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The chromosomal radiosensitivity of breast cancer patients with a known or putative genetic predisposition was investigated
and compared to a group of healthy women. The chromosomal radiosensitivity was assessed with the G2 and the G0-
micronucleus assay. For the G2 assay lymphocytes were irradiated in vitro with a dose of 0.4 Gy 60Co g-rays after 71 h
incubation, and chromatid breaks were scored in 50 metaphases. For the micronucleus assay lymphocytes were exposed in
vitro to 3.5 Gy 60Co g-rays at a high dose rate or low dose rate. 70 h post-irradiation cultures were arrested and micronuclei
were scored in 1000 binucleate cells. The results demonstrated that the group of breast cancer patients with a known or
putative genetic predisposition was on the average more radiosensitive than a population of healthy women, and this with the
G2 as well as with the high dose rate and low dose rate micronucleus assay. With the G2 assay 43% of the patients were
found to be radiosensitive. A higher proportion of the patients were radiosensitive with the micronucleus assay (45% with
high dose rate and 61% with low dose rate). No correlation was found between the G2 and the G0-micronucleus
chromosomal radiosensitivity. Out of the different subgroups considered, the group of the young breast cancer patients
without family history showed the highest percentage of radiosensitive cases in the G2 (50%) as well as in the micronucleus
assay (75 – 78%).
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INTRODUCTION

Breast cancer is the most common type of cancer in females,
accounting for approximately 18% of all cancer cases in women
worldwide (Parkin et al, 1988). One of the strongest and most
consistently found risk factors for breast cancer is a family history
of the disease (Teare et al, 1994). Out of all breast cancer patients
2% have a strong genetic predisposition, caused by highly pene-
trant genes (BRCA1 and BRCA2) (Peto et al, 1999). As these
highly penetrant predisposing genes cannot account for the overall
increased risk in the relatives of breast cancer cases in general, it is
suggested that a substantial proportion of breast cancer patients
may be predisposed to breast cancer through mutations in low
penetrance genes, which may be genes involved in the processing
of DNA damage (Teare et al, 1994; Roberts et al, 1999; Scott et
al, 1999; Burrill et al, 2000; Peto and Houlston, 2001).

Defects in DNA damage processing genes are likely to affect
chromosomal radiosensitivity. In a large number of patients with
inherited cancer-prone disorders such as ataxia-telangiectasia,
Nijmegen breakage syndrome and hereditary retinoblastoma an
enhanced chromosomal radiosensitivity has been demonstrated
(Sanford et al, 1989; reviewed in Scott et al, 1999). More recently
elevated chromosomal radiosensitivity has also been observed in
significant proportions of patients with sporadic cancers with no
obvious family history (Scott et al, 1994; Terzoudi et al, 2000).

In breast cancer patients the elevated chromosomal radiosensitivity
is confirmed in several independent studies (Scott et al, 1994, 1998;
Parshad et al, 1996; Patel et al, 1997; Terzoudi et al, 2000; Baria et
al, 2001a; Riches et al, 2001). In these studies the G2 assay, which
involves the analysis of chromatid breaks in metaphase cells that
are irradiated during the G2 phase of the cell cycle, was used to
evaluate chromosomal radiosensitivity. Scott et al (1998, 1999)
further demonstrated that breast cancer patients also show an
elevated radiosensitivity with the G0-micronucleus (MN) assay.
In the MN assay lymphocytes are irradiated in G0 phase, stimu-
lated to divide, and micronuclei are scored in binucleate cells
resulting from cytokinesis block. The fact that enhanced chromoso-
mal radiosensitivity is also observed amongst blood relatives of
breast cancer patients with high G2 and MN scores points to the
heritability of chromosomal radiosensitivity in breast cancer
(Knight et al, 1993; Roberts et al, 1999; Burrill et al, 2000). These
findings support the view that enhanced chromosomal radiosensi-
tivity of peripheral blood lymphocytes may be a marker for breast
cancer predisposing genes of low penetrance.

