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The purpose of this study is to use the same diagnostic-quality verification and 
planning CTs to validate planning margin account for residual interfractional 
variations with image-guided soft tissue alignment of the prostate. For nine pros-
tate cancer patients treated with IMRT to 78 Gy in 39 fractions, daily verification 
CT-on-rails images of the first seven and last seven fractions (n = 126) were 
retrospectively selected for this study. On these images, prostate, bladder, and 
rectum were delineated by the same attending physician. Clinical plans were cre-
ated with a margin of 8 mm except for 5 mm posteriorly, referred to as 8/5 mm. 
Three additional plans were created for each patient with the margins of 6/4 mm, 
4/2 mm, and 2 mm uniform. These plans were subsequently applied to daily images 
and radiation doses were recalculated. The isocenters of these plans were placed 
according to clinical online shifts, which were based on soft tissue alignment to 
the prostate. Retrospective offline shifts by aligning prostate contours were com-
pared to online shifts. The resultant daily target dose was analyzed using D99, the 
percentage of the prescription dose received by 99% of CTV. The percent of blad-
der volume receiving 65 Gy (V65Gy) and rectum V70Gy were also analyzed. After 
interfractional correction, using CTV D99 > 97% criteria, 8/5 mm, 6/4 mm, 4/2 mm, 
and 2 mm planning margins met the CTV dose coverage in 95%, 91%, 65%, and 
53% of the 126 fractions with online shifts, and 99%, 98%, 85%, and 68% with 
offline shifts. The rectum V70Gy and bladder V65Gy were significantly decreased at 
each level of margin reduction (p < 0.05). With daily diagnostic quality imaging-
guidance, the interfractional planning margin may be reduced from 8/5 mm to 
6/4 mm. The residual interfractional uncertainties most likely stem from prostate 
rotation and deformation.
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I.	 INTRODUCTION

Precise target localization is required for intensity-modulated radiation therapy (IMRT) but 
is challenging for prostate cancer treatment due to interfractional patient setup and anatomic 
variations. The clinical target volume (CTV) is expanded to a planning target volume (PTV) 
to ensure adequate target dose coverage to account for setup uncertainties, interfractional and 
intrafractional organ motions. A large PTV expansion adversely affects the radiation dose to 
the nearby organs at risk (OAR). Data from multiple centers associate high rectum and blad-
der doses with higher incidences of late toxicities.(1) A meta-analysis of over 10,000 patients 
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treated using IMRT for prostate cancer showed a grade 2 or above late gastrointestinal (GI) 
toxicity of 15% and genitourinary (GU) toxicity of 17%.(2) This suggests PTV reduction should 
decrease the toxicity. Because of the emergence of new image-guided radiation therapy (IGRT) 
techniques, PTV reduction deserves further examination.(3) This is particularly important for 
stereotactic body radiation therapy (SBRT)(4) as the effect of interfraction dose variation may 
be greater with fewer fractions.(5)

The main clinical practice to compensate for the interfractional variations is to reposition 
patients prior to treatment according to the registration of the daily image and planning image. 
Both implanted markers and soft tissue are effective for the image registration.(6-8) Marker-
based registration, however, requires an invasive implantation procedure, which may cause 
discomfort, bleeding, and infection.(9) Furthermore, marker-based registration provides little 
information about the rotation or deformation of the prostate, and marker migration may pose 
issues with accurate target localization.(10) It can be difficult to localize the seminal vesicles 
and to detect changes in the surrounding normal anatomy.(11)

While kV-CBCT is known to suffer from suboptimal soft tissue contrast and artifacts,(12) an 
in-room, CT-on-rails system has been recently developed to provide daily images with diagnostic 
quality soft tissue contrast. In a recent study using CT-on-rails guided IMRT, an 8/5 mm plan-
ning margin was shown to provide an average CTV D100 of 98.1% with respect to the original 
plan.(13) However, whether the 8/5 mm planning margin for interfractional variations can be 
reduced without compromising target coverage remains to be explored. In the era of SBRT, 
with IGRT image quality the same as planning CTs, one may expect near zero interfractional 
planning margins.

