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Web–resources

1. CAVA – https://github.com/RahmanTeam/CAVA

2. SNPEff - http://snpeff.sourceforge.net/SnpEff_manual.html

3. Annovar - https://annovar.openbioinformatics.org

4. ExACnoTCGA - http://exac.broadinstitute.org

5. gnomAD - http://gnomad.broadinstitute.org/

6. ClinVar - https://www.ncbi.nlm.nih.gov/clinvar/

7. IARC database - http://p53.iarc.fr/

8. ClinVar parser tool - https://github.com/macarthur-lab/clinvar

9. dbNSfP and dbscSNV - https://sites.google.com/site/jpopgen/dbNSFP

10. Gene List - https://github.com/macarthur-lab/gene_lists

11. Repeat masker - http://www.repeatmasker.org/

12. UCSC Genome Browser - https://genome.ucsc.edu

13. CardioClassifier - https://www.cardioclassifier.org/

14. InterVar - https://github.com/WGLab/InterVar

15. ACMG - https://www.acmg.net/

16. ClinVar Miner - https://clinvarminer.genetics.utah.edu/

17. PathoMAN- http://pathoman.mskcc.org/

18. Ambry - https://ambrygen.com/

19. Invitae - https://www.invitae.com/en/

20. GeneDx - https://www.genedx.com/
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Abstract

Purpose: Cancer care professionals are confronted with interpreting results from multiplexed 

gene sequencing of patients at hereditary risk for cancer. Assessments for variant classification 

now require orthogonal data searches and aggregation of multiple lines of evidence from diverse 

resources. The clinical genetics community needs a fast algorithm that automates ACMG based 

variant classification and provides uniform results.

Methods: Pathogenicity of Mutation Analyzer (PathoMAN) automates germline genomic variant 

curation from clinical sequencing based on ACMG guidelines. PathoMAN aggregates multiple 

tracks of genomic, protein and disease specific information from public sources. We compared 

expertly curated variant data from clinical laboratories to assess performance.

Results: PathoMAN achieved a high overall concordance of 94.4% for pathogenic and 81.1% for 

benign variants. We observed negligible discordance (0.3% pathogenic, 0% benign) when 

contrasted against expert curated variants. Some loss of resolution (5.3% pathogenic, 18.9% 

benign) and gain of resolution (1.6% pathogenic, 3.8% benign) was also observed.

Conclusion: Automation of variant curation enables unbiased, fast, efficient delivery of results 

in both clinical and laboratory research. We highlight the advantages and weaknesses related to the 

programmable automation of variant classification. PathoMAN will aid in rapid variant 

classification by generating robust models using a knowledge-base of diverse genetic data. https://

pathoman.mskcc.org
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INTRODUCTION

Genetic testing and targeted resequencing of cancer susceptibility genes to facilitate 

precision cancer prevention and early diagnosis, has grown exponentially because of the 

decreasing costs of next generation sequencing (NGS)1,2. A major challenge in clinical 

sequencing is interpreting sequence variants. The American College of Medical Genetics 

and Genomics (ACMG) and the Association of Molecular Pathology (AMP) have published 

guidelines on interpretation of germline variants, considering both their pathogenicity and 

clinical actionability3. Yet, germline variant classification continues to pose an immense 

burden on the time and resources of diagnostic molecular laboratories and cancer care 

professionals. The ACMG classification schema requires manually exploring multiple lines 

of public data, other orthogonal data sources and literature; then aggregation and scoring to 

provide evidence for classifying variants4. Currently, there is no widely available automated 

computational framework for classifying genetic variants based on ACMG criteria. We 

developed PathoMAN, a computational resource that automates germline variant 

classification with uniformity, transparency and speed, to facilitate variant curation for the 

cancer genetics community.

PathoMAN’s variant curation algorithm classifies germline genomic variants. The schema is 

inspired by ACMG/AMP classification3. It aggregates multiple tracks of genetic and 

molecular evidences using variant annotators and from public repositories containing 

evidence necessary for pathogenicity assertion. The compiled data is then used in 28 distinct 

categories which are grouped as: variant type, biological impact, in silico predictions, 

presence in the control cohort, familial information, and inheritance mode. The aggregate 

score resulting from evaluation of these categories is used in generating the assertion for a 

variant as Pathogenic (P), Likely-Pathogenic (LP), Benign (B), Likely-Benign (LB) or 

Variant of Uncertain Significance (VUS).

