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Abstract: Inflammation is an indispensable biological process stimulated by infection and injuries.
Inflammatory mechanisms related to extracellular vesicles (EVs), which are small membrane struc-
tures carrying various molecules, were summarized in this review. Emerging evidence from animal
studies has highlighted the role of EVs in modulating inflammatory responses, by transporting
various molecules involved in host defense. In this review, we have discussed the role of EV miRNAs
in inflammation. Rodent studies associated with extracellular miRNAs in inflammatory diseases,
published from 2012 to 2022, were explored from PUBMED, EMBASE, and MEDLINE. A total of
95 studies were reviewed. In summary, EV-associated miRNAs play a key role in various diseases,
including organ injury, immune dysfunction, neurological disease, metabolic syndrome, vesicular
disease, arthritis, cancer, and other inflammatory diseases. Diverse EV-associated miRNAs regulate
inflammasome activation and pro- and anti-inflammatory cytokine levels by targeting genes.

Keywords: extracellular vesicle; inflammation; organ injury; immune dysfunction; metabolic syndrome;
neurological disease; arthritis; cancer

1. Introduction

The inflammatory response is a rapid and complex physiological process that involves
defense mechanisms acting against infections and injuries [1,2]. Inflammation is often
regarded as a failure of homeostasis between the host and immune cells. Dysregulation of
the inflammatory response underlie various pathological conditions, including chronic in-
flammation [3], autoimmunity [4], neurodegenerative diseases [5], and cancer [6]. Previous
discoveries in inflammatory processes have highlighted the physiological and cellular basis
of inflammation under experimental conditions using bacterial lipopolysaccharide (LPS),
peptidoglycan, and viral double-stranded RNA [7]. Intracellular signals sent to immune
cell nuclei are followed by initial inflammatory cues, which stimulate various transcrip-
tional changes [8]. In addition to the discovery of molecular mechanisms of regulation
and initiation of inflammatory responses, a new perspective on inflammatory processes
was revealed in recent decades, with the emerging interest in the discovery of mammalian
microRNAs (miRNAs) and extracellular vesicles (EVs) [9,10].

EVs are small vesicles (30–10,000 nm in diameter) that can be categorized into the
following three types according to their size and biogenesis: exosomes, microvesicles, and
apoptotic bodies [11]. EVs are evident in almost all living cells and have been gaining
attention as a novel mediator of communication between cells and numerous biological
processes and regenerative properties [12,13]. Evs carry various molecules, such as pro-
teins, mRNA [14], long non-coding RNA, circular RNAs, RNA, and miRNAs [10]. miRNAs
are endogenous non-coding RNA molecules that use exosomes as carriers to achieve in-
tercellular communication and regulation of protein biosynthesis, while being protected
from degradation in the harsh extracellular environment [15]. Extracellular miRNAs have
numerous functions in inflammatory processes [16,17], cell migration [18], apoptosis [19],
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and proliferation [20]. From the perspective of inflammatory responses, various extra-
cellular miRNAs have recently been reported to be expressed in immune cells, affecting
the magnitude of their responses [21]. Moreover, the structural stability of extracellular
miRNAs has been widely recognized; extracellular miRNAs are now considered potential
noninvasive biomarkers for inflammatory disease monitoring and prognosis [22].

This report presents an overview of the recent studies on extracellular miRNAs, with
a focus on their role in inflammatory diseases in animals.

2. Study Methods
2.1. Literature Search

All relevant studies were initially searched on EMBASE, MEDLINE and PUBMED
database using the following search keywords: “extracellular vesicles”, “exosome”, “in-
flammatory diseases”, and “microRNA”. We included rodent studies published from
November 2012 to April 2022 and overlapping studies were excluded. Eventually, we
identified 320 potentially relevant literatures for further eligibility assessments.

2.2. Study Selection

Three authors (S.L., J.H.K. and S.-N.K.) independently assessed the 320 literatures and
a total of 208 studies were excluded based on the following exclusion criteria: (1) review
article (n = 100); (2) full text not available (n = 1); (3) not English (n = 1), (4) virus or
infection-induced experiment model (n = 14), (5) not a rodent study (n = 92). Title and
abstract screening were performed and six studies with no specific microRNA target (n = 12)
and five studies with no mention of microRNA mechanism were excluded. As shown in
Figure 1, this study ultimately included a total of 95 articles for further analyses.

Figure 1. Flowchart of study selection.

3. Main Text
3.1. Organ Injuries

Among the 95 articles, 35 articles were related to organ-injury-associated miRNAs
in exosomes. The uncontrolled inflammatory response is one of the major factors among
various causes of organ injuries. The miRNAs are known to target mRNAs and modulate
the level of protein expression encoded by these mRNAs. We attempted to determine
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how miRNAs in exosomes influence organ injury-related diseases, including myocardial
infarction, liver failure, ulcerative colitis, and acute lung injury (Table 1).

Table 1. Extracellular miRNAs in organ injury.