The aim of our study was to investigate the chromosomal radio-
sensitivity by means of the G2 assay and the G0-MN assay in an
extensive group (n=62) of breast cancer patients with a family
history or early onset of the disease. A small number of these
patients are carriers of a BRCA 1/2 mutation. For the MN assay
a standard dose is given at high dose rate (HDR) and at low dose
rate (LDR). LDR was applied to allow repair and by this to discri-
minate in a better way between sensitive and non-sensitive
individuals (Jones et al, 1995; Scott et al, 1998).
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MATERIALS AND METHODS

Patients and normal controls

Heparinized blood samples were obtained by venepuncture from
60 normal healthy women, aged between 23 and 60 years (mean
37+12) and from 62 breast cancer patients, aged between 29
and 69 years (mean 45+10), during a period of 8 months. The
study of the breast cancer patients was performed in collaboration
with the Department of Medical Genetics, University Hospital
Gent, Belgium. Patients are referred to genetic consultation because
of familial or early onset breast cancer. Women fulfilling one of the
following selection criteria were analysed for presence of a muta-
tion in BRCA1 and BRCA2 as described (Claes et al, 1999a,b).
(1) Three first degree relatives affected with breast and/or ovarian
cancer (n=27). (2) Breast cancer patients from a family where at
least in two first and/or second degree relatives breast and/or ovar-
ian cancer is detected before the average age of 50 years (n=24).
(3) Patients with bilateral breast cancer and both tumors diagnosed
before an average age of 50 (n=8; five of them also fulfil criteria 1
while three of them fulfil criteria 2). (4) All patients diagnosed with
breast cancer before the age of 35 years without a family history
(n=11).

This group of breast cancer patients was selected for mutation
analysis of the BRCA1 and BRCA2 genes, because a positive family
history and/or diagnosis at young age is a significant risk factor for
the development of hereditary breast cancer (Claes et al, 1999a,b).

The blood samples were collected at varying times after breast
surgery and radio/chemotherapy (range 9 months to 21 years).
However the majority of the samples were received 2 – 3 years after
therapy. Data on the tumour stage, tumour type, chemotherapy,
radiotherapy, oestrogen-receptor and progesterone-receptor status
were also collected. In this study we performed the G2 and the
MN assay on blood samples of the patients and on concurrent
samples of healthy women.

All patients were given genetic counselling and signed an
informed consent.

The G2 assay

The G2 assay procedure of the Paterson Institute, Manchester
(Scott et al, 1999) was followed with some minor changes. Briefly,
heparinized blood was kept at ambient temperature before cultur-
ing, within 6 h after venepuncture. To a tissue culture flask
(25 cm2) 0.5 ml of blood was added to 4.5 ml of complete culture
medium consisting of RPMI-1640 medium supplemented with
10% foetal bovine serum (Life Technologies), 2% L-glutamine.
Medium was warmed to 378C and gassed (5% CO2/95% air) over-
night in an incubator before adding to blood. A 10 ml of 1% PHA-
P solution (Difco, Biotrading) was added as a mitogen. Per donor
two cultures were set up: one for irradiation and one served as
control. After 70 – 72 h incubation in a CO2 incubator at 378C
the cultures were irradiated with a dose of 0.4 Gy Co-60 g rays
at 378C (Vral et al, 2002). At 30 min post-irradiation 75 ml colce-
mid (final concentration 0.15 mg ml71; Sigma-Aldrich) was added,
and 60 min later the cultures were arrested by putting them on ice
for 5 min. For harvesting, blood cultures were transferred into
centrifuge tubes and 5 ml of 0.075M KCl was added for 15 min,
on ice. The cells were then fixed in cold (48C) methanol : acetic
acid (3 : 1). The fixed cells were kept in the refrigerator (48C) for
48 h. For slide preparation, the cells were fixed once again with
methanol : acetic acid (3 : 1), dropped onto clean dry slides and
stained with 6% Romanowsky – Giemsa in HEPES buffer
(pH 6.5) for 20 min. Fifty well spread metaphases were analysed
for the appearance of chromatid breaks. The same slides were
coded and analysed by two independent scorers. All types of single
chromatid breaks were scored where a clear discontinuity was

present (light microscopy, 10006). Duplicate slides were made
per sample and each scorer counted chromatid breaks in 25 meta-
phases on a different slide. No significant differences between the
scorers were observed using a paired t-test (P40.05).

