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The dualism of genetic predisposition and environmental influences, their interactions, and respective roles in shaping the
phenotype have been a hot topic in biological sciences for more than two centuries. Heritable epigenetic variation mediates
between relatively slowly accumulating mutations in the DNA sequence and ephemeral adaptive responses to stress, thereby
providing mechanisms for achieving stable, but potentially rapidly evolving phenotypic diversity as a response to environmental
stimuli. This suggests that heritable epigenetic signals can play an important role in evolutionary processes, but so far this
hypothesis has not been rigorously tested. A promising new area of research focuses on the interaction between the different
molecular levels that produce phenotypic variation in wild, closely-related taxa that lack genome-wide genetic differentiation.
By pinpointing specific adaptive traits and investigating the mechanisms responsible for phenotypic differentiation, such study
systems could allow profound insights into the role of epigenetics in the evolution and stabilization of phenotypic discontinuities,
and could add to our understanding of adaptive strategies to diverse environmental conditions and their dynamics.

1. Introduction

Patterns and causes of biological variation have fascinated
and challenged natural scientists for a long time. The
Darwinian evolutionary theory highlights the importance
of natural variation as raw material upon which selection
processes can act, thereby increasing the fitness of locally
adapted phenotypes [1]. Conceptual and technical develop-
ments since the late 19th century have greatly enhanced our
understanding of some of the main mechanisms producing
and maintaining biological variation, namely, genetic muta-
tion and recombination [2]. However, natural selection acts
upon phenotypic variation represented by the individual [3],
which is delimited by its genetic constitution, but also shaped
by its specific environment [4] and developmental processes
[5]. The process of evolution is thus a result of complex
interactions between various intrinsic and extrinsic factors
[6].

Therefore, current evolutionary investigations should
consider several levels of biological variation [7]. First,
differences in the DNA sequence account for a great amount

of biological variation: the genetic system defines the range
of functional possibilities of each individual. However,
these heritable differences translate into the phenotype
only indirectly via the resulting RNA and protein products
which mould the structure and function of an organism.
Much progress has been made in recent years in identifying
gene functions and candidate genes coding for important
metabolic enzymes, but analyses of whole genomes remain a
complex challenge. Even in organisms whose whole genome
is sequenced, a large number of genes still remain unchar-
acterized [8]. The second important source of biological
variation is fluctuation in rates of gene expression, resulting
in phenotypic plasticity [9, 10]. Genes can be up- or down-
regulated in response to environmental conditions, such as
temperature regimes or water supply, or intrinsic factors
such as specific phenological or developmental stages [11].
This leads to temporary modifications of the phenotype,
which are generally not passed on to the next generation [12,
13]. The third level, heritable epigenetic variation, via both
specialized enzymology inducing structural modifications of
the DNA (through DNA methylation, histone acetylation


mailto:ovidiu.paun@univie.ac.at

[14, 15]) and small interfering (si) RNA populations [16, 17],
results in (meta) stable chromatin landscape differences.
Epigenetic differences determine if and where particular
genes or groups of genes are to be expressed, while the under-
lying DNA sequence remains identical [18]. Most of these
differences are reversible developmental effects and they
are part of the molecular processes underlying phenotypic
plasticity in response to variation in the environment [19].
However, environmental change, severe stress or genomic
shock events like hybridization or genome duplication can
change the epigenetic configuration of an organism resulting
in new phenotypes [20-26], and some of these alterations
can be passed on to the next generations [27-30].

The molecular mechanisms underlying these compo-
nents of phenotypic variation differ in their stability and in
the time frames in which they confer phenotypic novelty. The
genetic sequence is the most stable, evolving slowly through
mutation and gradually accumulating changes over a large
number of generations. In contrast, gene expression levels
can be rapidly and continuously regulated within a very
short time [11], much shorter than the generation length of
an organism, and allow an almost instantaneous response
of the individual to its environment within limits defined
by its genetic constitution. Heritable epigenetic alterations
act within an intermediate time horizon, since they can
occur as an immediate and multilocus reaction to different
kinds of external or intrinsic stimuli [23] but are not as
ephemeral as plastic gene regulation and can affect the
following generations [18].