Author Disease Subject EV Type Targeted miRNAs

Liver

Bala et al. (2012) [23] Alcoholic liver disease Mouse Exo miR-122, miR-155,
Chen et al. (2018) [24] Autoimmune hepatitis Mouse Exo miR-223

Chen et al. (2018) [25] Liver fibrosis Mouse EV miR-34c, miR-151, miR-483,
miR-532, miR-687

Liu et al. (2018) [26] Acute liver failure Mouse Exo miR-17

Liu et al. (2020) [27] Nonalcoholic fatty
liver disease Rat Exo miR-192

Lu et al. (2019) [28] Autoimmune hepatitis Mouse Exo miR-223
Shao et al. (2020) [29] Acute liver injury Mouse Exo miR-455

Lung

Jiang et al. (2021) [30] Acute lung injury Mouse Exo miR-125b
Liu et al. (2021) [31] Acute lung injury Mouse Exo miR-384

Shen et al. (2022) [32] Septic lung injury Mouse Exo miR-490
Tian et al. (2021) [33] Septic lung injury Mouse Exo miR-16
Wei et al. (2020) [34] Acute lung injury Mouse Exo miR-377

Zhang et al. (2019) [35] Lung inflammation Mouse MV miR-223, miR-142
Zheng et al. (2021) [36] Acute lung injury Rat Exo miR-22

Heart

Chen et al. (2017) [37] Myocardial infarction Rat Exo miR-133
Kwon et al. (2021) [38] Myocardial infarction Rat EV miR-7004, mi7-7b
Luo et al. (2017) [39] Acute myocardial infarction Rat Exo miR-126

Milano et al. (2020) [40] Cardiotoxicity Rat Exo miR-146a
Pan et al. (2019) [41] Myocardial infarction Rat Exo miR-146a

Peng et al. (2020) [42] Myocardial infarction Mouse Exo miR-25

Sun et al. (2022) [43] Sepsis induced
myocardial infarction Mouse Exo miR-24

Wang et al. (2015) [44] Sepsis induced
myocardial dysfunction Mouse Exo miR-223

Wang et al. (2022) [45] Myocardial infraction Mouse Exo miR-129
Yu et al. (2021) [46] Cardiac hypertrophy Rat Exo miR-155

Bowel

Cai et al. (2021) [47] Colitis Mouse Exo miR-378a
Deng et al. (2021) [48] Ulcerative colitis Mouse Exo miR-590

Lu et al. (2021) [49] Ulcerative colitis Mouse Exo miR-21a
Sun et al. (2020) [50] Inflammation-injured IEC Rat Exo miR-200b

Kidney

Li et al. (2019) [51] Tubulointerstitial
inflammation Mouse Exo miR-23a

Li et al. (2020) [52] Ischemia/reperfusion injury Rat Exo miR-146a
Li et al. (2020) [53] Diabetic kidney diseases Mouse Exo miR-26a

Pan et al. (2019) [54] Sepsis, Acute kidney injury Mouse Exo miR-21

Other
organs

Jimenez-Alesanco
et al. (2019) [55] Acute pancreatitis Rat Exo miR-155

Liang et al. (2019) [56] Urethral stricture Rat Exo miR-146a
Liu et al. (2021) [57] Intrauterine adhesion Mouse Exo miR-223

Exo: exosome; EV: extracellular vesicle; MV: micro vesicle.

3.1.1. Liver Injury

In alcoholic and inflammatory liver diseases, serum/plasma miR-122 and miR-155
increased during drug-induced liver injury, and these miRNAs were present in the protein-
rich fraction [23]. In a mouse model with autoimmune hepatitis (AIH) induced by hepatic
injection of S100 protein, miR-223 in the exosomes derived from bone marrow mesenchymal
stem cells (BMSCs) protected the liver from injury and inhibited NLRP3 activation that
causes hepatic damage and liver dysfunction [24]. In hepatic fibrogenesis or fibrosis
in a carbon tetrachloride-or thioacetic acid-induced liver injury mouse model, EVs of
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normal mice suppressed hepatocyte death and circulating pro-inflammatory cytokine
levels. miR-34c, -151, -483, -532, and -687, which are highly expressed in EVs, have
therapeutic effects in injured hepatocytes [25]. In acute liver failure induced in mice by
LPS and D-GalN, miR-17 in AMSC-derived exosomes suppressed NLRP3 inflammasome
activation by targeting TXNIP [26]. In a high-fat high-cholesterol diet-fed-induced NAFLD
rat model, more exosomes were released, contained more miR-192, and the levels of M1-
specific cytokines, such as iNOS, IL-6, and TNF-α, increased. miR-192 in exosomes from
hepatocytes activated pro-inflammatory macrophages via Rictor/Akt/FoxO1 signaling [27].
In another experimental AIH mouse model, miR-223 carried in MSC exosomes attenuated
liver injury and inflammatory responses [28]. In an endotoxemia and chemical liver injury
induced by LPS, miR-455exosomes from hUC-MSCs attenuated macrophage infiltration
and cured liver damage via PI3K signaling [29].

