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Abstract: Caffeine is presented in many commercial products and has been proven to 

induce ergogenic effects in exercise, mainly related to redox status homeostasis, 

inflammation and oxidative stress-related adaptation mechanisms. However, most studies 

have mainly focused on muscle adaptations, and the role of caffeine in different tissues 

during exercise training has not been fully described. The aim of this study was therefore, 

to analyze the effects of chronic caffeine intake and exercise training on liver mitochondria 

functioning and plasma inflammation markers. Rats were divided into control, 

control/caffeine, exercise, and exercise/caffeine groups. Exercise groups underwent four 

weeks of swimming training and caffeine groups were supplemented with 6 mg/kg/day. 

Liver mitochondrial swelling and complex I activity, and plasma myeloperoxidase (MPO) 
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and acetylcholinesterase (AChE) activities were measured. An anti-inflammatory effect of 

exercise was evidenced by reduced plasma MPO activity. Additionally, caffeine intake 

alone and combined with exercise decreased the plasma AChE and MPO activities. The 

per se anti-inflammatory effect of caffeine intake should be highlighted considering its 

widespread use as an ergogenic aid. Therefore, caffeine seems to interfere on exercise-induced 

adaptations and could also be used in different exercise-related health treatments.  

Keywords: caffeine; exercise training; mitochondria; inflammation; myeloperoxidase 

 

1. Introduction 

Aerobic physical training demands great amounts of energy turnover, which is mainly promoted by 

increased oxygen consumption. In this sense, it is well known that exercise induces several metabolic 

changes, which can disrupt the mitochondrial functioning in different ways [1]. Among them the 

oxygen uptake rate during exercise training is considered an important factor to the mitochondrial 

excessive reactive oxygen species production (ROS) [2]. In this context, mitochondrial dysfunction 

seems to be closely related to oxidative damage caused by exercise in different tissues [3]. 

Considering the complexity of exercise-induced cell damage, more comprehensive strategies to 

understand the associated mechanisms are of interest. In this line, mitochondria are the major site of 

cellular ROS production while at the same time are also ROS targets [4,5], indicating that mitochondrial 

dysfunction play a key role in exercise performance [6]. Of note, we have recently described a positive 

antioxidant modulation of liver mitochondria to exercise training [6]. As such, mitochondria could also 

bring to light relevant information on exercise mediated-cell antioxidant adaptation. 

In animal models, chronic exercise has been attributed a key role in tissue homeostasis, associated 

with both increased antioxidant defenses and aerobic metabolism [7] and decreased liver inflammation [8], 

as well as the stimulation of tissue turnover [9,10]. Additionally, epidemiological data and human 

intervention studies have confirmed the potential benefits of low-to-moderate intensity chronic 

exercise on muscle health [11,12]. However, studies considering exercise-related adaptations on the 

liver are still scarce [13]. 

Caffeine is a xanthine alkaloid compound presented in many commercial beverages and medicines, 

and its concomitant use with regular exercise may influence the physiological response to effort [14]. 

Ergogenic effects of caffeine are mainly on central and peripheral mechanisms [15–17], but there is a 

lack of information concerning its chronic effects. A few studies have suggested that chronic caffeine 

intake decreases inflammatory injury and chronic inflammation in the liver and brain [8,18,19]. These 

studies have attributed this protective effect to the antioxidant effects of chronic caffeine intake and 

decreased activation of resident macrophages (Kupfer cells) and microglia. Moreover, chronic caffeine 

intake decreases the expression of inflammatory cytokines in blood monocytes and resident 

macrophages, indicating it may chronically decrease local inflammation [19,20]. Besides, in a mouse 

model of liver injury, chronic caffeine intake decreased the expression of the pro-inflammatory 

cytokines TNF-α, IL-6 and IL-1β [19]. 
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However, it is still unknown whether caffeine acts as an energetic buffer and/or trigger of peripheral 

mechanisms of antioxidant and inflammation modulation. Although there is evidence suggesting 

beneficial effects of chronic caffeine supplementation on oxidative stress markers, the mechanisms by 

which these adaptations occur are still to be clarified. In addition, the interaction between exercise and 

caffeine in the liver is poorly described in the literature, despite the remarkable role of this organ on 

energy turnover during exercise. Therefore, the aim of this study was to investigate the effect of 

chronic caffeine intake in liver mitochondria and plasma markers of oxidative metabolism and 

inflammation in trained rats. 

2. Materials and Methods 

2.1. Animals and Reagents 

Male Wistar rats (180–250 g) were obtained from our own breeding colony and kept in plastic 

boxes containing a maximum of five animals per cage under controlled environment conditions (12:12 h 

light-dark cycle, with onset of light phase at 7:00, 25 ± 1 °C, 55% relative humidity) with food (Guabi, 

Santa Maria, Brazil) and water ad libitum. All experiments were conducted in accordance with 

national and international legislation (Brazilian College of Animal Experimentation (COBEA) and the 

U.S. Public Health Service’s Policy on Humane Care and Use of Laboratory Animals-PHS Policy) and 

with the approval of the Ethics Committee for Animal Research of the Universidade Federal de Santa 

Maria (UFSM). Assay reagents were purchased from Sigma (St. Louis, MO, USA). The other 

chemicals were of analytical grade and obtained from standard commercial suppliers. 