In the present study, the daily dose profile was assessed with soft tissue-based IGRT from 
CT-on-rails for the clinical margin of 8/5 mm and three additional retrospectively created margins 
of 6/4 mm, 4/2 mm, and 2 mm uniform. For each margin, daily dose calculation was performed 
with the clinical daily treatment isocenters. To explore the margin required for IGRT with best 
possible translational shifts, daily dose profiles were also calculated with retrospective offline 
shifts that aligned the daily and planning prostate contours.

 
II.	 MATERIALS AND METHODS

Nine consecutive patients treated with IMRT to 78 Gy in 39 fractions for prostate cancer were 
included in this analysis. To match similar number of fractions in SBRT, we chose to analyze 
daily verification images from the first seven fractions. As patients typically show greater volume 
changes in the ending fractions of the treatment course,(13) the daily verification CT images of 
the last seven fractions were also separately analyzed. Patients were instructed to have a full 
bladder and empty rectum prior to treatment. The same condition was applied for simulation 
with the patients given 500 cc of water to drink one hour before the simulation. During treat-
ment, each patient was positioned supine with an indexed knee cushion, feet banded, hands 
holding a foam ring.

For each patient, daily verification CT images were acquired using a CT-on-rails system 
(Siemens Medical Solutions USA, Concord, CA). The CT unit (Siemens, Somato, Sensation 
Open, 24 slices) is an integrated part of the linear accelerator (Siemens, ARTISTE). The same 
CT unit was also used to acquire planning CTs. The planning CT and verification CT for each 
patient were acquired with the same acquisition protocol, typically using 120 kVp, 260 mAs 
with a field of view of 50.0 cm and a slice thickness of 3 mm.

After acquisition, the verification CT was automatically registered with the planning CT 
based on bony structures using IGRT software (Syngo, Siemens) and then manually adjusted 
based on the soft tissue of the prostate by the therapists. The resultant treatment isocenter shifts 
were applied before each treatment. The prostate, rectum, and bladder on the verification CTs 
were retrospectively delineated by the same attending physician who contoured the initial 
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treatment plans. The daily volumes of the three organs were calculated and compared with 
those in the planning CT.

To explore the margin required with best possible IGRT shifts for the scenario of SBRT 
treatments with direct supervision of the attending physician and physicist, an offline align-
ment for each verification CT was also performed using MIM software (MIM Software Inc., 
Cleveland, OH). The contour-based registration was performed as follows: a) found the center 
of the mass (COM) of each contour; b) aligned two COMs via the point alignment method;  
c) manually adjusted the alignment by visual inspection. We found this method rendered the 
best consistency and the greatest similarity between daily and planning prostate volume.

All patient plans were created in Pinnacle 9.0 (Philips Medical Systems, Fitchburg, 
WI) using IMRT with the typical seven beam angles – 0°, 55°, 90°, 135°, 225°, 270°, and  
315° – following IEC convention. The PTV was an 8 mm expansion of the prostate (CTV) except 
for 5 mm posteriorly (8/5 mm). A dose of 78 Gy in 39 fractions was prescribed. For this study, 
three additional treatment plans were retrospectively generated for each patient with planning 
margins of 6/4 mm, 4/2 mm, and 2 mm uniform. The IMRT plans created with these margins 
used the same beam arrangements and same total number of segments as the clinical plans. The 
optimization constraints and the prescription isodose lines were adjusted to ensure that at least 
95% of the new PTV and at least 99% of the CTV received the prescription dose. The clinical 
and reduced margin plans were subsequently applied to each of the 126 verification CTs and 
doses were recalculated with isocenter placed according to the clinical corrections applied to the 
patients (online shifts), resulting in a total of 504 verification plans. For each verification plan, 
another dose calculation was performed with the isocenter placed according to the retrospective 
offline shifts. Therefore, a total of 1,008 daily dose distributions were assessed.