3.1.2. Lung Injury

In an acute lung injury (ALI) mouse model established by cecal ligation puncture
(CLP), miR-125 in exosomes derived from endothelial cells promoted VEGF expression,
inflammatory response, improved pathological changes, restrained lung water content,
protein content in bronchoalveolar lavage fluid, and cell apoptosis by targeting TOP2A [30].
In an LPS-induced ALI rat model, miR-384 in exosomes derived from BMSC alleviated
pathological changes in lung, pulmonary vascular permeability, and attenuated the in-
flammatory response by targeting Beclin-1 [31]. In a sepsis-induced lung injury mouse
model and an LPS-induced AEC damage model, ADSCs exosomes promoted autophagy
activation through the delivery of circ-Fryl and the regulation of the miR-490/SIRT3 path-
way [32]. In a mouse model of CLP-induced septic lung injury, miR-16 in exosomes
developed from ADSCs relieved lung injury and promoted macrophage polarization by
suppressing TLR4 [33]. In another study on an LPS-induced ALI mouse model, miR-377
in exosomes from hucMSCs suppressed bronchoalveolar lavage, inflammatory factors,
and ameliorated lung injury by targeting RPTOR [34]. In a hyperoxia-induced ALI model
established using LPS or K. pneumoniae, microvesicles containing miR-223/142 targeted
lung macrophages and suppressed inflammatory lung responses by blocking N1rp3 and
Asc [35]. In another LPS-induced ALI rat model, miR-22 in exosomes derived from UCB-
MSCs suppressed pathological changes, apoptosis, NF-κB expression, and oxidative stress
response by reducing FZD6 levels [36].

3.1.3. Heart Injury

miR-133-MSC transplantation improved cardiac function, and miR-133-overexpressing
MSCs repressed cardiac expression of snail-1 and reduced inflammation and fibrosis in the
infarcted heart in a rat myocardial infarction model [37]. βARKct EVs altered pro- and
anti-inflammatory cytokine levels and prevented heart failure in a myocardial infarction or
catecholamine toxicity mouse model. The miRNA profiling revealed that miR-7004 and
mi7-7b were upregulated in βARKct present in EVs [38]. In a rat model of hypoxia-induced
H9c2 myocardial cell injury, miR-126-enhanced ADSC-derived exosomes decreased the
myocardial injury area of infarction, cardiac fibrosis, and inflammatory cytokine expres-
sion [39]. In a doxorubicin/trastuzumab-induced cardiac toxicity rat model, cardiac pro-
genitor cell-derived exosomes were highly enriched in miR-146a that prevented myocardial
fibrosis, CD68+ inflammatory cell infiltration, inducible nitric oxide synthase expression,
and left ventricular dysfunction [40]. In an acute myocardial infarction rat model produced
by surgical ligation of the left anterior descending coronary artery, exosomes from miR-
146a-ADSCs promoted myocardial cell apoptosis, inflammatory response, and fibrosis,
and attenuated myocardial infarction by downregulating EGR1 [41]. Using the same rat
model, cardioprotection was observed by exosomes from miR-25-MSCs, and exosomes
attenuated myocardial infarction by targeting EZH2 and pro-apoptotic proteins [42]. In a
sepsis-induced mouse with myocardial infarction, miR-24 in exosomes derived from M2
macrophages had cardioprotective effects and alleviated myocardial injury by suppressing
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Tnfsf10 [43]. miR-223 targeted SEMA3A and STAT3, and this miRNA in mice exosomes,
had cardioprotective effects in CLP-induced sepsis [44]. In a mouse model of myocardial
infarction caused by coronary artery ligation, exosomes overexpressing miR-129 showed
enhanced cardiac function and production of inflammatory cytokines, and inhibited apop-
tosis and fibrosis by targeting HMGB1 [45]. In angiotensin II-induced hypertrophy in rat
cardiomyocytes, hypertrophic cardiomyocyte-derived exosomes regulated macrophage ac-
tivation and induced phosphorylation of ERK, JNK, and p38 through the miR-155-mediated
MAPK pathway [46].

3.1.4. Bowel Disease

In a dextran sulfate sodium (DSS)-induced colitis mouse model, miR-378 carried by
hucMSC exosomes attenuated colitis by regulating macrophage pyroptosis and inhibiting
NLRP3 inflammasome activation [47]. Moreover, miR-590 carried by M2 macrophage exo-
somes suppressed inflammatory signals and promoted epithelial repair via the LATS1/YAP/β-
catenin signaling axis [48]. Another study on the same model showed that miR-21a in M1
exosomes attenuated DSS-induced enteritis by decreasing the expression of E-cadherin
and subsequent activation of ILC2s via KLRG1/GATA-3 [49]. In a rat small bowel trans-
plantation model of allograft rejection, miR-200b in exosomes derived from heme oxygen-1
(HO-1)-modified BMSCs alleviated inflammatory injury of intestinal epithelial cells (IECs)
by targeting Hmgb3 [50].