The G0-MN assay

Briefly, 0.5 ml of heparinized blood, always within 6 h after vene-
puncture, was diluted in 4.5 ml of complete culture medium in
centrifuge tubes. The cultures were irradiated at 378C with
3.5 Gy Co-60 g rays at a high dose rate (HDR; 1 Gy min71) or
at a low dose rate (LDR; 4 mGy min71) or sham-irradiated (Vral
et al, 2002). Immediately after irradiation the lymphocytes were
stimulated with 20 ml of 1% PHA-P solution (Difco, Biotrading)
and 24 h later cytochalasin B (6 mg ml71; Sigma-Aldrich) was
added to block cytokinesis. Cells were harvested at 70 h after
stimulation by a cold (48C) hypotonic shock with 7 ml 0.075M
KCl, followed by fixation in methanol : acetic acid : Ringer (0.9%
NaCl) solution (10 : 1 : 11). The cells were stored overnight in the
refrigerator (48C) and fixed for another three times with
methanol : acetic acid (10 : 1) (Vral et al, 1994). Suspensions of cells
were dropped on clean slides and stained with 6% Romanowsky –
Giemsa in HEPES buffer for 20 min. All slides were made in dupli-
cate and coded. Per slide 500 binucleate cells (BN) were scored
(light microscopy, 4006) according to the criteria of Fenech
(1993). Each scorer analysed the number of MN in 500 binucleate
cells on a different slide. In total 1000 binucleate cells were scored
per sample. No significant differences between the scorers were
observed using a paired t-test (P40.05).

Statistical analysis

For the comparison of the G2 and MN scores between different
groups of breast cancer patients and controls, the unpaired Student
t-test was applied. The differences in the yield of chromatid breaks
or MN obtained for the same sample by two different scorers were
analysed using a paired Student t-test. Differences in the propor-
tions of sensitive patients and controls were compared using the
chi-square test. The chi-square test was also used to compare the
proportion of radiosensitive and non-radiosensitive patients treated
with radio/chemotherapy, with positive oestrogen/progesterone
receptor status and with tumour stage and grade. Correlations
between parameters were assessed using Pearson correlation coeffi-
cient.

RESULTS

Reproducibility of the assays

Two of the healthy individuals were tested five times each with the
G2 and the MN assay. For the G2 assay the average coefficient of
variation (CV) obtained for these two controls (intra-individual
variance) was 15% compared to a CV of 20% for inter-individual
differences between control donors (n=51). For the MN assay the
coefficient of variation for intra-individual differences was 9% at
HDR and 10% at LDR, compared to a CV of 14% at HDR
(n=53) and 17% at LDR (n=49) for inter-individual variance. A
significant difference between the intra- and inter-individual varia-
bility was only obtained with the LDR MN assay (P=0.046;
variance-ratio F test).

Success rate of the assays

In this study the G2 assay and MN (HDR/LDR) assay were carried
out on blood samples collected from 62 breast cancer patients and
60 healthy women. However, not all the G2 and MN cultures set
up in this study were successful. Only those samples from which
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we could score 50 metaphases for the presence of chromatid breaks
or 1000 BN cells for MN analysis, in both the irradiated and sham-
irradiated cultures, were included in the study. The numbers of
successful samples obtained with the G2 and MN assay are given
in Tables 1 and 2 and Figures 1 – 3.

The G2 assay

The results obtained with the G2 assay for the breast cancer patients
and the control group of healthy women are summarized in Table 1
and presented graphically in Figure 1. The mean spontaneous yield
was 0.05+0.05 (SD) chromatid breaks per cell and was not signifi-
cantly different in both groups (unpaired t-test; P40.05). For each
sample the spontaneous yield was subtracted from the yield in irra-
diated cells to give the radiation induced yield. The mean yield of
radiation induced chromatid breaks for the group of healthy
women was 1.03+0.21 (SD) per metaphase. For the total group
of breast cancer patients a mean radiation induced yield of
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Table 1 Mean values, standard deviations, ranges and percentage of
radiosensitive breast cancer patients and controls

