) from the genotyped,
filtered FamHS SNPs. To avoid artifacts in our results due
to missing data points, we analyzed only the set of unrelated
non-diabetic subjects who had non-missing data for all nine
phenotypes and all nine repeating SNPs (n = 1,053 subjects).
Within this dataset, each of the nine phenotypes was adjusted
for field center, genotyping platform, and (stepwise with a
5% significance level for staying) age, age2, age3, and the
first 10 principal components. Extreme outliers >4 standard
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deviations from the mean were adjusted but not used to cal-
culate adjustment parameters. Adjustments were performed
separately by sex, and the standardized residuals resulting
from the model were used as phenotypes in subsequent analy-
ses. In this final dataset of 1,053 subjects, the nine “repeating”
SNPs had low pairwise correlations (all Pearson |r| < 0.079)
and the nine phenotypes had low pairwise correlations (all
Pearson |r| < 0.142). Genomic (“non-repeating”) SNPs in
linkage disequilibrium with the nine “repeating” SNPs were
not excluded from SNP-by-genome interaction analyses.

Simulated Datasets

We simulated a total of five datasets and did not include
population substructure or SNP effects in any.

Simulated dataset I: 1,053 subjects, simulated genotypes,
FamHS phenotypes

First, to simulate a dataset with a sample size and allele fre-
quency distribution similar to that of our real FamHS data, we
randomly selected 20,000 MAFs from the MAF distribution
of FamHS filtered, genotyped SNPs with MAF � 0.05 as cal-
culated in the FamHS dataset of 1,053 subjects. We assumed
Hardy-Weinberg equilibrium to calculate the corresponding
genotype frequencies and used the CALL RANTBL routine in
SAS to generate genotypes for 1,053 subjects at 20,000 SNPs
based on these frequencies. We simulated an additional 46
“repeating” SNPs across a broad frequency spectrum by us-
ing a MAF of 0.05–0.5 in increments of 0.01, then following
the same procedure as above. To generate phenotypes under
the null hypothesis of no SNP effects, we randomly assigned
the adjusted FamHS phenotypes to the simulated subjects,
keeping the nine phenotype distributions intact but shuffled
relative to each other.

Simulated dataset II: 1,053 subjects, simulated genotypes
and phenotypes

Simulated dataset III: 5,000 subjects, simulated genotypes
and phenotypes

Simulated dataset IV: 10,000 subjects, simulated genotypes
and phenotypes

We created three additional datasets (n = 1,053, n = 5,000,
and n = 10,000 subjects) by following the same procedure
as above for the genotypes, but randomly sampling from a
standard normal distribution for each of nine phenotypes
using the CALL RANNOR routine in SAS.

Simulated dataset V: 1,053 subjects, simulated genotypes
and 100 phenotypes

So that we could study a larger number of phenotypes,
we created a dataset with 20,000 SNPs and an additional 10
“repeating” SNPs simulated with the same procedure as for
the other datasets, but this time using a MAF of 0.05–0.5
in increments of 0.05 to generate the “repeating” SNPs. One
hundred phenotypes were simulated by randomly sampling
from a standard normal distribution as above.

Models

SNPs were coded as 0, 1, or 2 doses of the minor allele in
the dataset analyzed. For all SNPs and phenotypes in the one
real and five simulated datasets, we fit the following main-
effect-only model.

y = β0 + β1SNPnon–repeating + ε. (I)

In the FamHS dataset, we also fit a two-locus model to
calculate λ2 values based on β2.

y = β0 + β1SNPrepeating + β2SNPnon–repeating + ε. (II)

In all six datasets, we performed SNP-by-genome interac-
tion scans by fitting the following product-term model and
conducting a 1-df F-test of the null hypothesis β3 = 0.

y = β0 + β1SNPrep eating + β2SNPnon–repeating

+ β3SNPrepeating × SNPnon–rep eating + ε. (III)

We use the term “repeating” for the SNP that is kept the
same from pair to pair as the other SNP (“non-repeating”)
proceeds through the genome as in a GWAS. We performed
SNP-by-genome interaction scans for each of the nine
repeating SNPs and nine phenotypes in the FamHS dataset,
for a total of 81 scans. In simulated datasets I–IV, we
performed scans for each of 46 repeating SNPs and nine
phenotypes, for a total of 414 scans per dataset. In simulated
dataset V, we performed scans for each of 10 repeating SNPs
and 100 phenotypes, totaling 1,000 scans. For each scan we
calculated the λ3 value as (median t3

2)/0.455, where the test
statistic t3 was from the test of β3 = 0.