3.1.5. Kidney Injury

In the ischemia/reperfusion-injured mouse kidney, miR-23a-enriched exosomes from
hypoxic tubular epithelial cells promoted tubulointerstitial inflammation in mice by inhibit-
ing A20; hence, miR-23a inhibition suppressed renal tubulointerstitial inflammation [51].
In a lethal renal ischemia/reperfusion injury rat model, miR-146a, in exosomes derived
from USC, inhibited injury via IRAKI and inhibited the activation of NF-κB signaling [52].
A mouse model that was administered a high-fat diet and streptozotocin injection showed
that inhibiting Rab27a attenuated inflammation through the miR-26a/CHAC1/NF-κB
pathway in renal proximal tubular epithelial cells [53]. In a kidney injury mouse model
induced by CLP, miR-21 expression in exosomes extracted from the serum of mice with
limb remote ischemic preconditioning in remote organs attenuated sepsis-induced renal
injury and regulated the PDCD4/NF-κB and PTEN/AKT pathways [54].

3.1.6. Other Organs

In a taurocholate-induced acute pancreatitis rat model, pro-inflammatory miR-155
was increased in plasma exosomes, and miR-122 and miR-21 were decreased compared to
that in plasma control exosomes. The levels of miRNAs in pancreatitis-associated ascitic
fluid exosomes were similar to those in plasma control exosomes. Plasma exosomes had
higher pro-inflammatory activity in macrophages [55]. In a rat model of urethral stricture
generated with TGFβ1 injection, miR-146a in exosomes derived from TNF-α-treated MSCs
inhibited fibroblast activation and suppressed the inflammatory response, TRAF6, IRAK1,
and NF-κB signaling [56]. In an acute uterine injury mouse model induced by LPS, miR-223
enriched BMSC-Exos degraded NLRP3 via interaction with endothelial progenitor cells
and suppressed LPS-induced cell pyroptosis [57].

3.2. Immune Dysfunction

Ten articles that we explored were related to the immune dysfunction of miRNAs in
exosomes. Immune dysfunction is a disorder of the immune system that includes sepsis
and asthma. Recent studies have investigated the roles of miRNAs in immune dysfunction
and the associated diseases. We have now organized each miRNA that was introduced as
the target of different immune dysfunction studies (Table 2).
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Table 2. Extracellular miRNAs in immune dysfunction.

Author Disease Subject EV Type Targeted miRNAs

Alexander et al. (2017) [58] Chronic inflammation Mouse Exo miR-155
Appiah et al. (2021) [59] Sepsis Mouse EV miR-146a, miR-9, and miR-155
Balusu et al. (2016) [60] Systemic inflammatory diseases Mouse EV miR-1a, miR-9, miR-146a, miR-155

Fernández-Messina et al. (2020) [61] Immune diseases Mouse EV miR-20a, miR-25, miR-155
Gao et al. (2021) [62] Sepsis Rat Exo miR-1
Li et al. (2021) [63] Asthma Mouse Exo miR-370

Okoye et al. (2014) [64] Systemic disease Mouse Exo let-7d
Shan et al. (2022) [65] Asthma Mouse Exo miR-188
Song et al. (2017) [66] Sepsis Mouse Exo miR-146a
Yue et al. (2017) [67] Systemic inflammation Mouse Exo miR-375

Exo: exosome; EV: extracellular vesicle.

For a Rab27KO mouse model that displays a chronic, low-grade inflammatory con-
dition, exosomes carrying miR-155 can rescue LPS responsiveness, and the reduction in
miR-155 targeting SHIP1 and IRAK-M is involved in this rescue [58]. In an intestinal lavage
of a septic mouse model, pro-inflammatory cytokines TNF-α and IL-17A were suppressed
by septic-EV injection, and pro-inflammatory cytokines were targeted by multiple miRNAs
upregulated by sepsis-induced exosomes. IEC-derived luminal EVs carry miRNAs that
can alleviate pro-inflammatory responses [59]. In a CLP mouse model with severe sep-
sis, miR-146a, miR-9, and miR-155 functioned as pro-inflammatory messengers. Choroid
plexus-derived EVs into CSF transferred pro-inflammatory messages to recipient brain cells,
and blockage of EV secretion inhibited brain inflammation [60]. Using mouse chimeras
with Rab27KO EV-deficient T cells, miR-20a, miR-25, and miR-155, which are carried in
T-cell EV-modulated key mRNA in B cells, promote proliferation, survival, and transfer of
EV-miRNA-controlled germinal center reaction and antibody production [61]. In a CLP rat
model of sepsis, miR-1 increased in exosomes, and it inhibited proliferation, and promoted
apoptosis and cytoskeleton contraction via SERP1 [62]. A mouse model of asthma induced
by ovalbumin and miR-370 carried by M2 macrophage-derived exosomes alleviated asthma
progression by inhibiting the FGF1 and MAPK/STAT1 signaling pathways [63]. In a mouse
model of colitis and systemic inflammation, exosomes transferring let-7d from Treg cells to
Th1 cells contributed to the inhibition and suppression of systemic disease [64]. In another
ovalbumin-induced asthma mouse model, miR-188 in exosomes derived from hBM-MSCs
suppressed the proliferation of BSMCs and lung injury through the JARID2/Wnt/β-catenin
axis [65]. In CLP-induced sepsis, miR-146a in exosomes derived from MSCs with IL-1b
promoted macrophage polarization to the M2 phenotype, reduced inflammation, and
increased the survival of mice [66]. Using an IL-10 KO mouse model of systemic inflamma-
tion, endothelial progenitor cell exosomes improved endothelial cell proliferation and tube
formation, and inhibited apoptosis. With IL-10 deficiency, impaired function was observed.
Modulation of enriched miR-375 rescued IL-10KO-EPC-Exo dysfunction [67].