Assay Parameter Normals Patients

Age Range 23 – 60 29 – 69
Mean+s.d. 37+12 45+10*

G2 Population sizea 51 54
Mean+s.d.b 1.03+0.21 1.24+0.25*
Rangeb 0.6 – 1.55 0.76 – 1.82
Cut off valueb,d 1.29
% sensitived 10 43**

MN-HDR Population sizea 53 49
Mean+s.d.c 741+105 841+143*
Rangec 495 – 969 546 – 1166
Cut off valuec,d 876
% sensitived 11 45**

MN-LDR Population sizea 49 51
Mean+s.d.c 346+59 442+89*
Rangec 247 – 499 263 – 635
Cut off valuec,d 422
% sensitived 12 61**

aNumber of successful blood samples; bnumber of chromatid breaks per cell; cnumber
of micronuclei (MN) per 1000 BN; d90th percentile of the controls was selected as
cut-off. *Significantly different from controls (P50.05) (unpaired t-test). **Significantly
different from controls (P50.05) (Chi-square test).

Table 2 Mean values, standard deviations, ranges and percentage radiosensitivity of (1) breast cancer patients with a family history
and a BRCA 1 or 2 mutation, (2) non-BRCA patients with a family history and (3) young breast cancer patients without a family history

Assay Parameter BRCA1 BRCA2 BRCA1+2 non-BRCA Young

G2 Population sizea 4 7 11 43 10
Mean+s.d.b 1.20+0.34 1.32+0.18* 1.28+0.24* 1.23+0.26* 1.24+0.26*
Rangeb 0.78 – 1.6 1.18 – 1.68 0.78 – 1.68 0.76 – 1.82 0.8 – 1.65
% sensitivec 25 29 27 47** 50**

MN-HDR Population sizea 2 7 9 40 8
Mean+s.d.d 787+140 827+144 818+136 846+146* 940+165*
Ranged 688 – 886 644 – 1050 644 – 1050 546 – 1166 621 – 1166
% sensitivec 50 29 33 48** 75**

MN-LDR Population sizea 2 7 9 42 9
Mean+s.d.d 457+42 470+130* 467+114* 437+83* 472+95*
Ranged 427 – 487 263 – 635 263 – 635 267 – 579 305 – 576
% sensitivec 100** 71** 78** 57** 78**

aNumber of successful blood samples; bnumber of chromatid breaks per cell; c90th percentile of the controls was selected as cut-off; dnumber of micro-
nuclei (MN) per 1000 BN. *Significantly different from controls (P50.05) (unpaired t-test). **Significantly different from controls (P50.05) (Chi-square
test). No significant differences were found between the different subgroups (unpaired t-test and Chi-square test).

BRCA1

14
12
10
8
6
4
2
0

N
um

be
r 

of
 in

di
vi

du
al

s

0.51 0.71 0.91 1.11 1.31 1.51 1.71

Controls
n =51 (10%)

Patients
n =54 (43%)

BRCA
n =11 (27%)

Y
n =10 (50%)

14
12
10
8
6
4
2
0

0.51 0.71 0.91 1.11 1.31 1.51

5

4

3

2

1

0
0.51 0.71 0.91 1.11 1.31 1.51

1.71

1.71

5

4

3

2

1

0
0.51 0.71 0.91 1.11 1.31 1.51 1.71

Chromatid breaks/metaphase

BRCA2

Figure 1 Radiation-induced G2 chromatid breaks in normal donors
(Controls), all breast cancer patients (Patients), breast cancer patients with
a BRCA1/2 mutation (BRCA), and breast cancer patients younger than 35
without a family history (Y). The vertical line represents the cut-off point
between sensitive/non-sensitive.
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1.24+0.25 (SD) chromatid breaks per metaphase was obtained,
which is significantly higher than for the control group (Table 1).
Using the 90th percentile of the population of healthy donors as
a cut-off value for radiosensitivity (1.29 chromatid breaks per meta-
phase) 43% of the breast cancer patients were radiosensitive
compared to 10% of the healthy individuals. Comparing the G2
radiosensitive and non-radiosensitive patient group, there was no
significant difference in age (unpaired t-test), tumour stage and
grade, oestrogen/progesteron receptor positivity and previous
radio- or chemotherapy (chi-square test) of the patients.