A. 	 Dosimetric endpoints and statistic analysis
The endpoint for target dose coverage was chosen as the percentage of the daily prescription 
dose received by 99% of the CTV (D99). Although the plan acceptance criteria was D99 > 99% 
for the entire treatment, we analyzed both daily CTV D99 > 99%, > 97%, > 95%, > 90%, and 
> 80% for all four planning margins. The endpoint for the rectum is the percentage of volume 
receiving 70 Gy over the entire treatment course, V70Gy. Daily rectal dose with an equivalent 
of V70Gy > 30%, > 25%, > 20%, and > 10% was analyzed. V70Gy > 20% has been consistently 
associated with rectal bleeding or Grade ≥ 2 late rectal toxicity.(1) The endpoint of bladder was 
chosen as V65Gy. Daily bladder dose with an equivalent of V65Gy > 30%, > 20%, and > 10% 
was analyzed.

Descriptive statistics were used for data analysis. Two-tailed unpaired Student’s t-tests were 
used to compare the dosimetric endpoints, the change of daily organ volumes from the planning 
volumes, and the daily IGRT shifts for the first seven and the last seven fractions. Two-tailed 
paired Student’s t-tests were used to compare the endpoints from different margin reduction 
plans and to compare the endpoints from the online and offline shifts. Statistical significance 
was assigned at p < 0.05.
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III.	 RESULTS 

A. 	 Daily volume variations 
Figure 1 shows the interfractional volume changes of the prostate, rectum, and bladder. The 
prostate volume in the planning CTs ranged from 19.8 cc to 75.9 cc, with an average of 
49.2 cc ± 17.6 cc. The average daily prostate volume of the 126 fractions were 1.3% ± 6.0%  
(range: -14.9% to 16.0%) greater than the prostate volume from the planning CTs (Fig. 1(a)). 
The average daily rectum volume was 24.3% ± 47.3% greater than the rectum volume from 
the planning CTs, suggesting that the patients did not strictly comply with the instructions 
to maintain an empty rectum (Fig. 1(b)). The daily rectum volume also shows a relatively 
large fluctuation (-50.4% to 47.3%) in reference to the rectum volume from the planning 
CTs (Fig. 1(b)). The daily bladder volume also greatly fluctuated from the planned volume  
(range: -79.7% to 203%) on a daily basis, although on average it is only 0.1% ± 58.1% less 
from the planning volume (Fig. 1(c)).

Fig. 1.  Histogram of the percentage changes of daily volumes (V_Daily) from the corresponding volume in the planning 
CTs (V_Planning) for (a) prostate, (b) rectum, and (c) bladder.
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In reference to the volumes from planning CTs, the average daily volume changes of the 
last seven fractions were comparable to those of the first seven fractions for prostate (1.8% ± 
5.9% and 0.7% ± 6.2%, p = 0.30), rectum (27.7% ± 50.4% and 21.0% ± 44.2%, p = 0.43), and 
bladder (2.4% ± 58.8% and -2.6% ± 57.7%, p = 0.62). However, more daily fractions showed 
large (> 20%) volume changes in the last seven fractions than in the first seven fractions for the 
rectum (74.6% and 55.8%) and the bladder (60.2% and 57.0%). For the prostate, the volume 
fluctuation level was similar, with 1.6% of fractions showing > 15% volume changes for both 
first seven and last seven fractions.

B.	 Online and offline shifts
Figure 2 shows the daily shifts of the 126 fractions. The magnitudes of the online shifts were 
0.41 ± 0.36 cm, 0.60 ± 0.42 cm, 0.41 ± 0.30 cm in the left/right, anterior/posterior, and superior/
inferior directions, respectively (Fig. 2(a)). The offline shifts were different from the online ones, 
with the magnitudes of 0.16 ± 0.15 cm (p < 0.01), 0.24 ± 0.30 cm (p = 0.85), and 0.30 ± 0.24 cm 
(p = 0.42) in the left/right, anterior/posterior, and superior/inferior directions, respectively  
(Fig. 2(b)). For both the online and offline shifts, the magnitude of the shifts between the first 
and the last seven fractions are comparable in the left/right (p = 0.56 and p = 0.62), anterior/
posterior (p = 0.57 and p = 0.54) and superior/inferior (p = 0.67 and p = 0.59) directions.

Fig. 2.  (a) Magnitude of the clinical online IGRT shifts. (b) Magnitude of the difference between the online and offline 
IGRT shifts.
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C. 	 Target dose coverage and margin reductions
With the IMRT plans created using margins from 8/5 mm to 2 mm uniform, the average CTV 
(prostate) D99 from the nine IMRT plans of each planning margin ranged from 101.1% ± 0.5% 
to 100.8% ± 0.3% of the prescription dose (Fig. 3(a)). The daily CTV D99 decreased as the 
planning margins decreased (Fig. 3(a) and Fig. 4(a)).