PathoMAN’s performance was measured by re-evaluating expertly curated germline cancer 

variants from three clinical testing laboratories – Ambry, Invitae and GeneDx. We selected 

the commonly tested cancer susceptible genes in multiplex panels, many of which are in the 

ACMG recommended gene list. We also tested the algorithm on reported P/LP variants from 

four published cancer studies on non-ACMG heritable cancer risk and putative risk genes. In 

this study, we also assessed the frequency of clinically actionable variants present in general 

population using ExAC (noTCGA) data in cancer susceptibility and predisposition genes. 

We tested the application of ACMG criteria for germline cancer variants and addressed the 

bottleneck of variant curation in using automated algorithms in variant classification.

MATERIALS AND METHODS

Test datasets

To test the performance of PathoMAN against manual curation, we selected variants that 

were commonly reported by CLIA certified clinical testing laboratories - Ambry, Invitae and 

GeneDx (3,513 variants in 27 genes) with identical assertions in ClinVar (version Sept 

2018). Many variants in this test dataset have also been reported by multiple other submitters 

in ClinVar. The Invitae dataset consisted of 1,494 B/LB, 608 P/LP and 1,412 VUS variants, 
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the Ambry dataset 1,517 B/LB, 646 P/LP and 1,351 VUS variants and the GeneDx dataset 

1,512 B/LB, 633 P/LP and 1,369 VUS variants (Table S1). We used these datasets to test the 

assertions of pathogenic and benign classifications by ACMG.

We also tested PathoMAN on 300 P/LP variants in 55 genes from four published reports on 

multiple cancers5–8, where ACMG criteria and primary assertions were available. We chose 

these datasets to test lesser known cancer predisposition genes that are not part of the 

ACMG list.

ACMG/AMP guidelines

The variant classification criteria used by PathoMAN utilizes ACMG/AMP guidelines3. The 

ACMG/AMP guidelines constitute 16 criteria that aid in classifying pathogenicity and 12 

criteria that aid for classifying benignity. This classification system resolves a variant as 

pathogenic or benign based on eight major components – population frequency data, 

genomic annotation and computational predictive data, functional data, segregation data, de 
novo data, allelic/genotypic data, public databases and literature and other data (Table 1). 

The detailed usage is described in the Determination of ACMG criteria for variant 

classification section of the supplemental materials.

The results of PathoMAN were compared against the reported clinical assertion. We report 

them here in four categories: concordance, discordance, loss of resolution (LOR) and gain of 

resolution (GOR). When the reported P/LP and B/LB variants are re-classified as P/LP and 

B/LB respectively by PathoMAN, then the results are considered concordant. Similarly, 

when reported P/LP and B/LB variants are re-classified as B/LB and P/LP by PathoMAN 

respectively, then the variants are considered discordant. When reported P/LP or B/LB 

variants are re-classified as VUS by PathoMAN, then they are placed in the LOR category as 

PathoMAN cannot definitively classify these variants as either pathogenic or benign, thus 

losing resolution. Similarly, when the reported VUS are re-classified as P/LP or B/LB, they 

are considered as GOR as PathoMAN can resolve these variants as pathogenic or benign 

(Table S2). These evaluations aid in understanding the usage of the eight ACMG categories 

of evidence in the context of cancer genetics, and in their ability to differentiate between 

P/LP, B/LB and VUS.