3.3. Neurological Disease

Only 13 articles included in this study were related to neurological diseases of miRNA
in exosomes. Neurological diseases are associated with nervous system disorders. Here,
we have discussed the roles or attenuation of miRNAs in exosomes in neurological diseases
(Table 3).
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Table 3. Extracellular miRNAs in neurological disease.

Author Disease Subject EV Type Targeted miRNAs

Cai et al. (2021) [68] Ischemic stroke Mouse Exo miR-542
Fang et al. (2020) [69] Depression Rat Exo miR-455, miR-126a, miR-122, miR-1b

Giunti et al. (2021) [70] Neuroinflammation Mouse Exo miR-467f, miR-466q

Huang et al. (2018) [71] Traumatic brain injury—
neuronal inflammation Mouse Exo miR-124

Li et al. (2018) [72] Neuroinflammation Mouse Exo miR-21, miR-125a, miR-146a, miR-155
Li et al. (2020) [73] Depression Mouse Exo miR-207
Li et al. (2020) [74] Spinal cord injury Rat Exo miR-544

Ma et al. (2019) [75] Spinal cord injury Rat Exo miR-219a-2
Simeoli et al. (2017) [76] Neuropathic pain Mouse Exo miR-21-5p, miR-21

Song et al. (2019) [77] Ischemic brain injury Rat Exo miR-181c
Xiaoying et al. (2020) [78] Epilepsy Mouse Exo miR-181a

Yang et al. (2021) [79] Alzheimer’s disease Mouse Exo miR-146a
Zhai et al. (2021) [80] Alzheimer’s disease Mouse Exo miR-22

Exo: exosome; EV: extracellular vesicle.

In a mouse with middle cerebral artery occlusion used for cerebral infarction model,
exosome-miR-542 derived from MSCs suppressed cerebral injury and inflammation by
inhibiting TLR4 [68]. In a stress-induced depression mouse model, levels of BDNF, TrkB,
and synaptotagmin 1 were decreased in the hippocampus, PFC, and serum exosomes. The
miRNA profiling revealed that differentially expressed miRNAs were possibly involved in
the pathogenesis of depression through the MAPK, Wnt, and mTOR pathways [69]. In an
amyotrophic lateral sclerosis mouse model, miR-467f and miR-466q associated with MSC-
derived s-EV reduced neuroinflammation. Furthermore, miR-467f and miR-466q reduce the
activation of p38 MAPK signaling by inhibiting Map3k8 and Mk2 [70]. Using a repetitive
traumatic brain injury mouse model, a study showed that miR-124 in exosomes improved
neurologic outcomes and inhibited neuroinflammation by targeting PDE4B, thus suppress-
ing mTOR signaling [71]. A study on a mouse model of endotoxemia induced by LPS that
stimulated neuroinflammation revealed that the inflammatory cytokine mRNA, miR-155,
and systemic inflammatory cytokine production increased. The serum-derived exosomes
elevated inflammation-related miRNAs, such as miR-21, miR-125a, miR-146a, and miR-155.
These miRNAs were engaged in modulating TLR signaling [72]. Using a chronic mild stress
mouse model of depression, NK cell-derived exosomes carrying miR-207 alleviated symp-
toms such as depression and decreased pro-inflammatory cytokines, targeted TLR4, and
hence an inhibited NF-κB signaling in astrocytes [73]. In a rat model of spinal cord injury,
miR-544 in exosomes derived from BMSC attenuated histological deficits and neuronal loss,
and inhibited inflammation induced by spinal cord injury [74]. Another study used a rat
model of spinal cord injury and revealed that exosomes improved neuroprotective effects
through the miR-219a-2/YY1 axis [75]. In a mouse model of spared nerve injury, miR-21
antagomir in the dorsal root ganglia reduced pro-inflammatory macrophage infiltration,
and miR-21 deletion in sensory neurons reduced neuropathic hypersensitivity [76]. For an
ischemic brain injury rat model established by middle cerebral artery occlusion, miR-181c
in the cortical neuron released exosomes that inhibited neuroinflammation by suppressing
CXCL1 [77]. In a mouse model with KA-induced epileptic seizures, circHivep2 exosomes
prevented microglial cell activation and inflammatory factors through the miR-181a/SOCS2
mechanism [78]. In a mouse model of Alzheimer’s disease induced by LPS, miR-146a was
enriched in EVs under inflammatory conditions, and EVs can induce inflammation and
LPS tolerance [79]. Using the APP/PS1 mouse model of Alzheimer’s disease, miR-22 in
exosomes from ADMSC enhanced neurological function, inhibited PC12 apoptosis, and
decreased inflammatory factors by inhibiting proptosis [80].
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3.4. Metabolic Syndrome

Only seven of the ninety-five articles explored were related to metabolic syndromes
involving miRNAs of exosomes. Metabolic syndrome increases the risk of heart disease,
diabetes, and other health problems. Here, we determined how miRNAs in exosomes play
a role in metabolic syndrome (Table 4).