For further analysis we considered three subgroups in our total
group of breast cancer patients: (1) a subgroup of patients that met
criteria 1 and 2 (see Materials and Methods) and in which a muta-
tion in BRCA1/2 was detected (BRCA1, n=4; BRCA2, n=7); (2) a
subgroup of patients that met criteria 1 and 2 but without a muta-
tion in BRCA1/2 (n=43); and (3) a group of young patients (age
535 year) without a family history and without a BRCA1/2 muta-
tion (n=10). The breast cancer patients with a BRCA1/2 mutation
were significantly more radiosensitive (m=1.28+0.24 (SD)) than

the controls but not significantly different from the other two
subgroups (unpaired t-test, Table 2). Using the 90th percentile as
a cut-off value, 27% of the breast cancer patients with a BRCA1/
2 mutation were radiosensitive. This was not significantly different
from the control group (chi-square test, Table 2). For the group of
young breast cancer patients without a family history and without
a BRCA1/2 mutation, the mean radiation-induced yield was
1.24+0.26 (SD) and five out of 10 young breast cancer patients
had G2 values higher than the cut-off value (Table 2, Figure 1).
This population was significantly more radiosensitive than the
controls but not significantly different from the two other
subgroups of breast cancer patients (unpaired t-test and chi-square
test, Table 2).

The G0-MN assay

The results obtained with the MN assay for the breast cancer
patients and the age-matched healthy women are summarised in
Table 1 and presented graphically in Figures 2 and 3. The mean
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spontaneous frequency of MN for all patients (26+17(SD) MN
per 1000 BN) was significantly higher than that of the normals
(15+10 (SD) MN per 1000 BN)(unpaired t-test; P50.05). For
each sample the spontaneous yield was subtracted from the yield
in irradiated cells to give the radiation induced yield. The mean
MN-induced yield for HDR and LDR irradiation for the controls
was 741+105(SD) and 346+59(SD) MN per 1000 BN respectively.
For the whole group of breast cancer patients we found a mean
induced MN yield for HDR and LDR irradiation of
841+143(SD) and 442+89(SD) MN per 1000 BN respectively.
These results are significantly higher compared to normal indivi-
duals for both the HDR and LDR MN assay (unpaired t-test,
Table 1). Using the 90th percentile of the normals as the cut-off
point for radiosensitivity, 45% of the patients were sensitive with
the HDR MN assay (cut-off at 876 MN) and 61% of the patients
were sensitive with the LDR MN assay (cut-off at 422 MN) (Table
1, Figures 2,3). With both MN assays the differences in proportion
of radiosensitive patients and controls were significant (chi-square
test, Table 1).

Selection of breast cancer patients with a mutation in BRCA1 or
BRCA2 genes revealed a significantly higher mean value compared
to the normal population only for the LDR MN assay. This mean
value was, however, not significantly different from the mean
values from the two other subgroups of breast cancer patients
(unpaired t-test, Table 2). Taking the 90th percentile as cut-off, a
high percentage (78%) had elevated LDR MN values, but this again
was not significantly different from the other subgroups (chi-
square test, Table 2).

For the subgroup of young breast cancer patients without a
family history and without a BRCA1/2 mutation, mean radiation
induced MN yields of 940+165(SD) per 1000 BN for HDR and
472+95(SD) MN per 1000 BN for LDR were obtained. These
mean values were significantly different from the controls but
not significantly different from the other subgroups of breast
cancer patients (unpaired t-test, Table 2). Although a high percen-
tage of these patients are radiosensitive with the HDR (75%) and
LDR (78%) MN assay (Table 2, Figures 2,3), this high proportion
was not significantly different from the other patient groups (chi-
square test, Table 2).

Concerning the clinical parameters, we found no significant
differences between the HDR and LDR MN radiosensitive and
non-sensitive patient group in age (unpaired t-test), tumour stage
and grade, oestrogen/progesteron receptor positive status, and
previous radio- or chemotherapy (chi-square test) of the patients.