ExAC subset of cancer predisposition genes

The Exome Aggregation Consortium9 (ExAC) is a joint effort to aggregate exome 

sequencing data from fourteen large sequencing projects to provide summary data such as 

ethnicity specific allele frequency for a wider scientific community. The ExAC-noTCGA 

data is a subset of 53,105 samples and it excludes The Cancer Genome Atlas (TCGA) cancer 

germline samples (n=7601). ExAC is often utilized as convenience controls for several 

cancers6,10,11 in case-control design. We wanted to estimate the burden of variants in ExAC-

noTCGA as classified by PathoMAN and contrast against known information in ClinVar. We 

selected 55,566 variants from 76 known and putative cancer risk genes (Table S3) which 

were in exonic or essential splice site regions. This is not considered part of the test datasets 

described earlier, as ExAC data is used as part of the ACMG criteria PS4, PM2, BA1, BS1 

and BS2.
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Results

We developed PathoMAN, a germline variant classification algorithm, provided freely as a 

web-based service that allows user to either query single variants or batch upload a CSV file. 

Single variant query works on chromosome, position, reference allele, alternative allele, 

allele count, allele number, de novo status, co-segregation status and preferred control 

population sub-group. Batch upload requires six columns [chr, pos, ref, alt, ac, an] in a 

comma separated values (CSV) file. User can select de novo status, co-segregation status 

and preferred control population sub group. The program converts the CSV file to a minimal 

VCF4.2 file, annotates the minimal VCF and prepares it for PathoMAN variant 

classification. The result of a single variant query is displayed back on to the web-page 

immediately while the batch upload results will be e-mailed back to the submitter. For an 

annotated VCF file containing 100 variants, PathoMAN takes 6 minutes, which is 3.6 

seconds per variant. This provides a massive advantage in terms of speed, uniformity, 

efficiency and service assurance compared to manual curation. In contrast, an expert 

reviewer may take 20–30 minutes to classify a novel variant.

PathoMAN versus manual curation for test datasets

To evaluate the performance of PathoMAN, we compared its results against clinical 

assertions from three clinical laboratories. The test dataset contained 3,513 variants with 

prior reported curation from the three clinical laboratories – Ambry Genetics, Invitae and 

GeneDx. Inter-lab agreement across the three laboratories was 84%. The 16% of the inter-

lab disagreement variants were marked as VUS when comparing against PathoMAN results. 

Amongst 3,513 variants, missense variants accounted for 54.2%, synonymous variants for 

24.7%, frameshift variants for 7.5%, stopgain variants for 4.7% and the rest distributed 

among splice variants, in-frame insertion/deletion and stop loss in the test dataset (Figure 

1A, Table S4). Variants were annotated with CAVA, Annovar, ExAC noTCGA, gnomAD 

and ClinVar and ran through PathoMAN.

Upon comparing the clinical assertions from the three laboratories with PathoMAN’s 

results, the number of observed agreements was 90% (3,153 of 3,513 variants) and the 

Cohen’s Kappa coefficient for inter-rater agreement (к) was 0.83 (CI 95% 0.82–0.85).

PathoMAN achieved a concordance of 94.4% for P/LP and 81.1% for B/LB variants (Figure 

1B). It showed 100% concordance for P/LP frameshift, splice sites and truncating variants. 

Similarly, there was 100% concordance for B/LB synonymous variants. There was a 

minimal discordance seen at 0.3% for P/LP variants (n=2). PathoMAN failed to resolve 22 

P/LP missense variants and re-classified 2 P/LP variants as B/LB (a synonymous variant and 

an extended splice site variant) (Table 2). The synonymous PMS2 variant (c.825A>G 

p.Gln275Gln) was functionally shown to have aberrant splicing by experimental methods in 

literature. The MSH2 splice variant (c.942+3A>T) has been demonstrated to disrupt mRNA 

splicing and result in skipping of exon 5. PathoMAN assertions are made in real-time by the 

algorithm. In future versions of the program, we intend to incorporate a consensus splice 

prediction module and a literature-based evidence module, which would aid in correct 

classification of these edge case variants. No B/LB variants were re-classified as P/LP.
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PathoMAN re-classified 5.3% (n=32) reported P/LP variants and 18.9% (n=238) reported 

B/LB variants as VUS. Fifty three percent of these P/LP variants (17/32) and 74.4% B/LB 

variants (177/238) were classified as VUS in ClinVar by at least one submitter previously. 