2.2. Training Protocol 

For exercise training, animals were weighed (270–340 g) and randomly assigned to the following 

groups: control, control-caffeine, exercise, and exercise-caffeine. The training consisted of four weeks 

of swimming, 50 min per day and five sessions per week. The tank used in this study was 80 cm in 

length, 50 cm in width, and 90 cm in depth, and the swimming training was performed in water 

temperature of 31 ± 1 °C (70 cm depth) between 10:00 and 12:00 a.m. The exercise groups performed 

the swimming training with a 5% body weight overload attached to the back to improve endurance [21]. 

The control groups were placed in a separate but similar tank with shallow water (5 cm) at the same 

temperature for 30 min, five days a week without the back overload. Caffeine administration was 

performed daily by intragastric gavage at a dose of 6 mg/kg (in saline) throughout the training  

protocol [22]. Control groups received saline. Animals were sacrificed 24 h after the last training bout 

to avoid possible exercise bias. 

2.3. Liver Mitochondrial Parameters 

2.3.1. Mitochondria Isolation 

The liver mitochondria were isolated at 4 °C by differential centrifugation [23] with some 

modifications. The sample of the liver was rapidly removed and immersed in ice-cold ―isolation buffer I‖ 

at 4 °C (100 mM sucrose, 10 mM EDTA, 100 mM Tris-HCl, 46 mM KCl, at pH 7.4). The tissue was 
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then homogenized and the resulting suspension was centrifuged for 5 min at 2000× g in a Hitachi CR21E 

centrifuge (Koki, Tokyo, Japan). After centrifugation, the supernatant was recentrifuged for 20 min at 

12,000× g. The pellet was gently resuspended in ―isolation buffer II‖ (100 mM sucrose, 10 mM EDTA, 

100 mM Tris-HCl, 46 mM KCl, and 0.5% fatty-acid free bovine serum albumin (BSA) free of fatty 

acids, at pH 7.4) and recentrifuged at 12,000× g for 10 min. The supernatant was decanted, and the 

final pellet was gently washed and resuspended in ―isolation buffer III‖ (270 mM mannitol, 70 mM 

sucrose, 20 mM Tris-HCl at pH 7.4). 

2.3.2. Measurement of Mitochondrial Transmembrane Electrical Potential (ΔΨm) 

The mitochondrial ΔΨm determination was estimated by fluorescence changes in safranine-O 

assayed according to Akerman and Wikstron (1976) [24]. The fluorescence analysis was performed at 

495 nm for excitation and 586 nm for emission, with slit widths of 5 nm. The ΔΨm was presented as 

arbitrary fluorescence units per second (AFU/s). 

2.3.3. Estimation of Mitochondrial ROS Production 

The mitochondrial generation of ROS was determined spectrofluorimetrically using the membrane 

permeable fluorescent dye H2-DCFDA [25]. The fluorescence analysis was performed at 488 nm for 

excitation and 525 nm for emission, with slit widths of 5 nm. 

2.3.4. Mitochondrial Swelling 

Measurement of mitochondrial swelling was performed using a RF-5301 Shimadzu espectrofluorometer 

at 600 nm and slit 1.5 nm for excitation and emission. The mitochondria (0.1 mg protein/mL) were 

incubated in the presence of 100 µM Ca
2+

 [26]. Data for mitochondrial swelling was expressed as 

arbitrary absorbance units per second (AAU/s). 

2.3.5. Mitochondrial Complex I Assay 

The activity of complex I (NADH dehydrogenase) was measured by following the oxidation of 

NADH [27,28]. Absorbance at 600 nm was monitored for 2 min to follow the rate of oxidation of 

NADH, and the activity was determined using an extinction coefficient of 6.22 mM
−1

·cm
−1

. After 

thawing, the mitochondria were found to be completely permeable to NADH. Results are expressed as 

% of control. 

2.4. Myeloperoxidase (MPO) Activity 

The plasma activity of the pro-inflammatory MPO enzyme was measured spectrophotometrically 

by a modified peroxidase-coupled assay system involving phenol, 4-aminoantipyrine (AAP) and H2O2 as 

previously described [29]. The results were expressed in micromol of quinoneimine produced at 30 min. 
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2.5. Acetylcholinesterase (AChE) Activity 

The AChE activity was estimated in plasma by the Ellman method [30], using acetylthiocholine 

iodide (ATC) as substrate and etopropazine as butyrylcholinesterase (BChE) inhibitor [31]. Data were 

expressed in µmol of hydrolyzed ATC/min/mL. 

2.6. Protein Determination 

The protein content was determined as described previously [32] using bovine serum albumin 

(BSA) as standard. 

2.7. Statistical Analysis 

Data are expressed as means ± SEM. Statistical analysis was performed using two-way analysis of 

(ANOVA), followed by Student-Newman-Keuls test when appropriate or two-way analysis of 

variance to determine possible interactions. Values of p < 0.05 were considered significant. 