Correlations between the assays

To investigate the correlation between the different assays for
radiosensitivity of the patient group the Pearson correlation coeffi-
cient was calculated. A poor correlation was found between G2 and
G0 sensitivity using the same blood sample for both assays: G2 –
HDR MN r=0.04 and G2 – LDR MN r=0.05. Only 14% of the
patients were sensitive in the three assays (G2, HDR- and LDR
MN). A good correlation was only obtained between the HDR
MN and the LDR MN assay (r=0.46); 32% of the patients were
sensitive in both assays (Figure 4).

DISCUSSION

We found that the studied population of breast cancer patients
with a known or putative genetic predisposition is, for the mean
value, more sensitive to ionising radiation than a population of
healthy women both with the G2 as with the HDR and LDR
MN assay. These results are in agreement with the enhanced chro-
mosomal radiosensitivity observed in sporadic breast cancer
patients (Scott et al, 1994, 1999; Terzoudi et al, 2000; Riches et
al, 2001).

The lack of correlation between G2 and G0 chromosomal radio-
sensitivity observed in our study was also reported by Scott et al
(1999) and points to the fact that different DNA damage proces-
sing mechanisms are operating in G0 and G2 phase of the cell
cycle. At the molecular level two different repair pathways are
described which are involved in the processing of DNA double
strand breaks (dsb): homologous recombination (HR) and non-
homologous end-joining (NHEJ) (Kanaar et al, 1998). NHEJ is
more important for repairing g-radiation induced dsb during
G1-early S-phase, while HR is preferentially used for repair in late
S-G2 phase (Takata et al, 1998; Rothkamm et al, 2001). Although
recent studies have shown that G0/G1 chromosomal aberrations
are essentially the result of misrepaired dsb (Wu et al, 1996; Boei
et al, 2000; Fomina et al, 2000) by the NHEJ repair system (Jeggo,
1998; Takata et al, 1998; Rothkamm et al, 2001), the mechanisms
involved in the formation of G2 chromatid breaks are not fully
understood yet and different hypotheses have been proposed in
literature (Parshad et al, 1996; Bryant 1998; Terzoudi et al,
2000). These findings support the view that enhanced chromoso-
mal radiosensitivity observed with the G2 and G0-MN assay in
lymphocytes of a high proportion of breast cancer patients, cannot
be due to a highly penetrant mutation in one gene, but may be due
to low penetrance mutations in different genes involved in the
processing of radiation induced DNA damage in G0 and G2 phase
of the cell cycle.

Although the mean G2 and MN values are significantly higher in
the studied breast cancer population compared to the normal
population, there is an overlap between both groups. For this
reason a cut-off value has to be determined, above which an indi-
vidual can be considered as radiosensitive. This cut-off value is of
course more or less arbitrary, but allows us to compare the propor-
tion of radiosensitive individuals between different populations. As
in the study of Scott et al (1999), the 90th percentile of the normal
population was taken as cut-off point. For the G2 assay, the
proportion of radiosensitive cases within our group of breast
cancer patients with a known or putative genetic predisposition
(43%), was comparable with the proportion of sensitive cases iden-
tified in a group of sporadic breast cancer patients (Scott et al,
1999). Our G2 data did not however confirm the findings of
Parshad et al (1996) of a 2 – 3-fold increased yield of chromatid
breaks in six out of seven familial breast cancer patients studied.
For the MN assay a higher proportion of radiosensitive patients
was observed with the LDR (61%) then with the HDR procedure
(45%). Patients sensitive in both assays numbered 32%, and 82%
of the patients that were sensitive at HDR were also sensitive at
LDR (Figure 4). These results confirm the conclusion of Jones et
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al (1995) that the use of LDR irradiation allows better discrimina-
tion between controls and breast cancer patients than HDR
irradiation. In the MN studies of Scott et al (1998, 1999) a much
lower proportion of sporadic breast cancer patients was radiosensi-
tive (27% with HDR-delayed stimulation; 15% with LDR). Apart
from the population characteristics, differences in the MN assay
protocols may also be responsible for the differences between the
results of Scott et al (1998, 1999) and present work. The high
percentage (61%) of radiosensitive cases found in our study with
the LDR MN assay may point to the importance of defects in genes
involved in the processing of radiation damage induced in G0
lymphocytes in breast cancer patients with a known or putative
genetic predisposition.