This suggests that, for these variants, a consensus assertion has not been achieved due to 

insufficient clinical information. Similarly, PathoMAN re-classified 1.6% (n=26) and 3.8% 

(n=63) of VUS as P/LP and B/LB respectively. 62% of these reported VUS variants (55/89) 

had at least one submitter classify them as P/LP or B/LB among the three laboratories and in 

ClinVar. One of the major sources of gain of resolution is achieved by PathoMAN’s use of 

the saturation mutagenesis experiments on BRCA112. Other reasons for re-classification are 

version changes in ClinVar and updates on the public allele frequencies in ExAC and 

gnomAD.

When grouped as high and low penetrance genes (Figure 1C, Table S5), we calculated the 

absolute difference between classifications and observed Cohen’s Kappa coefficient for 

inter-rater agreement (к) of 0.82 (CI 95% 0.805 – 0.843) and 0.84 (CI 95% 0.77–0.92) 

respectively.

When compared against 300 P/LP variants in putative cancer predisposition candidate genes 

from four published cancer studies, PathoMAN showed 96.4% concordance for Pritchard et 
al6 (prostate cancer), 87.5% concordance for Maxwell et al5 (breast cancer), 84.5% 

concordance for Mandelker et al7 (multiple cancer types) and 80.3% for Zhang et al8 

(pediatric cancer) (Table 1D).

PathoMAN results for ExAC dataset

PathoMAN classified < 1% of the heterozygous genotypes in ExAC-noTCGA dataset 

(55,566 exonic and essential splice variants from 76 cancer risk genes) as P/LP. We tabulated 

pathogenic variant burden by genes and compared them against ClinVar (Table 3). 

PathoMAN calls similar number of P/LP variants as reported in ClinVar for the high-risk 

cancer genes like BRCA1 and BRCA2. PathoMAN also predicts a few novel P/LP variants 

unreported in ClinVar. Investigators who intend to use the ExAC-noTCGA dataset as 

controls in a gene burden test against sequenced cancer cases, can use PathoMAN to get a 

list of P/LP variants across genes.

Usage of ACMG/AMP categories in PathoMAN

We analyzed the usability and frequency of use for the eight categories of evidence 

(population frequency, genomic annotation and computational prediction, functional 

evidence, co-segregation, de novo status, allelic/genotypic data, public databases, scientific 

literature and other data) described in the ACMG/AMP guidelines. Interestingly, we find 

that the categories: population frequency data, genomic annotation and computational 

predictions, databases and scientific literature (Figure 2A) are the most used. These are 

available due to generous data and tool-kit sharing policies in the genomics field. The 

categories that are rarely if ever used are familial co-segregation data or de novo status, 

allelic data, and functional data. We have also used ClinVar’s review status to upweight 

functional evidence in the current version, as we believe that the review status directly 

corresponds to the literature evidence reported for a variant (Figure 2B). The co-segregation 
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data and de novo status data are limited to familial studies and are mostly unavailable in 

sporadic case- control settings since these are collected by investigators based on patient 

input. It was clear from ClinVar that, for a variant to be classified as pathogenic or likely 

pathogenic by ACMG criteria, one needs a maximum of 1 PVS1 or 2 PSs or 3 PMs or 4 PPs 

for which, the knowledge-base and resources used by PathoMAN were demonstrably 

sufficient. We describe below the bottlenecks in sharing this information and propose a 

novel framework to circumvent and ameliorate these issues.

Discussion

PathoMAN as a tool to aid variant curation

Traditionally, genetic variant curation has been performed manually by expert groups of 

individuals. However, this is a time intensive task that requires aggregation and 

interpretation of information from multiple sources. In the cancer realm, this was relatively 

easy when a single gene i.e BRCA1/2 was under investigation. In contemporary testing 

scenarios which routinely rely on multiplex gene-panels, this task is onerous. Large gene 

discovery efforts, as well as clinical reporting, could use a simplified, automated, method for 

prioritizing variants for a closer look or in the best case, be useful as the classification tool of 

choice. PathoMAN addresses this critical unmet need for an unbiased algorithmic approach 

towards classifying genetic variants of clinical interest in cancer predisposition. PathoMAN 

can be easily accessed through a web browser and results for individual variants are almost 

immediately available, while results of a batch query may take a few minutes.