Figures 5 and 6 show that the daily CTV D99 was comparable between the 8/5 mm and 
6/4 mm margins. Using the criterion of daily CTV D99 > 97%, both margins rendered sufficient 
target coverage in more than 90% and 98% of fractions for online and offline shifts, respec-
tively. When the margin was reduced to 4/2 mm, the daily CTV D99 decreased significantly. 
Target coverage was now only sufficient in 65.1% and 84.9% of fractions with the online and 
offline shifts, respectively. If a more stringent criterion of daily CTV D99 > 99% is required, the 
8/5 mm and 6/4 mm margins were sufficient in 88% and 81% fractions with the online shifts, 
and 97.6% and 93.4% fractions with the offline shifts, respectively.

Fig. 3.  Average daily dose of the (a) prostate, (b) rectum, and (c) bladder with the clinical online IGRT shifts.
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Fig. 4.  Average daily dose of the (a) prostate, (b) rectum, and (c) bladder with the offline IGRT shifts.
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Fig. 5.  The percentage of the daily fractions that meet dose criterions for the (a) prostate, (b) rectum, and (c) bladder with 
the clinical online IGRT shifts.
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D. 	 Doses to organs at risk and margin reductions
The OAR doses in the original clinical plans (Figs. 3(b) and 3(c)) were well below the recom-
mendations from the QUANTEC report (i.e., rectum V70Gy < 20% and bladder V65Gy < 50%).(14)  
As a result of the interfractional changes, the daily rectum V70Gy and bladder V65Gy were 
generally higher than the planned ones. The rectum V70Gy and bladder V65Gy decreased as 
the planning margins decreased. All fractions complied with the QUANTEC recommenda-
tion (V65Gy < 50%) even with the 8/5 mm margin. Both rectum V70Gy and bladder V65Gy were 
reduced at each level of margin reduction (p < 0.05). The offline shifts yielded comparable 
daily rectum V70Gy and bladder V65Gy to those from the online shifts (Figs. 4(b) and 4(c), and 
Table 1). These data confirm the dosimetric benefit of margin reduction regardless of the type 
(online or offline) of IGRT shifts.

Fig. 6.  The percentage of the daily fractions that meet various dose criterions for the (a) prostate, (b) rectum, and  
(c) bladder with the offline IGRT shifts.
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E. 	 Dosimetric differences between the first seven and last seven fractions
In accordance with the greater rectum and bladder volume fluctuations, the CTV coverage of the 
last seven fractions was lower than that of the first seven fractions. Specifically, with the plan-
ning margins of 8/5 mm, 6/4 mm, 4/2 mm, and 2 mm uniform, the online shifts provided CTV 
D99 > 97% in 93.7%, 88.9%, 50.8%, and 39.7% of the 63 fractions from the last seven days, in 
comparison to 96.8%, 92.1%, 79.4%, and 66.7% of the 63 fractions from the first seven days. 
The offline shifts provided CTV D99 > 97% in 98.4%, 98.4%, 81.0%, and 58.7% of the last seven 
fractions, in comparison to 100%, 98.4%, 88.9%, and 76.2% of the first seven fractions. 

The rectum V70Gy of the last seven fractions was higher than those of the first seven fractions 
for all margin sizes with the online shifts (Fig. 3(b)). The difference was not statistically signifi-
cant for any margin size. Such difference was not observed with the offline shifts (Fig. 4(b)), 
suggesting that the difference may be due to the uncertainties in distinguishing the prostate 
and rectum soft tissues at online registration. The bladder V65Gy of the last seven fractions 
was comparable to those of the first seven fractions with the online shifts for all four margin 
sizes (Fig. 3(c)). With the offline shifts, the average bladder V65Gy was higher in the first seven 
treatment days than that in the last seven treatment days (Fig. 4(c)). The difference was not 
statistically significant for any margin size.