Table 4. Extracellular miRNAs in metabolic syndrome.

Author Disease Subject EV Type miRNAs

Huang et al. (2021) [81] Ischemic disease—diabetic foot Rat Exo miR-21
Lakhter et al. (2018) [82] Type 1 diabetes Mouse EV miR-21

Li et al. (2021) [83] Diabetic retinopathy Mouse Exo miR-17
Pan et al. (2019) [84] Obesity-induced metabolic inflammation Mouse Exo miR-34a

Resaz et al. (2020) [85] Glycogen storage disease type 1a Mouse Exo

let-7d, miR-142, let-7i,
miR-145a, miR-150, miR-15b,
miR-192, miR-21a, miR-29a,
miR-342, miR-345, miR-409,

miR-486a, miR-744
Sun et al. (2021) [86] Type 2 diabetes mellitus Mouse Exo miR-29
Ying et al. (2021) [87] Obesity Mouse Exo miR-690

Exo: exosome; EV: extracellular vesicle.

In a streptozotocin (STZ)-induced diabetic rat model, miR-21 exosomes from MSCs
promoted ulceration repair, ischemic hindlimb blood perfusion, ischemic repair, and angio-
genesis [81]. Using a non-diabetic NOD mouse model of type 1 diabetes, the increase in
serum EV miR-21 preceded hyperglycemia and circulating EV miR-21 could be a biomarker
of developing type 1 diabetes [82]. In a mouse model, miR-17 containing hucMSCs-derived
exosomes alleviated oxidative injury by inhibiting STAT1 [83]. In a mouse model of dietary
obesity induced by STC nutrition and a high-fat diet (HFD), miR-34a of adipocyte-secreted
exosomal vesicles led to obesity-induced metabolic dysfunction and M2 macrophage pro-
liferation by inhibiting KLF4 [84]. Using the plasma exosomes from a glycogen storage
disease type 1a mouse model, differentially expressed miRNAs were correlated with var-
ious pathologic liver states and circulating miRNAs could be a biomarker of glycogen
storage disease type 1a [85]. In the case of a type 2 diabetic mouse, miR-29 promoted
inflammation and diabetes via TRAF3 [86]. In an obese mouse model established by feed-
ing a HFD, miR-690 in exosomes from M2-polarized bone marrow-derived macrophages
improved insulin sensitivity via NADK [87].

3.5. Vesicular Disease

Among the 95 articles, only 8 articles were associated with miRNAs exosomes in
vesicular disease. Vesicular disease is a kind of blood vessel disorder, which can occur
in the location of different types of artery and veins. We organized the relations between
miRNA exosomes and versicular diseases (Table 5).

In a mouse model of atherosclerotic diabetes, EPC-derived exosomes and its miRNAs
ameliorated diabetic atherosclerotic plaques, endothelial dysfunction, and inflammatory
factors [88]. In an atherosclerosis mouse model established by feeding a HFD, IRES-Il-10
mRNA carried in exosomes can be activated by miR-155 and alleviate local inflamma-
tion [89]. miR-512 enriched by MSC-derived exosomes had a protective effect on EC
cells against oxidized low-density lipoprotein via targeting KEAP1 [90]. In the same
HFD-induced atherosclerosis mouse model, hUCMSC-derived exosomes carrying miR-100
decreased the atherosclerotic plaque area and inflammation via FZD5/WNT/β-catenin
pathway [91]. In a mouse model of hypoxic pulmonary hypertension, MSC-derived exo-
somes inhibited STAT3 and increased the miR-17 microRNA superfamily [92]. In another
HFD-induced atherosclerosis mouse model, MSCs-exosomes suppressed the atherosclerotic
plaque area and macrophage infiltration via let-7/HMGA2/NF-kB pathway [93]. In an
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atherosclerosis mouse model established by feeding a HFD, miR-146a derived from oxi-
dized low-density lipoprotein treated THP-1 cells exosomes enhanced the atherosclerotic
plaque area and led to atherosclerosis deterioration via targeting SOD2 [94]. In the rat
myocardial ischemia-reperfusion injury model, miR-98 in exosomes from hypoxic BMSCs
promoted cardiac function and suppressed the inflammation response by targeting TLR4,
and thus activating the PI3K/Akt signaling pathway [95].

Table 5. Extracellular miRNAs in vesicular disease.