Genetic testing laboratories are increasingly utilizing ACMG/AMP classification rules to 

classify variants for pathogenicity within cancer predisposition genes. However, results vary 

depending on availability of accessible data and interpretational differences13. Concordance 

between CLIA certified laboratories varied between 37 to 71% pre and post consultative 

processes using the ACMG guidelines. We observed 84% inter-laboratory agreement across 

all three clinical laboratories. Efforts are being made to narrow interpretational differences 

through initiatives underway such as ClinGen. In a recent report14, 13% of variants in 

ClinVar were re-analyzed, and were found to be unresolved, underscoring the difficulties 

even for expert curator groups. For manual or automated curation, the minimal set of 

information required to classify a variant as likely pathogenic or likely benign are: 

population frequency, in-silico predictors and prior reported evidence of pathogenicity from 

public databases. PathoMAN compiles this information uniformly in a machine accessible 

format which is used as a knowledge-base for variant classification. An additional advantage 

of using PathoMAN is that it can effortlessly identify benign variants based on public allele 

frequency and the genomic context information. In a typical multiplexed gene-panel variant 

list, after filtering for only rare high or moderate impact variants, PathoMAN will classify 

about one third of the variants as B/LB with high precision. This saves time and effort for 

the variant curators and helps them to focus on curating the remaining potentially actionable 

variants. PathoMAN will also identify known founder variants.

Cancer is a complex disease with multi-gene etiology. Some cancer genes confer high risk 

whereas some only moderately affect the carrier’s risk. Panel testing is currently used for 

active surveillance and intervention to lower disease risk. Large sequencing and genotyping 
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efforts to discover new cancer predisposition genes are being carried out by several consortia 

like BCAC15, SIMPLEXO16; COMPLEXO17, CIMBA18, etc. As the cost for sequencing 

decreases, the number of genes tested is increasing. Automation allows for rapid processing, 

service assurance and reproducibility of results. Gold standard sets of curation pioneered by 

ClinGen19,20 would aid in refining these pathogenicity classifications further, while efforts 

such as the PROMPT21,22 registry enable accurate penetrance estimates of variants in 

susceptibility genes. The PROMPT registry has identified a 26% discordance rate among 

clinical laboratories and an 11% rate with conflicting interpretations, a discrepancy that has 

implications for altering medical management.

Many laboratories and certain programs such as CardioClassifier23 and InterVar24 use prior 

knowledge of disease-gene pair association. This is advantageous to reduce 

misclassifications leading in those genes that are not in a disease-gene pair. However, it also 

suffers from the disadvantage that it cannot be used for lesser known genes- disease pairs or 

for novel gene hunting. In a recent report7, we showed that, half of the cases, in a series 

consisting of selected advanced cancers at a single institution, were non-syndromic 

associations7. Probands or their close relatives had clinically actionable variants in cancer 

genes not directly associated with the specific cancers for which there were known 

syndromic associations. PathoMAN currently does not use the contextual syndromic 

association in deciphering pathogenicity of variants. This is a distinct advantage when 

searching for novel genetic association. However, in clinical sequencing, we acknowledge 

that limiting to known disease-gene pairs to identify pathogenic variants reduces false 

positives. In future versions, we hope to incorporate both clinical and gene discovery modes.

The variants that are manually curated as P/LP or B/LB, however called as VUS by 

PathoMAN are grouped under loss of resolution (LOR) category. This loss of resolution due 

to lack of accessible supporting evidence could be due to several reasons - inability to 

programmatically parse inline texts from public databases, availability of updated 

proprietary databases like HGMD and LOVD, unavailability of in-house functional 

evidence25 or familial co-segregation information26, etc.

The upgrade for VUS to either LP or LB by PathoMAN is based on the three categories - 

lines of available evidence in public databases, population frequency and computational and 

in silico prediction on deleteriousness. These variants can be re-classified as either 

pathogenic or benign if additional functional or co-segregation data became available to the 

user.

Commercial testing laboratories have proprietary versions of interpretation pipelines such as 

Sherloc27 (Invitae Corporation) and MyVISION (Myriad Genetics). However, these are 

unavailable to the community at large. PathoMAN is designed to provide an optimized 

platform for clinical variant calling utilizing publically available data resources.