3. Results 

3.1. Liver Mitochondrial Parameters 

3.1.1. Liver Mitochondria Oxygen Metabolism 

Figure 1 depicts the data regarding oxygen metabolism on liver mitochondria. In this sense, no 

effect of exercise training or caffeine, nor the combination of both, have affected the activity of the 

complex I (1A). In same way, no significant differences were found between the groups on 

mitochondrial ROS production (1B). 

Figure 1. the effects of chronic caffeine intake and exercise training on (A) mitochondrial 

complex I activity; and (B) ROS production. Means without a common letter differ 

significantly (p < 0.05). CON: control; CON-CAF: control-caffeine; EXE: exercise;  

EXE-CAF: exercise-caffeine. 
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3.1.2. Liver Mitochondrial Function 

No effect of the exercise training, caffeine and the combination of both were found on mitochondria 

functioning parameters. The Figure 2 depicts the data obtained for mitochondria swelling and 

membrane potential. Exercise, caffeine, and/or control conditions did not affect mitochondrial ΔΨm 

(2A) and mitochondrial swelling (2B) in the liver. 

Figure 2. the effects of chronic caffeine intake and exercise training on (A) mitochondrial 

membrane potential; and (B) swelling. Means without a common letter differ significantly 

(p < 0.05). CON-SAL: control; CON-CAF: control-caffeine; EXE-SAL: exercise;  

EXE-CAF: exercise-caffeine. 

  

(A) (B) 
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Trained rats exhibited decreased MPO activities when compared with control animals, and caffeine 
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Figure 3. the effects of chronic caffeine intake and exercise training on plasma  

(A) myeloperoxidase; and (B) acetylcholinesterase activities. Means without a common 

letter differ significantly (p < 0.05). CON-SAL: control; CON-CAF: control-caffeine; 

EXE-SAL: exercise; EXE-CAF: exercise-caffeine. 
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previously seen liver mitochondria adaptations on membrane potential and swelling [6], which were 

not found in this study. A possible explanation for this discrepancy relies on the training intensity and 

duration, which were both lower in this study. It has been long stated that training duration and 

intensity are highly related to exercise oxidative metabolism modulation [35]. 

On the other side, clinical studies and other experimental sets have demonstrated that MPO activity, 

a marker of neutrophil infiltration, is associated with exercise-induced tissue damage, including 

muscle, liver, and heart [36,37]. We observed a reduction in plasma MPO activity among trained rats, 

likely due to the chronic stimulus and mild tissue damage elicited by this swimming protocol. In 

agreement with our findings, previous studies have shown that exercise training may increase the 

efficiency of immune functioning and decrease serum levels of inflammation markers [10,38,39]. 

Interestingly, caffeine alone reduced the MPO activity in control rats, demonstrating a per se  

anti-inflammatory role. In this sense, the anti-inflammatory role of caffeine in different tissues of rats 

has been previously described [8,40]. 

The hydrolytic enzyme AChE, which is anchored to the membranes of erythrocytes, platelets, 

leukocytes, and endothelial cells, continuously regulates acetylcholine (ACh) levels [41,42]. ACh has 

anti-inflammatory functions and suppresses the production of pro-inflammatory cytokines [43–46]. 

Thus, ACh levels are reduced when AChE activity is increased, leading to a reduction on the  

anti-inflammatory actions exerted by ACh [47]. Reduced plasma AChE activity indirectly reduces 

local and systemic inflammatory events due to the absence of negative feedback control exerted by 

ACh [47]. In our study, caffeine was able to reduce plasma AChE activity in both control and trained 

rats, indicating a possible anti-inflammatory role. Accordingly, recent studies have demonstrated that 

the use of AChE inhibitors suppress systemic inflammation and enhance the survival of animals 

exposed to lipopolysaccharides [48,49] or infection [50]. Regarding exercise, it seems that 

inflammatory responses rely mainly on duration and intensity [51], which is important considering 

inflammation blunts exercise performance as seen in studies with different chronic diseases [52–54]. 

Additionally, similarly to the MPO data, the AChE per se suppression on control rats is also a 

remarkable finding to be highlighted. Finally, these data suggest that caffeine could be used in 

combination with training protocols as a firstline health promotion nutrient.  

5. Conclusions 

In this study, we demonstrated that exercise training presents anti-inflammatory effects herein 

evidenced by decreased and MPO activity. Moreover, we have also found a per se anti-inflammatory 

effect of caffeine intake through reduction on both MPO and AChE activities on control animals. 

These are interesting findings since caffeine has long been used as an antioxidant molecule, in spite of 

the anti-inflammatory role it may exert. These adaptations are linked to an increased exercise 

performance as seen in our previous study, which corroborates previous data. In this sense, in this 

exercise training protocol caffeine is not acting directly on the hepatic oxygen metabolism to induce 

higher exercise capacity as we have not found liver mitochondria to be affected by caffeine intake or 

training. Apparently, in this swimming protocol the exercise capacity is related to increased 

antioxidant (as seen in our previous study) and inflammatory modulation. Future studies are needed to 
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clarify the metabolic pathways related to both antioxidant and anti-inflammatory adaptations elicited 

by caffeine intake and exercise training. 
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