It has long been established that mutations in DNA
sequence are the primary raw material for evolutionary
change [2]. The involvement of environmental influences
in generating heritable biological variation is still debated
[13, 22], as is the necessity of extending our modern
evolutionary synthesis [31]. Accumulating evidence indicates
that modifications of epigenetic signals are correlated with
phenotypic variation within and among species [25, 32—
34], placing epigenetic differentiation even in a macroevolu-
tionary context. Latest developments regarding the potential
role of phenotypic plasticity in driving diversification and
speciation have been discussed elsewhere (e.g., [13, 35]). We
are hereafter focusing on the impact of heritable epigenetic
variation on the process of evolution and propose a research
plan to address its evolutionary significance.

2. Potential Impact of Heritable Epigenetic
Variation on Evolution

Empirical studies have demonstrated high levels of epigenetic
variation within natural populations [25, 36-41]. While
experiments have shown that environmental conditions can
override epigenetic signals (e.g., [26, 42, 43]) and increase
this variation, few recent studies indicate that natural selec-
tion can act directly or indirectly on epigenetic variation [25,
38, 39, 44], potentially leading to evolutionary divergence
and adaptation. Altogether, epigenetic information provides
an additional source of natural variation, which may be
particularly important for survival of small populations
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lacking genetic variability [45] and/or occupying a frag-
mented landscape. Selectable epigenetic variation can enable
genetically depauperate lineages to adapt [46] until genetic
assimilation occurs (i.e., when environmentally induced
phenotypic variation becomes fixed by secondary genetic
control, e.g., after deamination of methylated cytosine to
thymine [13, 47]). Thus, heritable epigenetic variation could
pave the way for genetic adaptation.

The epigenetic sources of variation can be stochastic
epimutations, but a major part of the epigenetic variation
is triggered by stress or changes in the environment [3,
22, 48], that is, under circumstances when new phenotypes
could be crucial for survival. Moreover, if conditions return
to their original state, spontaneous back-mutation of epi-
alleles can restore original phenotypes (e.g., in position-
effect variegation [27]). In the light of epigenetic variation,
the involvement of the environment in evolution becomes
twofold: as a stimulant of variation and as the selector of
adaptive variation.

At the interface between genotype and environment, the
overall rate of epimutations is often much higher than that
of genetic mutations [49], resulting in a more dynamic level
of variation. Novel epigenetic modifications may originate
simultaneously in several individuals in a population under
stress, which will facilitate fixation. Despite the potentially
high loss of epigenetic novelties by epigenetic reset [19],
epimutations can reach equilibrium frequencies within pop-
ulations rapidly, over less than a dozen generations if the
environmental stress is maintained long enough [28]. In
stark contrast to the expected incidence of genetic mutations,
environmental fluctuations can trigger multiple epimuta-
tions in the same individual. This renders fast ecological
adaptation affecting (complex) adaptive traits more plausible
[50]. Hence, recombination is not necessarily a prerequisite
for adaptive change, if the latter is driven from the epigenetic
level. In addition, epigenetic mechanisms may partly defy
well-understood population processes, such as allelic drift
(due to potential maintenance of relatively constant epiallelic
frequencies through environmental influence). Being more
flexible and dynamic than DNA sequence information,
variation in epigenetic signals could therefore act as major
driving force in rapid adaptive processes.

Epigenetic variation can have extensive consequences,
even in the absence of genetic variability [45, 50, 51].
Epigenetics may introduce, or reinforce in a back-coupling
process with environmental stimuli, major changes that lead
to strong phenotypic differentiation [52] until becoming
a real reproductive barrier. Most phenotypic differences
between species are genetically controlled, but epigenetic
inheritance can be of particular importance for the initial
development of phenotypic divergence [25]. If adaptive
and maintained long enough, phenotypic discontinuities
can become genetically locked and trigger species diver-
gence [53]. Modelling studies suggest that epigenetic vari-
ation can promote population divergence by facilitating
adaptive peak shifts, reducing genetic barriers represented
by fitness valleys in the adaptive landscape [47]. There-
fore, epigenetic novelties have been one of the mecha-
nisms put forward for saltational speciation [29, 54], but
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FiGURE 1: Putative relationships between populations of closely related alternative types (here exemplified with altitudinal differentiation),
which lack apparent genome-wide divergence. Below the reflection of the relationships in hypothetical phylogenies is given. Left, single
origin of each type, followed by dispersal to other geographical areas. Right, recurrent evolution of the types in several geographic regions

under environmental influence.