Using ACMG for variant classification in Cancer

Variants in tumor suppressors and oncogenes lead to tumorigenesis, and the Knudson two-

hit hypothesis28 is seen to operate in many common cancers. Common examples include 

APC, TP53, BRCA1/2 genes etc. However, several of these genes, especially those that are 
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part of the Fanconi complex (FANCS-BRCA1, FANCD1-BRCA2, FANCJ-BRIP1, FANCN-
PALB2, FANCP-SLX4, RAD51C), neurofibromatosis (NF1), Ataxia-telangiectasia (ATM), 

Bloom syndrome (BLM), Nijmegen breakage syndrome (NBN), dyskeratosis congenita 

(TERT) that lead to autosomal recessive rare Mendelian disorders, are also found to be risk 

genes for autosomal dominant cancer predisposition. Heterozygous carriers of these gene 

mutations are reported to have increased risks for syndromic cancers29. Occasionally, gene 

disrupting heterozygous variants in these genes that are rare, absent in public controls such 

as ExAC and gnomAD may be observed in sequenced cancer cohorts. Their ClinVar record 

for pathogenicity is usually based on their Mendelian recessive syndrome and not to the 

cancer phenotypes. Hence, applying the ACMG rules to genes without membership in the 

ACMG list may be fraught with misclassification. However, we believe that continuing data 

streams for variants in these genes will lead to better classifications, especially when 

coupled with familial co-segregation and functional validations. While PathoMAN 

classifications for such genes are a useful starting point for identifying variants that may be 

pathogenic and discarding benign; we emphasize on expert manual curation to disentangle 

these issues.

Limitations of automation

Automating variant classification based on publicly available information has some pitfalls. 

Supporting evidences provided in ClinVar for variants by submitters are not computation 

friendly and requires manual curation to interpret free text. In several instances, the citations 

are not relevant to the specific records. Technologies such as natural language processing 

and tagging will eventually help to build a knowledge-base that can further be used for deep 

learning.

ACMG guidelines does not account for functional evidence provided in ClinVar (supporting 

observations), which leads to loss of information that could otherwise be used in variant 

classification. Due to this lack of data structure (free text), the bonafide variants in ClinVar 

are being coded only PP5 or BP6 and not PS3 or BS3. We employed the review status 2 or 

more status as a proxy for functional evidence. Not all submitters are equipped or do 

independent analyses to assess functional evidences for their clinical assertion. If the 

ClinVar evidence is informatically coded, it would be helpful for molecular geneticists and 

clinical curators to use this information for their pathogenicity estimation. For example, 

TP53 (R273H), BRCA1 (Y105C) and BRCA1 (V1688del) variants have overwhelming 

literature evidences (Figure S1); however, the evidence present in the description of the 

submissions within ClinVar, are computationally un-derivable. Similarly, there are many 

variants reported in the literature which may have some level of supporting evidence for 

pathogenicity or benignity in ClinVar. Currently all these data integration is done by manual 

curators on a case-by-case basis.

We propose a framework to report ClinVar data that can be structured and parsable for an 

automated algorithm in the context of cancer. This format consists of 6 important fields that 

compress the vast information that is present in literature or clinical reports.

1. Population/Ethnicity (NFE, AFR, SAS, AMR, ASJ, FIN, OTH, EAS, others)

2. Inheritance model (AD, AR, de novo, X-linked)
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3. Allelic status (Hom, Het)

4. Family history/Co-segregation information (Yes-1; No-0)

5. Disease association (TCGA code/OncoTree code30)

6. Functional Evidence (Experiment type: NMC, LOH, etc.)

For example, ERCC3 (R109X) variant31 can be depicted as ASJ-AD-Het-1:1-BRCA, 

BLCA-NMD. This variant was seen in Ashkenazi Jewish individuals with an autosomal 

dominant inheritance for the heterozygous allele. This variant co-segregated in one family 

with cancer history. The variant was found in breast cancer and bladder cancer individuals 

and the functional evidence for pathogenicity was carried out by testing for non-sense 

mediated decay and other experiments.