Because in this study the blood samples of the patients were
collected post radio/chemotherapy, we investigated the influence
of previous therapies on the chromosomal radiosensitivity of the
patients. No significant differences in chromosomal radiosensitivity
were observed between the group of patients with and without
therapy (P40.05, unpaired t-test). These findings are in agreement
with the data of Roberts et al (1999), who also found no significant
differences between pre- and post-therapy G2 values in breast
cancer patients. The mean spontaneous MN yield in the group
of breast cancer patients was, however, significantly increased
compared to the mean spontaneous MN yield of the controls.
Taking into account an age dependent increase of 0.58 MN/year
for a female population (Thierens et al, 2000), the observed
increase in the mean spontaneous MN yield in the patient group
cannot be attributed to the age effect alone, but may be partly
due to the radio- or/and chemotherapy that some of the patients
received before we collected the blood samples.

One subgroup considered in this study was the group of patients
with a BRCA1/2 mutation. Only with the LDR MN assay a higher
proportion (78%) of this group of patients was found to be sensi-
tive compared to the total group of breast cancer patients.
Literature data concerning the chromosomal radiosensitivity in
blood cultures of BRCA1/2 patients are rare. Only in the study
of Rothfuß et al (2000) the MN assay was performed on blood
samples of BRCA1 patients. According to these authors patients
with a BRCA1 mutation systematically have an enhanced micronu-
cleus yield after an in vitro irradiation. Based on these results the
authors even suggest the application of the MN-assay as a screen-
ing test for carriers of a BRCA1 mutation in breast cancer families.
The exact role of BRCA1 and BRCA2 in repair of DNA damage by
ionising radiation is not yet fully understood (Abbott et al, 1998;
Wang et al, 2001). BRCA1 and BRCA2 are linked with the RAD
52 epistasis group, which is involved in the homologous recombi-
nation repair pathway (Chen et al, 1999). Wang et al (2001)
reported a lack of involvement of BRCA1 and BRCA2 in NHEJ.
The fact that in our study only with the LDR MN assay a high
proportion of BRCA1/2 patients are radiosensitive cannot be

explained by the involvement of BRCA1/2 in homologous recombi-
nation. Although homologous recombination is preferentially used
for repair in late S-G2 phase (Takata et al, 1998; Rothkamm et al,
2001) we could not demonstrate, with the G2 assay, that the group
of patients carrying a BRCA1/2 mutation is more radiosensitive
compared to the total group of breast cancer patients. The propor-
tion of radiosensitive patients within the BRCA1/2 mutation group
(27%) was lower than the proportion of sensitive cases identified
in the total group of patients (45%), and not significantly different
from the control group. These findings are partially in line with the
findings of Baria et al (2001b). Using the G2 assay, they found no
difference in G2 chromosomal radiosensitivity between healthy
BRCA1 mutation carriers and control individuals and they
concluded that G2 radiosensitivity is no feature of individuals
heterozygous for BRCA1 mutations.

Analysis of the sub-population of young breast cancer patients
without family history and without BRCA1/2 mutation revealed
that this subgroup is the most radiosensitive for all the different
assays (G2 assay: 50%; HDR MN assay: 75%; LDR MN assay:
78%) (Table 2, Figures 2,3). No literature data are available at
the moment concerning chromosomal radiosensitivity in young
cancer patients. The elevated chromosomal radiosensitivity of this
group of patients may suggest that these patients have a specific,
still unknown, defect in DNA damage processing. Gentile et al
(1999) suggest that these patients have unidentified genes involved
in initiation and/or progression of breast cancer, situated on chro-
mosome 11.

In conclusion our data show that breast cancer patients with a
known or putative genetic predisposition are more radiosensitive
than normal individuals both with the G2 and with the MN assay.
The radiosensitivity is most pronounced using the MN assay after
an irradiation at low dose rate. Out of the different subgroups
considered, the young breast cancer patients without family history
show the highest proportion of radiosensitive cases, and this in all
the assays. Future studies will be focused on the group of breast
cancer patients with a BRCA1/2 mutation and young breast cancer
patients without a family history.
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