Author Disease Subject EV Type miRNAs

Bai et al. (2020) [88] Atherosclerosis Mouse Exo miR-21a, miR-222, miR-221, miR-155, miR-29a,
miR-199a, miR-146a

Bu et al. (2021) [89] Atherosclerosis Mouse Exo miR-155
Chen et al. (2021) [90] Atherosclerosis Mouse Exo miR-512
Gao et al. (2021) [91] Atherosclerosis Mouse Exo miR-100
Lee et al. (2012) [92] Pulmonary hypertension Mouse Exo miR-204
Li et al. (2019) [93] Atherosclerosis Mouse Exo let-7

Zhang et al. (2019) [94] Atherosclerosis Rat Exo miR-146a
Zhang et al. (2021) [95] Coronary artery disease Rat Exo miR-98

Exo: exosome; EV: extracellular vesicle.

3.6. Arthritis

Six of the ninety-five articles studied were related to miRNA exosomes involved in
arthritis. Arthritis is a disorder that commonly affects joints. This usually makes it difficult
for them to be active. We examined how exosomal miRNAs influence arthritis (Table 6).

Table 6. Extracellular miRNAs in arthritis.

Author Disease Subject EV Type miRNAs

Donate et al. (2021) [96] Rheumatoid arthritis Mouse EV miR-132
Huang et al. (2021) [97] Osteoarthritis Mouse Exo miR-206
Huang et al. (2022) [98] Rheumatoid arthritis Rat Exo miR-223

Tao et al. (2021) [99] Osteoarthritis Rat Exo miR-361
Tavasolian et al. (2020) [100] Rheumatoid arthritis Mouse Exo miR-146a, miR-155

Zheng et al. (2020) [101] Rheumatoid arthritis Rat Exo miR-192

Exo: exosome; EV: extracellular vesicle.

In a mouse model of mBSA-induced arthritis, the injection of anti-miR-132 attenuated
inflammatory arthritis [96]. In a mouse model of osteoarthritis, miR-206 in exosomes from
BMSC promoted proliferation and osteoblast differentiation by inhibiting ELF3 [97]. In
another rat model of arthritis, miR-223 in exosomes from BMSCs regulated inflamma-
some activation by inhibiting NLRP3 [98]. Using an osteoarthritis rat model established
by surgery, researchers found that miR-361 from hBMSC-derived exosomes alleviated
chondrocyte damage by inhibiting DDX20; thus, the NF-κB signaling pathway was inacti-
vated [99]. In a collagen-induced arthritis (CIA) mouse model, miR-146a in MSC-derived
exosomes increased FOXP3, TGFβ, IL-10, and miR-155 levels that increased RORγt, IL-17,
and IL-6 levels. Such modulations altered Treg cell levels and possibly improved the recov-
ery of appropriate T-cell responses in RA [100]. In a CIA rat model, miR-192 in exosomes
developed from BMSCs reduced the inflammatory response by targeting RAC2 [101].

3.7. Cancer

Only five of the ninety-five articles we studied were associated with roles of miRNA
exosomes in cancer. Cancer is a type of disease with abnormally increased growth of cells
that spreads easily, commonly leading to low survival rates. We discussed the relationships
between the different types of cancer and miRNAs in exosomes and determined the
underlying mechanism (Table 7).
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Table 7. Extracellular miRNAs in cancer.

Author Disease Subject EV Type miRNAs

Gorczynski et al. (2017) [102] Breast cancer Mouse Exo miR-155, miR-205
Guo et al. (2020) [103] Breast cancer Mouse Exo miR-183

Li et al. (2021) [104] Lung cancer Mouse Exo miR-101
Van der Vos et al. (2016) [105] Glioblastoma Mouse EV miR-21

Wang et al. (2022) [106] Colorectal cancer Mouse Exo miR-146a

Exo: exosome; EV: extracellular vesicle.

In a mouse model, tumor growth was decreased by miR-155, whereas miR-205 in-
creased tumor growth. miR-155 and miR-205 play important roles in tumor growth of
breast cancer cells in mice [102]. In a breast tumor mouse model, miR-183 in exosomes
derived from tumor cells decreased tumor growth and promoted pro-inflammatory cy-
tokines by targeting PPP2CA [103]. In a tumor initiated by xenografts of lung tumor
cells of mice, the injection of miR-101 suppressed lung tumor growth, macrophage tumor
infiltration, and inflammation and inhibited CDK8 and Ki-67 expression [104]. In an in-
tracranial mouse glioma model induced by injections of GL261 glioma cells, uptake of
glioma cell-released EVs by microglia and monocytes/macrophages in the brain increased
miR-21, decreased c-Myc mRNA, and increased the proliferation of mouse microglia [105].
In an azoxymethane/DSS-induced colitis-associated colorectal cancer model, miR-146a
transfected into hucMSC-derived exosomes alleviated cancer progression by inhibition of
SUMO1 [106].