 
IV.	 DISCUSSION

This study investigated the dosimetric effect of a series of planning margins when diagnostic 
quality CT-based IGRT is used to compensate for prostate interfractional variations with transla-
tion corrections. Although the planning margins for prostate interfraction variation have been 
widely studied, previous publications(15-18) used kV-CBCT or MVCT that displayed worse 
image quality than that of planning CTs. For prostate treatment, because the prostate moves 
independently of the pelvic bones, soft tissue alignment is necessary. However, poor soft tissue 
contrast in kV-CBCT or MVCT verification images requires that implanted markers are often 
used as a surrogate for the prostate. The unique aspect of our study is that we used the same 
quality CTs for both treatment planning and IGRT, which minimized the potential variations 
in soft tissue-based registration and in contour delineations for the daily verification CTs. 
For dosimetric evaluation of interfraction planning margins using daily verification images, 
accurate delineation of daily prostate contour is another challenge, particularly with poor soft 
tissue contrast images. Even with the diagnostic quality CTs, the interobserver variations are 
persistent. In our study, a single board-certified radiation oncologist contoured all the planning 

Table 1.  Dosimetric endpoints with offline IGRT shifts.

			   8/5 mm 	 6/4 mm	 4/2 mm	 2 mm
	 Percent of the 126 Daily Fractions

		  ≥99%	 97.6%	 93.4%	 62.7%	 47.6%
	Prostate (CTV)	 ≥97%	 99.2%	 98.4%	 84.9%	 67.5%
	 D99 	 ≥95% 	 100%	 99.2%	 95.2%	 81.7%
	 (% of 78 Gy)	 ≥90%	 100%	 100%	 98.4%	 96.0%	
		  ≥80%	 100%	 100%	 100%	 99.2%
		  ≥30% 	 7.1%	 4.8%	 0.8%	 0%	

	Rectum V70Gy
	 ≥25%	 11.1%	 7.1%	 3.2%	 2.4%	

		  ≥20%	 19.0%	 16.7%	 5.6%	 5.6%	
		  ≥10%	 73.8%	 73.0%	 49.2%	 38.9%
		  ≥30% 	 11.9%	 7.9%	 2.4%	 1.6%	
	Bladder V65Gy	 ≥20%	 18.3%	 14.3%	 4.8%	 4.0%	
		  ≥10%	 69.0%	 57.1%	 34.1%	 32.5%
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CTs. Subsequently, using a patient-specific atlas method,(19) which we published previously, the 
same physician delineated all verification CTs to minimize the interobserver variability. The 
intraobserver variation for recontouring the prostate has been reported to be ~ 5%.(20)

A few recent studies using the same diagnostic quality image-based IGRT investigated the 
dosimetric impact of a single margin(13,21) or three margin sizes.(22) Using 8/5 mm margin, 
Peng et al.(13) showed a third of fractions require adaptive replanning based on daily CTV 
D100 ≥ 99% of prescription dose. Using a 5 mm uniform margin, Godley et al.(21) reported an 
accumulated CTV dose of 97.1% of the prescription dose. Wang et al.(22) showed that a 5 mm 
uniform margin offers an average prostate V95 of ~ 97%. Other margin studies used either daily 
kV-CBCT images(23,24) or implanted markers.(17,25,26)

Under the diagnostic quality imaging guidance, the current result showed that the residual 
interfractional variations still require a large margin for accommodation. This residual uncer-
tainty may stem from: 1) not compensating for the prostate rotation; 2) prostate deformation; 
3) interobserver variation in localizing the prostate during online correction. The current dose 
analysis based on offline shifts was performed to evaluate rotation and deformation separately 
from interobserver variation. With the shifts based on prostate volume contoured by the same 
radiation oncologist, the interobserver variation is minimized. Furthermore, offline shift data 
may be more relevant to SBRT scenario as direct supervision of the attending physician and 
physicist is required. Despite the effort of using offline image alignments with contours and 
using the same diagnostic quality images used for IGRT, our results still indicate the existence 
of residual interfractional uncertainties. Depending on the acceptable criteria of dose coverage 
to the prostate, the residual interfractional uncertainties still require a margin of 6/4 mm with 
imaging guidance and translational positioning corrections. We speculate that further margin 
reduction to 4/2 mm or below may require compensation of the prostate rotation and perhaps 
real-time replanning to account for potential prostate deformation. Adding planning margins 
to the treated target is a conventional method to increase robustness of a plan, accommodating 
potential inter- and intratreatment variation. Additional analysis of our data could determine 
a variable margin to optimize the robustness of the plan against relative prostate motion. The 
proposed planning margin of 6/4 mm may be further tested on its robustness for prostate rota-
tion and deformation when a rectal balloon is inserted.