Analyses were implemented with PROC REG in SAS 9.3
(SAS Institute, Cary, NC). Where indicated, HC standard
error estimators were used by specifying the HCC and HC-
CMETHOD = 0 (for HC0) or HCCMETHOD = 3 (for HC3)
options in PROC REG. When HC standard errors were used,
subjects from two-locus genotype classes with fewer than five
subjects were dropped before the model was applied in order
to avoid the worst of the P-value inflation demonstrated in
Figure 4; exceptions were Figure 4 in which no minimum
cell count was used, and supplementary Figure S13 where, as
indicated in the figure, either a minimum of 5 or 25 was used.
Applying the minimum cell count did not necessarily mean
that all nine two-locus genotype classes met the minimum
cell count, only that each populated genotype class met the
minimum cell count.

Finally, to examine type I error rates for the commonly-
used 2- and 4-df tests of interaction, we fit model III to
simulated datasets II–IV and performed SNP-by-genome in-
teraction scans with the 2-df test of β1 = β3 = 0 as well as
the 2-df test of β2 = β3 = 0 for all 46 repeating SNPs and
nine phenotypes. On the same datasets and with the same
SNP-by-genome approach, we then performed a 4-df test by
fitting the model

y = β0 + β1SNPr,a + β2SNPr,d + β3SNPnr,a + β4SNPnr,d

+ β5SNPr,a × SNPnr,a + β6SNPr,a × SNPnr,d

+ β7SNPr,d × SNPnr,a + β8SNPr,d × SNPnr,d + ε, (IV)
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Table 1. Nine FamHS quantitative traits used in SNP-by-genome
interaction scans and their main-effect-only lambda values

Phenotype Lambda from main-effect-only scan

Albumin, serum 1.003
Glucose, serum 0.990
Height 1.057
ln(dietary protein per day) 1.007
ln(fibrinogen, serum) 0.995
ln(LDL cholesterol, serum) 1.015
ln(television hours viewed per day) 1.021
Magnesium, serum 1.006
Potassium, serum 1.010

where “a” indicates an additive (0,1,2) coding, “d” indicates
a dominance (0,1,0) coding, and “r” and “nr” indicate the
repeating and non-repeating SNP, respectively. The 4-df test
had the null hypothesis of β5 = β6 = β7 = β8 = 0; we performed
this and the 2-df test as F tests using the TEST statement in
SAS PROC REG. To allow for a comparison of type I error
rates from these tests with those from the 1-df test used in
all other analyses, we calculated a λ value for the 2- and 4-df
tests by finding the χ2

1 values corresponding to the P-values
resulting from the F test, and dividing the median χ2

1 value
by 0.455.

Results

We chose nine quantitative traits from FamHS for their
approximate normality and low pairwise correlations, then
adjusted them for covariates (Table 1 and supplementary Fig.
S2A). We performed main-effect-only scans (model I) on
these phenotypes in the FamHS dataset (supplementary Fig.
S3) and the resulting λ values ranged from 0.990 to 1.057
(Table 1 and supplementary Table S1). Next we randomly
chose one SNP in each of nine MAF bins from the 469,763
genotyped SNPs with MAF � 0.05 (Table 2). Each of these
“repeating” SNPs was first fit in a two-locus model (model
II) in which the other SNP progressed through the genome as
in a GWAS (“non-repeating” SNPs) with no interaction term
included. The λ2 values (corresponding to the non-repeating
SNP) from these 81 two-locus scans were very similar to those
from the main-effect-only scans (supplementary Fig. S4).

Finally, we performed SNP-by-genome interaction scans
(model III) for each of the nine repeating SNPs and nine

phenotypes for a total of 81 scans. The resulting λ3 values
(corresponding to the product term) ranged from 0.860 to
1.336 (Fig. 1A and supplementary Table S2). The variability
in λ3 was greatest at low MAF of the repeating SNP. Re-
peating SNPs that had a main-effect-only association at the
0.05 level within the same dataset showed a similar distri-
bution of λ3 values as those that did not. We plotted λ3 by
phenotype (supplementary Fig. S5) and found that all nine
phenotypes showed λ3 inflation and deflation. To describe
the distribution by another measure of type I error, we cal-
culated observed alpha values at the 0.05 level and found a
range of 0.035–0.086.