empirical data is not yet available to support or reject such
a hypothesis.

3. A Research Idea

Recently developed tools, in combination with traditional
methods, can shed light on the complex interactions between
genotype, epigenotype, and environment, and test for their
individual contribution to phenotypic divergence and evolu-
tion. Evolutionary biologists could address the evolutionary
relevance of heritable epigenetic polymorphisms by targeting
closely related ecotypes or species (hereafter types) that
show phenotypic differentiation without apparent genome-
wide genetic divergence. Such types could be identified, for
example, within asexual lineages or descendants of recent
adaptive radiation events. We suggest a multifaceted research
plan using an array of molecular techniques and field
experiments to investigate whether epigenetics is involved in
speciation by triggering phenotypic diversification.

3.1. Phenotypic Differentiation. As speciation is facilitated by
the process of divergence, the first question to be addressed
should be whether phenotypic variation in the study group
is discrete or continuous. Phenotypic variation is a common
feature of populations and species, and only a disconti-
nuity in this variation may indicate incipient divergence
and the onset of isolating mechanisms. Therefore, various
morphological, anatomical, and physiological traits among
populations of different types should be compared to test
whether the types form well defined, distinct groups or
whether the extreme phenotypes are linked by individuals
with intermediate traits or combinations of characters. In
addition, measurements and observations of environmental
characteristics (e.g., microclimate, geology, soil, biological
interactions) could identify limiting environmental factors,
and relate them to anatomical, morphological, and physio-
logical specializations.

If main discontinuities in phenotypic variation separate
populations along type boundaries (e.g., by morphology or
habitat preference), the uniformity within each group and
constant difference between the groups might suggest a single
origin of each type and subsequent dispersal (Figure 1).
However, this seems rather unlikely in absence of genome-
wide genetic divergence among the types. An alternative
scenario could invoke repeated migration and iterative in
situ formation of each type in alternative environments, with
very strong and almost identical selection pressures acting
upon different populations of each of the types.

3.2. Genetic and Epigenetic Differentiation. Singular versus
multiple origin of each type should be tested by inves-
tigating the extent and structure of genome-wide genetic
and epigenetic divergence within and among populations of
both types. If populations cluster genetically in disagreement
to the type (possibly determined by other factors, e.g., by
geographic proximity), it may be hypothesized that their
differentiation is underlaid by epigenetic mechanisms and
that types have evolved several times in parallel. Alternatively,
local high rates of gene flow combined with strong selection
at a few adaptive genetic loci could hypothetically produce
a similar pattern of highly porous genomes [55]. In such a
case, a small number of adaptive (outlier) genetic loci of large
effect should be responsible for the observed phenotypic
differentiation. Outlier analyses [56-58] of genetic profiles
provided, for example, by DNA fingerprinting techniques
such as RAD (restriction site associated DNA) sequencing
[59], microsatellites, or AFLP (amplified fragment length
polymorphism [60]), could help identifying these loci or
closely linked genomic regions. Positive selection will shape
at target loci a significantly higher differentiation between
populations of the alternative types than the genome-wide
bulk of loci, while loci under purifying selection will show
much lower differentiation [61]. On the other hand, if
individuals of each group share type-specific epigenetic



patterns and/or mRNA transcripts, differentiation could be
mediated either by overall differences in the epigenome or by
a few epialleles.