3.8. Other Inflammatory Diseases

Eleven articles were discussed that dealt with other inflammatory diseases. We exam-
ined the mechanisms of action of miRNA exosomes in diverse diseases (Table 8).

Table 8. Extracellular miRNAs in other inflammatory disease model.

Author Disease Subject EV Type miRNAs

Byun et al. (2022) [107] Periodontitis Mouse Exo miR-25
Li et al. (2022) [108] Traumatic bone defects Rat Exo miR-451a

Liu et al. (2021) [109] Aseptic loosening and poor osteointegration Mouse/rat Exo miR-181b
Liu et al. (2021) [110] Acute graft-versus-host disease Mouse Exo miR-223

Song et al. (2022) [111] Tendon pathologies Rat Exo miR-144
Tsai et al. (2021) [112] Ototoxicity-induced hearing loss Mouse Exo miR-125a, miR-125b, miR-127

Wang et al. (2019) [113] OPMD Hamster EV miR-185
Xu et al. (2021) [114] Intervertebral disc degeneration Mouse Exo miR-141

Yang et al. (2019) [115] Placental oxidative stress, preterm birth Mouse Exo miR-146a, miR-548e
Zhang et al. (2020) [116] Periodontitis Rat Exo miR-17

Zhu et al. (2020) [117] Intervertebral disc degeneration Mouse Exo miR-142

Exo: exosome; EV: extracellular vesicle.

In a ligature-induced periodontitis and diet-induced obesity mouse model, an miR-25
inhibitor suppressed local inflammation, and exosomes of miR-25 in saliva contributed
to the advancement of diabetes-associated periodontitis [107]. Using a rat model of skull
defects, a study found that exosomes from adipose-derived stem cells improved bone
healing and regulated M1/M2 macrophage polarization via the miR-451a/MIF axis [108].
In a femoral defect model established by surgery, miR-181b in exosomes promoted os-
teointegration and suppressed the inflammatory response via the PRKCD/AKT axis [109].
In an acute graft-versus-host disease mouse model, miR-223 in exosomes derived from
MSCs inhibited inflammatory cytokines and attenuated disease progression by suppressing
donor T-cell migration [110]. A study using a tendon defect model showed that miR-144
enriched in exosomes from tendon-derived stem cells improved the injured tendons. The
performance of biomechanical testing was enhanced by targeting ARID1A [111]. In a
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cisplatin-induced hearing loss mouse model, miRNAs such as miR-125a, miR-125b, and
miR-127 were highly abundant in UCMSC exosomes that improved hearing loss through
reduced cochlear hair cell loss [112]. In a dimethylbenzanthracene-induced oral potentially
malignant disorder (OPMDs) hamster model, miR-185 in extracellular vesicles derived from
MSCs alleviated the inflammatory response and suppressed the progression of OPMDs
by targeting AKT [113]. In a mouse model of intervertebral disc degeneration, established
using the puncture method and H2O2 exposure, platelet-rich plasma exosomes enriched
with miR-141 suppressed IVD degeneration by activating the KEAP1/NRF2 pathway [114].
In preterm birth induced by lipopolysaccharides (LPS), miR-146a levels were elevated.
miR-146a and miR-548e from amniotic fluid-derived MSCs showed anti-inflammatory
effects on human trophoblasts [115]. In a periodontitis rat model induced by LPS, miR-17 in
periodontal ligament stem cells was suppressed by inflammation and alleviated its target
VEGFA [116]. In an IL-1β-induced intervertebral disc degeneration model, miR-142 in
exosomes derived from BMSCs alleviated NPC injury by targeting MLK3, thus inhibiting
MAPK signaling [117].

4. Conclusions

Experimental studies of EVs and miRNAs are newly emerging and are in demand.
We focused on diverse EV-associated miRNAs that play crucial roles in various inflamma-
tory diseases. In this review, we have discussed the association of miRNAs in EVs with
inflammatory diseases in rodent models. EVs have been recognized as the cargo of various
molecules transported from origin cells to recipient cells mostly in all organisms. EVs also
play complex and important roles in the pathophysiology of several diseases. Moreover,
diverse EV-associated miRNAs play crucial roles in various inflammatory diseases. Given
the previously suggested functions of EVs and increasing interest in clinical implications of
EVs in various diseases, this study focused on miRNA in EVs in inflammatory diseases
to further analyze their involvement in inflammatory responses. However, the studies
included in this review are insufficient for comprehensive knowledge about the mode of
action of extracellular miRNAs in inflammation. In addition, the included studies mostly
reported changes in miRNA expression in different disease models, yet there was limited
evidence of how the loss or gain of each miRNA function work in disease conditions. Fur-
ther functional studies on each miRNA in inflammatory disease are needed to confirm the
use of extracellular miRNAs as potential biomarkers or as a therapeutic method in which
they can be safely and efficiently delivered to the target region. Nevertheless, our under-
standing suggests an opportunity for further study of extracellular miRNAs as biomarkers
and the early diagnosis of inflammatory diseases and disorders. Moreover, the use of EVs
might further offer the possibility of gene therapeutic approaches for inflammation.
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