We used simulation to further explore these patterns and
possible explanations for them. First, we simulated a dataset
of 1,053 subjects and 20,000 SNPs with a similar MAF distri-
bution as FamHS, using the same phenotype values as the real
dataset (simulated dataset I; see Methods). We did not include
any SNP effects or population substructure. We performed
SNP-by-genome interaction scans for each of 46 repeating
SNPs (one in each of 46 MAF bins from 0.05 to 0.5) for a
total of 414 scans on this dataset. Despite the absence of pop-
ulation substructure in the simulated dataset, the resulting λ3

values were very consistent with those from the real dataset
(Fig. 1B). Next we simulated a similar dataset whose phe-
notypes were sampled from a standard normal distribution
instead of real phenotypes (simulated dataset II). SNP-by-
genome interaction scans on this dataset yielded a λ3 pattern
very similar to that from the real dataset and simulated dataset
I (Fig. 1C). Because simulated dataset I had more phenotypic
outliers as well as non-normality (as measured by skewness
and kurtosis) than simulated dataset II (supplementary Fig.
S2A vs. B and supplementary Fig. S6A and B vs. C and D) but
gave a similar λ3 distribution, outliers and non-normality did
not appear to play a major role in the observed λ3 variation.
In addition, there was no apparent relationship between λ3

and phenotype non-normality in either dataset (supplemen-
tary Fig. S6). In order to examine λ3 patterns for a larger
number of phenotypes, we analyzed a simulated dataset of
sample size 1,053 with 100 phenotypes drawn from a stan-
dard normal distribution (simulated dataset V) and found
a λ3 distribution similar to that for simulated datasets I and
II (supplementary Fig. S7). We investigated the influence of
sample size on λ3 by simulating two larger datasets (5,000
and 10,000 subjects, each with 20,000 SNPs) under the null

Table 2. Characteristics of repeating SNPs used in SNP-by-genome interaction scans

Repeating-SNP number Marker name Chromosome Number of subjects by genotype: 0/1/2a Minor allele frequencyb Gene region/SNP function

1 rs7564315 2 923/126/4 0.06 KIAA2012/intron
2 rs10106243 8 840/202/11 0.11 -
3 rs6065298 20 751/280/22 0.15 -
4 rs716982 16 630/366/57 0.23 RBFOX1/intron
5 rs861528 14 552/430/71 0.27 ZFYVE21/ intron
6 rs2408208 5 451/503/99 0.33 SLC38A9/intron
7 rs10507467 13 433/488/132 0.36 -
8 rs11231017 11 376/506/171 0.40 SCGB1D4/2.4 kb downstream
9 rs998731 8 295/537/221 0.46 -

a Number of subjects with indicated dosage of minor allele, totaling 1,053 subjects.
b MAF in FamHS sample of 1,053 unrelated subjects.
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Figure 1. Interaction-term lambda (λ3) from SNP-by-genome interaction scans plotted by MAF of repeating SNP. Each data point represents the
interaction-term lambda value from a 1-df SNP-by-genome interaction scan for one repeating SNP and one phenotype, for a total of 81 data points
(nine repeating SNPs, nine phenotypes) in the FamHS dataset (panel A) and 414 data points (46 repeating SNPs, nine phenotypes) in the simulated
datasets (panels B–E, corresponding to simulated datasets I–IV, respectively). Genome size was 469,763 in FamHS and 20,000 in simulated datasets.
Simulated datasets were generated without SNP effects or population substructure. Red diamonds indicate that the repeating SNP showed a main
effect with P < 0.05 in a main-effect-only model within the same dataset; black circles indicate all other data points.

hypothesis and with nine phenotypes sampled from a stan-
dard normal distribution (simulated datasets III and IV). We
found that the distribution of λ3 narrowed as the sample
size increased (Fig. 1D and E). As in the smaller datasets, the
λ3 distribution narrowed as the MAF of the repeating SNP
increased, and repeating SNPs that had a main-effect-only
association showed λ3 values similar to those that did not.
For the FamHS dataset as well as all five simulated datasets, λ3

values spanned a broader range than the main-effect-only λ

values on the same dataset (supplementary Tables S1 and S2).
A closer look at the interaction test statistic distributions