As epigenetic variation is not detectable in genomic
surveys of sequence variation, dedicated investigations have
to be employed to address it. In recent years, a variety
of genome-wide approaches, including techniques involving
next-generation sequencing, have been developed to com-
paratively profile epigenetic patterns in nonmodel organisms
(62, 63]. Cost-effective comprehensive methods include, for
example, fractioning the DNA using Cot filtration [64, 65] to
enrich low-copy regions (mostly genes and their promoters)
and sequence this genomic subsample by employing next
generation methods and bisulfite sequencing. The latter is
a process that converts unmethylated cytosines to uracils,
which will then appear as thymines after sequencing [66].
Third-generation DNA sequencers, like the recently released
single molecule real-time (SMRT) DNA sequencer could be
employed for direct detection of DNA methylation [67] and
thus enable much more profound study of both model and
nonmodel epigenomes. Alternatively, genome-wide DNA
methylation could be studied using isoschizomers [68, 69].
Similarly as for genetic dataset(s), the epigenetic information
could be searched for general patterns of differentiation and
for signatures of selection on individual (epi)loci [25, 44].
This should clarify if ecological and/or morphological diver-
gence is dependent on just a few loci controlling traits for
local adaptation, or if it is triggered by extensive differences.
As the alternative types thrive in different environments,
the selective pressures and their magnitude may vary across
populations. Epigenetic signals will most often suffer from
imperfect heritability; therefore, stronger selection will be
needed to produce patterns that will be detected as outliers
by statistical approaches.

To infer broad, genome-wide regulatory variation, in-
depth quantitative gene expression analyses using next-
generation sequencing (RNA-seq, [70-72]) could be per-
formed searching for loci with significant expression differ-
ences between individuals of different types after growing
them under uniform conditions to reduce the momentary-
dependent noise in rates of expression. In addition, targeting
posttranscriptional regulation, small RNA profiles could be
compared using an smRNA-seq approach [63, 73, 74]. The
different data types can finally be integrated in functional
analyses (i.e., gene annotations) to identify correlated com-
ponents that are part of the same regulatory network.

3.3. Heritability of Phenotypic Plasticity and Habitat Speci-
ficity. If the molecular basis of phenotypic differentiation
and/or adaptation to divergent environments is identified
within epigenetic rather than DNA sequence divergence,
the next research step would be to investigate how stable
the phenotypic divergence is. This will also help to assess
the stage of speciation in which the group is at present.
While facilitating population divergence and speciation [35],
nonheritable phenotypic plasticity will trigger speciation
only if the environmental conditions are stably different
in the alternative localities [35] and gene flow is either
infrequent or strongly opposed by natural selection. On the
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other hand, in the case of heritable phenotypic divergence
that is fully stable even in the alternative environment,
epigenetically triggered adaptation may have been already
assimilated in the genetic code.

Reciprocal transplant experiments together with at-
tempts to grow the different types under the same envi-
ronment across several generations (i.e., between three and
five as a minimum requirement) should be installed to
determine the extent of phenotypic plasticity, and the ability
of the different types to cope with altered environmental
conditions. Growing individuals of the alternative types
in a uniform environment across several generations may
reveal the heritability of morphological and ecological
characteristics within each of the types (“nature versus nur-
ture”) [75]. Comparatively investigating relevant (epi)loci in
transplanted individuals versus controls will pinpoint those
patterns that are immediately disrupted by the environment,
and those that persist or, alternatively, are not under the
influence of the relevant limiting environmental differences.
Integrating this information and comparing morphological,
anatomical and physiological traits supplemented by a set
of fitness components among transplants and controls
will define the links between genotype, epigenotype and
phenotype, together with providing additional information
on the patterns of selection and their targets.

According to the mechanisms underlying the observed
differentiation, at least two possible outcomes can be antic-
ipated. If the morphological and/or ecophysiological differ-
ences are triggered by continuous but nonheritable responses
to local environments (i.e., as a reaction norm [76]),
there should be no phenotypic differences between the
progeny of the two types when reared and grown under
the same conditions. Such a scenario will not (yet) be
relevant for speciation. On the other hand, if heritable
epigenetic differences are involved, phenotypic divergence
between individuals of the types should at least partly be
retained in a common environment. In the latter case the
morphology, anatomy, and physiological properties of the
transplanted individuals should reflect their origin rather
than their current environment. This may go to the extreme
that individuals are maladapted and do not survive under
alien environmental conditions.