Large sequencing studies and gene specific functional studies give curated list of variants 

with their pathogenic impacts like TP53 database32 and a functional study on PALB2 
variants33,34. As a pilot project, we have collected a list of PALB2, TP53 variants from these 

literature as supporting the knowledge-base for PathoMAN (PS3/BS3 functional evidence) 

but there is a real need to create a publicly available well curated list of variants from the 

literature that is amenable to programmatic interpretation. Similarly, as standards evolve for 

the incorporation of somatic mutations into germline interpretation, we expect an integration 

of such events for well-established tumor suppressor and oncogenes. The roles played by the 

ENIGMA consortium35,36, G4GH37, BRCA-Share38 in this regard are meritorious. Though 

clinical laboratories collaborate to resolve the differences in variant interpretations submitted 

to ClinVar14, the fact remains however, that a unified framework for incorporation of 

supporting machine readable evidences in any variant database including ClinVar remains a 

critical bottleneck.

Functional data is rarely available for most genes. Exceptions are BRCA1/2 due to the 

concerted efforts of the ENIGMA consortium35,36. In single variant reports, data is usually 

buried within scientific jargon that is not compatible with genomic variant information. In 

many instances, functional data is dependent on the models used, e.g. over expression of a 

mutant construct, deletion of a region using a CRISPR endonuclease and sometimes, 

introduction of the specific nucleotide through homology directed DNA repair. It is also 

likely, that the results from these three methods do not agree. Novel methods to understand 

deleteriousness using saturation mutagenesis are also starting to emerge39,40 for e.g., for 

BRCA112, we have incorporated the loss of function information into PathoMAN’s 

algorithm. We hope these will add a uniform layer of functional data that can be used in 

determining pathogenicity in the coming years.

In conclusion, we performed pathogenicity assessment of 59,379 variants in germline cancer 

risk genes, the first and largest uniform classification using an unbiased computational tool. 

We demonstrate the high concordance and low discordance when compared with manual 

curation as a harbinger of how such programs will soon be able to help domain experts and 

manual curators. PathoMAN is a first step towards our goal of automating the complex 

process of variant classification and interpretation. A beta version of the web app is available 

at https://pathoman.mskcc.org/
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Figure 1. 
A: Distribution of 3513 variants in the test dataset by variant class (IF - Inframe insertion 

and/or deletion. It alters length but not frame of coding sequence, FS - Frameshifting 

insertion and/or deletion. It alters length and frame of coding sequence, ESS - Any variant 

that alters essential splice-site base (+1, +2, −1, −2), EE - Variant that alters the first or last 

three bases of an exon (i.e., the exon end), but not the frame of the coding sequence, 5PU - 

Any variant in 5′ untranslated region, SY - Synonymous variant. It does not alter amino 

acid or coding sequence length, SS5 - Any variant that alters +5 splice-site base but not an 

ESS base, SS - Any variant that alters splice-site base within the first eight intronic bases 

flanking exon (i.e., +8 to −8) but not an ESS or SS5 base, SG - Stop-gain (nonsense) variant 

caused by base substitution, NSY - Nonsynonymous variant. It alters amino acid(s) but not 

coding sequence length, IM - Variant that alters initiating methionine start codon, 3PU - Any 

variant in 3′ untranslated region). Figure 1B: Performance of PathoMAN’s variant 

classification against variant classification from three clinical laboratories – Ambry 

Genetics, Invitae and GeneDx. Figure 1C: Concordance of PathoMAN and clinical lab 

results for reported P/LP variants group by penetrance of the gene (1257 variants in 27 genes 

Supp table S5). Figure 1D: Concordance of PathoMAN and published reports for reported 

P/LP variants from four cancer studies (300 variants in 55 genes; Mandelker et al – 97 

variants, Maxwell et al 40 variants, Pritchard et al – 56 variants and Zhang et al – 107 

variants Supp table S7)
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Figure 2. 
A: Utilization of knowledgebase components by PathoMAN during variant curation of test 

datasets. Figure 2B: Ratio of number of articles per variant across different review status 

reported in ClinVar.
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Table 1:

Utilization of ACMG criteria and knowledgebase in PathoMAN variant curation

Category ACMG 
criteria

Utilization of ACMG criteria in PathoMAN’s variant classification

literature and other sources PVS1 Tier 1 variants (Frameshift, truncating, essential splice and initiation codon) in curated list 
of OG and TSG and not in last exon

public databases Missense variant (hgvs protein change) in ClinVar with review status >= 2 irrespective of 
the genomic alternative allele

de novo data PS2 User Input

public databases; functional 
data

PS3 Variant in list of pathogenic variants knowledgebase aggregated from literature with 
functional evidence, public database with loss of function reports, Tier 1 variants in 
ClinVar reported with review status >=2 and missense variants reported by ENIGMA

population frequency data PS4 Fisher’s case-control test odds ratio > 3 and Pval < 0.05 against ExAC-noTCGA and 
gnomAD population of interest (Applies to variants with BA1, BS1, BS2 and PM2 equal to 
0)

public databases PM1 Amino acid residue in protein’s domain or residue for signalling or protein-protein 
interaction or in active site from Uniprot

population frequency data PM2 Variant absent from ExAC-noTCGA or gnomAD

allelic/genotypic data PM3 Not used in the current version

public databases PM4 Inframe ins/del or stop loss in a non-repetitive region from UCSC genome browser

public databases PM5 Missense variant in ClinVar with review status >=2 irrespective of the alternative amino 
acid change at the same position as that of the reported pathogenic variant in clinvar

de novo data PM6 User Input

segregation data PP1 User Input

public databases PP2 Variant in gene with significant pathogenic missense burden in ClinVar

genomic annotation and 
computational predictive data

PP3 in-silico predictors agree on pathogenicity or deleteriousness of the variant

Other (disease specific) PP4 Not used in the current version

public databases PP5 Variant in ClinVar with review status <2 and pathogenic without conflicts

population frequency data BA1 Variant seen in ExAC-noTCGA or gnomAD with AF > 5%

population frequency data BS1 Variant seen in ExAC-noTCGA or gnomAD with AF between 1%–5%

population frequency data BS2 Variant seen in ExAC-noTCGA or gnomAD general population in homozygous form

public databases; functional 
data

BS3 Variant in list of benign variants knowledgebase aggregated from literature with functional 
evidence, public database with loss of function reports, Tier 1 variants in ClinVar reported 
with review status >=2 and missense variants reported by ENIGMA

de novo data BS4 User Input

public databases BP1 Variant in gene with significant benign missense burden in ClinVar

allelic/genotypic data BP2 Not used in the current version

public databases BP3 Inframe ins/del or stop loss in a repetitive region from UCSC genome browser

genomic annotation and 
computational predictive data

BP4 in-silico predictors agree on benignity or tolerance of the variant

Other (disease specific) BP5 Not used in the current version

public databases BP6 Variant in ClinVar with review status <2 and benign without conflicts

genomic annotation and 
computational predictive data

BP7 synonymous variant with dbscSNV adaptive boosting and random forest score < 0.6
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Table 3:

Comparison of PathoMAN P/LP burden vs ClinVar P/LP burden for ExAC (noTCGA) variants by cancer 

susceptibility genes

GENE ClinVar_PLP PathoMAN_PLP DIFF

BLM 1 9 8

TP53 15 7 8

ATM 80 74 6

BRCA2 101 96 5

BARD1 10 15 5

SDHA 5 0 5

MLH1 6 11 5

EGFR 0 5 5

RAD51B 0 5 5

PALB2 21 26 5

RAD50 21 17 4

PMS2 15 11 4

CDH1 3 7 4

MRE11A 11 7 4

EPCAM 0 4 4

BRCA1 68 65 3

NF1 3 6 3

PTEN 2 5 3

STK11 0 3 3

KRAS 2 0 2

MUTYH 26 24 2

BRIP1 21 23 2

RAD51C 17 15 2

FH 6 4 2

RET 2 4 2

BMPR1A 1 3 2

FAM175A 1 0 1

RAD51 1 0 1

MSH6 13 12 1

NBN 10 9 1

RAD51D 6 7 1

APC 4 5 1

CDKN2A 5 4 1

DICER1 3 2 1

BAP1 0 1 1

Columns contain variant counts.
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