from individual SNP-by-genome scans in FamHS and simu-
lated datasets I–IV showed minor deviations from normality
that appeared stochastic (supplementary Fig. S8). The vari-
ance of the distributions deviated further from one at smaller
sample size. Within the simulated datasets, these empirically-
observed variances were less strongly correlated with λ3 as the
sample size increased, suggesting that noncentrality in the test
statistic distributions became relatively more important to λ3

variation at these larger sample sizes (supplementary Fig. S9).
We next considered the role of heteroskedasticity in λ3

variation by examining the three genotypic variance ratios
of the repeating SNPs in the FamHS dataset. Even though
heteroskedasticity likely occurs for both SNPs in the model,
we reasoned that its presence in the repeating SNP would be
most influential on λ3 because any biases induced by it would
be repeated throughout the SNP-by-genome scan. Plots of λ3

by the variance ratios of the repeating SNP show, first, that
the ratios ranged from 0.4 to 3.7, well beyond the assumed
ratio of one (Fig. 2). Deviations from one were more com-
mon for repeating SNPs with low MAF, and therefore likely
resulted from sparseness in the least-populated genotype
classes. When the genotypic variance in the most-populated
genotype class was lower than that in the least-populated
class, λ3 was inflated, and when the opposite was true, λ3

was deflated. The direction of this relationship between type
I error and the variance ratio is the same as that reported in
early work on the impact of unequal variances and unequal
sample sizes on type I error rates in the t-test [Glass et al.,
1972]. Because the same heteroskedasticity occurred for the
repeating SNPs in the two-locus model without an interac-
tion term, yet λ2 values from these scans on the non-repeating
SNP were virtually unchanged from the main-effect λ values
(supplementary Fig. S4 vs. Table 1), heteroskedasticity did
not appear to significantly affect λ2 for the two-locus model.
We hypothesize that it affects λ3 for the product-term model
because the product term is a function of the repeating SNP
and will partially reflect its variance patterns. We hypothe-
size that the relationship between λ3 and the variance ratios
appears strongest for the variance ratio of the two most pop-
ulated genotype classes because the variance patterns in the
product term will best reflect the variance patterns in these
classes, while the relationship decays for the least-populated
genotype class of the low-MAF repeating SNPs because the
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Figure 2. Interaction-term lambda (λ3) from SNP-by-genome interaction scans on FamHS dataset plotted by repeating-SNP genotypic variance
ratios. Genotype classes of the repeating SNPs used in SNP-by-genome scans in the FamHS dataset are indicated on the x-axes by the number
of subjects they contained, where the class with the greatest number of subjects is labeled 1 and the class with the fewest subjects is labeled
3; for example, for repeating SNP 1 (Table 2), the genotype class with 923 subjects is labeled 1, the class with 126 subjects is labeled 2, and the
class with four subjects is labeled 3. For each of nine phenotypes, the variance of the phenotype within each of these classes (the “genotypic
variance”) was calculated, then all three ratios of the three variances were calculated. The x-axis of panel A indicates the genotypic variance
ratio of the largest to the smallest genotype class of the repeating SNP; panel B shows the genotypic variance ratio for the middle to the smallest
genotype class of the repeating SNP; and panel C shows the genotypic variance ratio for the largest to the middle genotype class of the repeating
SNP. Interaction-term lambda values from all 81 SNP-by-genome interaction scans performed on the FamHS dataset (nine repeating SNPs, nine
phenotypes) are indicated by the y-axis.

variance patterns in these sparse cells do not carry over well
to the product term once those few subjects are distributed
among the three genotypes of the second SNP. To illustrate
these patterns at the same sample size but with more data
points, we show the same plots for simulated dataset V (sup-
plementary Fig. S10). The relationship between λ3 and vari-
ance ratios persisted at larger sample sizes (plots for simulated
datasets III and IV are shown in supplementary Fig. S11) but
here the variance ratios, along with the λ3 values, did not
range far from one.

Because heteroskedasticity appeared to play an important
role in λ3 variation, we performed SNP-by-genome inter-
action scans on all datasets using HC0 or HC3 instead of
ordinary least squares (OLS) standard errors. In the smallest
of simulated datasets II–IV, both HC0 and HC3 standard er-
rors narrowed the range of λ3 throughout the repeating-SNP
MAF spectrum but especially at low MAF (Fig. 3A–C). It
was also in this MAF range that HC3 standard errors most
strongly showed an advantage over HC0 standard errors due
to less inflation. By contrast, in the two larger sample sizes,
HC standard errors had less impact, and HC3 standard er-
rors showed little improvement over HC0 (Fig. 3D–I). The
FamHS dataset and simulated dataset I showed similar re-
sults, with HC3 again performing better than HC0 (supple-
mentary Fig. S12).