The result of these experiments could simultaneously
allow for inferring evolutionary and population dynamics
within the study group. If individuals of alternative types
can adapt phenotypically to the habitat of the other and
develop the habitat-specific syndromes following transplant
experiments, the possibility of frequent gene flow between
populations of both types should be considered. This
might as well explain the lack of overall differentiation,
as it prevents lineage sorting and hampers or slows down
speciation. On the contrary, low fitness (i.e., poor per-
formance and high mortality) of individuals in the native
habitat of the alternative type may point to a differentia-
tion that is strong enough to prevent gene flow between
populations. In this case, we may be observing a process
of ongoing speciation, where differentiation starts at the
epigenetic level, triggering profound changes leading to
segregation in terms of habitat, phenology, and/or biological
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FIGURE 2: Low-elevation Heliosperma veselskyi and high-elevation H. pusillum are differentiated morphologically and ecologically. Partic-
ularly conspicuous is the dense indumentum of sticky glandular hairs on H. veselskyi in comparison to the glabrous leaves and stems of H.

pusillum (Photographs: M. Sonnleitner).

interactions. Divergent selection may reinforce this environ-
mentally induced specialization/niche segregation and bring
about reproductive isolation. This will eventually result in
virtual isolation of gene pools, and ultimately give way to
stronger overall differentiation by accumulation of genetic
differences due to the stochastic effects of drift.

4. Heliosperma pusillum Group: An Example of
an Appropriate Study System

Heliosperma pusillum and allied taxa from the carnation
family (Caryophyllaceae) contain a variety of morphologi-
cally different taxa (Figure 2) with distinct ecology, which
are altitudinally or geographically isolated, but genetically
intermixed (Figure 3) and do not represent independent
evolutionary lineages [78]. Molecular phylogenetic studies
based on AFLPs [77] and sequences of several nuclear and
chloroplast regions [77-79], show that genetic divergence
within the group is generally shallow, many taxa seem to
be polyphyletic, and geographically allied taxa often share
the same genetic constitution. We hypothesize that they
either (i) represent fixed ecotypes, that is, differ subtly in
their DNA coding regions with major phenotypic effects, or
(ii) result from middle- to short-term adaptive (epigenetic)
processes, perhaps under the influence of the environment
and independent of actual changes in DNA sequence. All
of them are perennial caespitose herbs that inhabit rocky
habitats and shallow caves in mountain ranges of southern
Europe [78, 80], mostly on calcareous substrates.

Different authors [78, 81] have subdivided this complex
into two ecologically and morphologically distinct groups
of taxa: a higher elevation group occurring in damp, open
habitats and among rocks above the timberline and a
lower elevation group inhabiting canyons and gorges as
well as shallow caves and cliff overhangs with rather dry
soils, high atmospheric moisture and poor light conditions

below the timberline. The higher elevation group, including
H. albanicum, H. pudibundum, and H. pusillum s.str., differs
from the lower elevation group by narrower, glabrous or
sparsely hairy leaves and often unicellular glands as well
as longer seed papillae [78, 81]. By contrast, plants of
lower elevations share a denser indumentum with long
multicellular glandular hairs and are often sticky (Figure 2).
Generally, morphological variation is much higher in the
lower elevation group, which contains several narrowly
distributed taxa [78, 82]. Most of them are endemics of
the Balkan Peninsula; only H. veselskyi is restricted to the
southeastern Alps. The origin and evolution of the lower and
higher elevation groups and the relationships between them
are still poorly understood. Recent molecular phylogenetic
studies [78] (see also Figure 3) indicate that neither higher
nor lower elevation groups are actually monophyletic, but
rather inextricably intermingled with each other, indicating
that one of the groups evolved multiple times from the other.
Mechanisms involved in the phenotypic diversification of
the two groups, the morphological convergence within each
group, and the stability of this phenotypic divergence remain
unknown, but preliminary evidence suggests that morpho-
logical features remain constant in a common garden, at least
in the first generation. The H. pusillum complex is suitable
for (epi) genomic and transcriptomic analyses, because all
taxa have a relatively small genome (1C=1.32 pg [83]) and so
far no polyploid cytotypes have been found (2n = 2x = 24).
In addition, they can be easily grown from seeds and have
short generation times, which make them optimally suitable
for common garden and transplantation studies.