For the HC0 and HC3 scans, we excluded subjects from
two-locus genotype classes with counts under 5 to avoid the
worst of the P-value inflation that we have observed when us-
ing HC standard errors on datasets with sparse cells. We reran
our original OLS scans using this five-subject minimum so
that fair comparisons could be made with HC0 and HC3,
although for OLS this exclusion had little effect on the λ3 dis-
tributions (e.g., Fig. 1C compared with Fig. 3A). We applied

this five-subject minimum because although HC standard
errors narrowed the range of λ3 which is based on a median
value, in individual Q-Q plots they sometimes created P-value
outliers that did not occur when OLS standard errors were
used. This appeared to be related to MAF, so to investigate it
further we performed SNP-by-genome interaction scans on
the FamHS dataset for repeating SNP 1 (MAF = 0.06) using
HC3 standard errors, and this time applied a MAF threshold
of 0.01 (instead of 0.05) for the non-repeating SNPs using no
minimum cell count. We found a dramatic increase in P-value
outliers from these scans when using HC3 but not when using
OLS. This occurred for all nine phenotypes but as a represen-
tative example we show Q-Q plots comparing OLS and HC3,
using MAF thresholds of 0.01 or 0.05, for one phenotype
(Fig. 4). Assuming the P-value outliers were related to sparse
cells, we applied a MAF threshold of 0.05 with an additional
requirement that a minimum of five subjects occur in each
two-locus genotype class that was populated—so that any
subjects in classes more sparse than this were dropped from
the dataset before applying the model—and found further
improvement in the Q-Q plot (supplementary Fig. S13B).
We examined two-locus genotype counts corresponding to
the P-values at the significant end of the distribution and
found that cell counts were more sparse (more likely to have
just cleared the cutoff of five subjects) than for P-values at the
other end of the distribution. It was only when a minimum of
25 subjects per populated cell was applied that the Q-Q plot
appeared to follow the null distribution (supplementary Fig.
S13D). We compared HC0 to HC3 using these minima and
found that HC3 showed an improvement over HC0 when a
minimum of five subjects was applied, but there was little dif-
ference between the two when the minimum was increased
to 25 (supplementary Fig. S13).
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Figure 3. Comparison of interaction-term lambda (λ3) distributions obtained using three types of standard errors in SNP-by-genome interaction
scans on simulated datasets II–IV. Ordinary least squares standard errors were used in panels A, D, and G; HC0 standard errors were used in
panels B, E, and H; and HC3 standard errors were used in panels C, F, and I. Analyses for simulated dataset II are shown in panels A–C; those for
simulated dataset III are shown in panels D–F; and those for simulated dataset IV are shown in panels G–I. Each panel contains 414 data points
representing SNP-by-genome interaction scans for nine phenotypes drawn from a standard normal distribution and 46 repeating SNPs. Subjects
in two-locus genotype classes with fewer than five subjects were dropped before analyses were performed (see Methods and Results), which
distinguishes panels A, D, and G from Figure 1 panels C, D, and E, respectively.

Discussion

Our results lead us to the following conclusions.

1. Interaction-term test statistics within a SNP-by-
genome scan are not independent, so the correspond-
ing λ3 value is not directly comparable to λ from a
main-effect-only scan. The non-independence arises
because the interaction term is the product of one term
that repeats and one that does not. As discussed in Kam
and Franzese [2007], researchers using the product-term

model of interaction have long been aware that collinear-
ity arises from the inclusion of a product term and its
component terms within the same model; this has led to
discussions in the social sciences literature about infla-
tion of standard errors and whether centering variables
before computing their product alleviates this (which
it does not). While this collinearity is not a concern in
general, in the setting of a SNP-by-genome interaction
scan it becomes consequential because the product term
is collinear with an additive term that is the same from
SNP pair to SNP pair within a scan, making the product
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Figure 4. Q-Q plots from SNP-by-genome interaction scans in FamHS dataset for repeating SNP 1 and the phenotype of ln(LDL cholesterol). OLS
standard errors are used in panels A and B; HC3 standard errors are used in panels C and D. The non-repeating SNPs had MAF � 0.01 in panels A
and C, and MAF � 0.05 in panels B and D. Repeating SNP 1 had MAF = 0.06 (Table 2). Blue indicates observed vs. expected −log10(P) values; black
indicates the line y = x.

terms within a scan correlated with each other. One way
to illustrate this is with Q-Q plots from a two-locus scan
without an interaction term. A Q-Q plot based on the
repeating SNP shows virtually identical results in every
regression, but the non-repeating SNP—which is inde-
pendent from the repeating SNP in all cases except for
a few in linkage disequilibrium with it—has a Q-Q plot
nearly identical to that from the main-effect scan on the
same phenotype (supplementary Fig. S14). When the
product term is added to the model, it should show fea-
tures of both conceptual extremes; the λ3 statistic can be
expected to have a greater variance than the main-effect
λ even if no bias is present in the interaction test statistics.
If there is bias, it will tend to be in the same direction
throughout a scan. By contrast, in a main-effect-only
scan, small biases due to misspecification likely occur
in each test but cancel out on average because the tests
are virtually independent. We believe that similar biases
resulting from random minor violations of regression
assumptions (especially heteroskedasticity) that occur

as interaction-term test statistics fail to reach asymp-
totic properties, coupled with non-independence within
a scan, create the observed λ3 variability. These biases
may be greater for the interaction model than simpler
models because of higher leverage values, as discussed in
conclusion 5. We expect this pattern of variation in type I
error to occur in any setting in which a test is performed
on at least one product term formed using a component
term that repeats from test to test. We extended our anal-
ysis to the 2- and 4-df tests of interaction (models III and
IV; supplementary Fig. S15) and the results are consis-
tent with this explanation for variability in type I error,
particularly in the stark contrast between type I error
rates for a 2-df test on the repeating SNP and product
term compared to a 2-df test on the non-repeating SNP
and product term.

The λ3 variability arising in our simulated datasets
II–V is the minimal disturbance that can be expected in
type I error rates for SNP-by-genome interaction scans.
While the outliers and minor non-normality in our real
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phenotypes did not appear to affect the overall λ3 distri-
bution (Fig. 1B vs. C), it is possible in theory for more
severe nonlinearity, non-normality, or other violations
of regression assumptions to create further variation in
λ3. So could population substructure; the expected im-
pact of this on λ3 has been briefly explored [Bacanu
et al., 2002] but is still not well understood. Finally, link-
age disequilibrium can create false positives in tests of
interaction [e.g., Hemani et al., 2014a; Wood et al., 2014;
Hemani et al., 2014b]. Although these may not be suffi-
cient to affect the overall λ3 value, the SNPs proximal to
the repeating SNP in a SNP-by-genome scan may be best
analyzed separately with the possibility of confounding
by linkage disequilibrium in mind.

2. One way to interpret λ3 is by comparison to a
simulation-based empirical distribution. Following
the explanation for λ3 variability given above, one strat-
egy for interpreting λ3 is to compare it to an empirical
distribution of λ3 generated by simulating a similar-
sized dataset with no SNP effects and without popula-
tion substructure, and then performing a large num-
ber of SNP-by-genome scans on it. Here, we would
compare our FamHS results in Figure 1A to our sim-
ulation results in Figure 1B and conclude that our re-
sults occurred within the expected distribution. As the
sample size and repeating-SNP MAF decrease, this ap-
proach would begin to become unreasonable; another
approach might be to use the expected correlation struc-
ture within a scan to calculate an adjusted λ3 value,
but it is unclear whether this could be done in a way
that does not compromise the ability to detect pop-
ulation substructure or other sources of real bias in
the data.

3. The λ3 value should not be used to adjust interaction
test statistics. Because some of the apparent bias is due
only to non-independence, “correcting” it with λ3 would
introduce a new source of bias. Also, heteroskedasticity
and other sources of bias likely occur for both SNPs,
so for an interaction between two SNPs, two λ3 values
would become relevant.