5. Synthesis and Outlook

Although the possibility of epigenetic inheritance has now
been established [7, 18, 27, 30, 84] and we are increasingly
understanding the full extent of its role in producing
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FIGURE 3: Genetic analyses do not support separation of higher-
altitude Heliosperma pusillum (orange) and lower-altitude H.
veselskyi (dark blue), but rather indicate an inextricable relationship
between the two taxa. Unrooted neighbor joining tree based on Nei-
Li distances calculated with PAUP from AFLP profiles [77].

phenotypic variation [19, 25, 39, 40], little research has been
done to systematically study the role of heritable epigenetic
variation for speciation. Incorporation of epigenetics into
evolutionary models and empirical studies is only now
starting to be attempted (e.g., [28, 49]); however, more
empirical information from natural populations is needed
for accurate modelling of epigenetic dynamics. Indeed,
the prevalence of alternative stable epialleles in natural
populations, and their significance to phenotypic divergence,
ecological interactions and selection in real-world contexts
remain too little explored [3, 41, 53]. The limited relevant
data available indicate a stochastic nature of epigenetic varia-
tion, which is continuously being shaped by the influence of
the environment, and further tuned through natural selec-
tion [25, 38, 39]. Therefore, the epigenetic aspect of natural
variation may contribute to evolution in a fashion similar
to genetics, but much more rapidly. Implying heritability
of adaptive (i.e., selected) traits, epigenetic inheritance is
not a contradiction of the Darwinian evolutionary synthesis
[31], but rather a complex augmentation of the classic
view on genetic inheritance, particularly as genotype and
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epigenotype interact to produce a broad array of short- and
long-term heritable combinations.

The recently available possibility to profile the epigenome
and transcriptome of nonmodel organisms in a high-
throughput manner [62, 63, 85] enables thorough investiga-
tion of some of the most challenging hypotheses in a modern
evolutionary framework, such as achieving and maintain-
ing stable divergence through epigenetic differences. The
acquired knowledge also impacts several related domains,
from conservation to theoretical evolutionary biology. Inves-
tigating recent adaptive radiations with epigenetic markers
may be particularly informative. Most traits of ecological
significance tend to be continuous or quantitative and appear
to be governed by many genes, each of little effect, but with
cumulative power [86], resulting in a complex picture of
factors and mechanisms acting upon the phenotype. Using
appropriate study systems it is now possible to interrogate
the links between ecological divergence and many regulatory
alterations of small effect or singular major epigenetic
switches. In addition, such investigations are expected to
pinpoint new loci that are sensitive to epigenetic modifica-
tion and unravel information on the rates of spontaneous
epimutations in natural populations and their stability over
time.

Currently accumulating data will offer valuable clues on
the establishment of broad regulatory determinants of func-
tional diversity in natural populations. The early evidence we
currently hold urges complementing our gene- and genome-
centred evolutionary view with a substantial consideration
of epigenetic factors when seeking to understand population
processes that drive adaptation and divergence [3, 53, 87].
Using modern technologies, future research will identify the
exact molecular mechanisms triggering relevant phenotypic
divergence and reproductive isolation. We will soon be
able to infer the corresponding selection pressures that are
responsible for the presence of a particular individual/a
particular species in its specific habitat. Understanding how
new plant species form and adapt to novel ecological niches is
crucial to advance our knowledge of evolutionary processes
active at the population level driving adaptation and spe-
ciation. An increased knowledge of organismic adaptation
strategies is also of outstanding importance in the current
context of widespread environmental challenges. It may be
a key for predicting effects of climate change and managing
biodiversity in a sustainable manner.
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