4. If HC standard errors are used, HC3 is preferable to
HC0; but both versions come with limitations that
may outweigh their benefits in this setting. In our
data, the advantage of HC3 over HC0 was most obvi-
ous at low sample size and repeating-SNP MAF. This
is unsurprising because the only difference between
HC0 and HC3 is a leverage adjustment, as we discuss
in more detail here. For the classical regression model
Y = Xβ + ε, the OLS solution vector is β̂ = (X ′X )–1X ′y
with covariance matrix var(β̂) = (X ′X )–1X ′�X (X ′X )–1,
where � = E (εε′). In OLS, � is estimated by pooling
the squared residuals e2

i over the entire sample, so that
�̂OL S = diag[�n

i=1e2
i /(n – k)] where k is the number of

parameters in the model. HC0 instead estimates � using
the squared OLS residual for each individual observa-
tion so that �̂HC0 = diag[e2

i ]. HC3 is similar to HC0 but
adjusts each observation’s squared residual by a function
of its leverage value: �̂HC3 = diag[e2

i /(1 – hii)
2].

The use of HC standard errors in this setting comes
with limitations. One is that HC standard errors do not
correct bias in the coefficient estimates themselves, so
are an incomplete solution to P-value bias arising from
model misspecification when that misspecification is not
purely in the form of heteroskedasticity. A recent work
from the field of political science [King and Roberts,
2015] points this out and argues that HC standard errors
function better as a flag for misspecification than as a
default approach taken in anticipation of it.

Another problem is that although HC standard errors
narrowed the range of λ3, they came with the trade-off
of creating P-value outliers that appeared to be due to
cell sparseness. The equations for HC0 and HC3 suggest
an instability to the � estimate when a predictor vari-
able is very unbalanced: an entire two-locus genotype
class becomes represented by the residuals from a small
handful of subjects. It is also possible that HC3 remains
biased downward in some situations despite its leverage
adjustment. In either case, the choice of MAF threshold
for both predictor variables becomes more important
with HC than OLS standard errors, and the appropriate
threshold at a given sample size will not necessarily be
clear.

Because a SNP-by-genome scan is a hypothesis-
generating tool that targets the significant end of the
P-value distribution, this risk that comes with HC errors
must be weighed against the benefit. At larger sample
size and higher MAF of the repeating SNP, HC standard
errors showed little improvement over OLS, so OLS ap-
pears to be a better choice; λ3 values that range too wide
could be compared to a simulation-based empirical dis-
tribution of λ3. Unfortunately, the picture is less clear at
lower sample size and greater unbalancedness of the pre-
dictor variables. These were the conditions under which
HC standard errors showed the greatest advantage over
OLS in terms of λ3 but were also the conditions under
which they were most prone to creating P-value outliers.
A resampling-based method might offer an alternative,
but would be computationally impractical to perform
on this scale.

5. The product-term model draws observations to higher
points of leverage than a two-locus model on the same
dataset, predicting that inference on the product-term
model is comparatively more sensitive to deviations
from the assumptions of the classical regression model.
While examining regression diagnostic plots, we no-
ticed that the product-term model increased the leverage
of some two-locus genotype classes, especially sparsely-
populated ones, compared to a two-locus model without
an interaction term (supplementary Fig. S16). In a mul-
tiple regression, points of high leverage are multivariate
outliers of the predictor variables, and have high po-
tential for influence on the coefficient estimates [Belsley
et al., 1980]. It is reasonable that the addition of the
product term, which by definition is correlated with its
component terms, has this effect because few observa-
tions can distinguish the predictors from each other. This
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problem could be similarly expressed as a multicollinear-
ity problem that is worsened by the unbalancedness of
predictor variables inherent to genetic datasets. Express-
ing the problem in terms of leverage has the advantage of
making it directly relatable to the regression-diagnostic
setting and to the choice of HC standard errors, some of
which are adjusted for leverage.

Ultimately, as genetics consortia begin to search for in-
teractions across multiple datasets, the larger sample sizes
obtained will not only improve the power to detect in-
teractions, but also improve the validity of the interaction
test via smaller random violations of regression assumptions
and smaller leverage values. The apparent validity as viewed
through λ3 will also improve as sample size increases, be-
cause the actual validity improves and because collinearity
is reduced as sample size increases, which reduces the non-
independence of interaction test statistics within a scan. For
SNP-by-genome analyses, these observations favor the use of
combined individual-level data in a “mega” rather than the
traditional “meta” analysis approach, which corrects for λ at
the study level and sometimes meta-analysis level [Winkler
et al., 2014]. Yet even at larger sample sizes, these studies
would benefit from methods to assess and correct for pop-
ulation substructure that are better tailored to the unique
setting of genome-wide interaction testing.
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