With 3 mm planning margin, Qin et al.(27) showed that the residual margin after kV-CBCT 
guidance led to insufficient CTV coverage (EUD < 95% of the prescription) in 18% daily 
fractions. It should be noted that our proposed margin does not include intrafraction motion. 
Different patient setup positions (supine vs. prone) may also lead to different margin require-
ments.(28) Our findings could have important implications in prostate SBRT, as usually small 
margins such as 3 mm to 5 mm(29,30) or 5/3 mm(31) were used. It should be noted that the tar-
get coverage obtained with the offline shifts represents the theoretical optimum scenario (or 
similar scenario of SBRT treatment under the direct supervision of the attending physician and 
physicist) because contours from planning CT and daily verification CT were used to guide 
imaging registration.

The application of our margin analysis to kV-CBCT needs caution because the inferior imag-
ing quality in kV-CBCT may introduce additional uncertainties in localizing the prostate. With 
the margins of 10/6 mm and 5/3 mm, Hammoud et al.(32) showed average prostate (CTV) D98 
of 97.2% and 96.7% with kV-CBCT as the IGRT system, respectively. On the other hand, by 
using CT-on-rails for daily IGRT, our average CTV D99 with the 6/4 mm and 4/2 mm margins 
were 99.2% and 96.1%, respectively (Fig. 3(a)). Direct comparison of our recommended mar-
gin with the recipe-based interfractional margin needs to be cautious. The typical recipe-based 
interfraction margin is based on a formula proposed by van Herk.(33) This formula assumes that 
the planning margins would guarantee 90% of patients in the population receive a minimum 
cumulative CTV dose of at least 95% of the prescribed dose for a conventional fractionation. 
Using this method, even seed-based 2D portal imaging allowed an interfractional margin as small 
as 4 mm.(34) In the present study, we analyzed only the first seven and last seven fractions, not 
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the entire treatment course. Our number of patients is limited. Most importantly, our analysis 
is based on the daily dose, not the cumulative dose. Our initial intention of the study was to 
use IGRT data from the conventional treatment to explore the interfractional planning margin 
for SBRT.

The difference in target coverage between the first seven and last seven fractions may be 
due to the anatomical differences. The statistical significance may be underestimated using 
unpaired Student’s t-test because the daily images of the same patient are not completely inde-
pendent of each other. In our institutional experience, patients tended to develop diarrhea in 
the latter fractions and therefore presented larger anatomical differences from the simulation 
CT. The increased fluctuation of daily rectum volume in the last seven fractions may introduce 
more prostate rotations and deformations than those in the first seven fractions and therefore 
lead to decreased target coverage. The reduction in prostate CTV coverage, however, showed 
a weak correlation with volume changes of the prostate, rectum, and bladder. All correlation 
coefficients were within -0.5 to 0.5. A future study that includes the principal component 
analysis in the volume changes may define the correlation between the volume changes and 
directional-specific margins.

The main benefit of margin reduction is to spare OAR from radiation-induced complications. 
This was demonstrated dosimetrically herein as the number of daily sessions receiving high 
rectum or bladder dose was reduced with decrease in margin. Based on previous reports,(1,2,35) 
rectum sparing is likely to translate into a decreased rate and level of late GI toxicity. The 
decrease of dose to the bladder may alleviate GU complications in the setting of standard 
fractionation and with prostate SBRT, which has shown higher (15.6%) late GU toxicity rate 
than that (12.6%) of the standard-fractionated IMRT.(36)

The current feasibility of margin reduction was evaluated using daily dose profiles. The 
accumulated dose, while providing a straightforward endpoint, is subject to errors from the 
deformable image registration process.(37,38) Meeting planning target dose coverage on a daily 
basis, on the other hand, is likely too stringent since underdosed volume in one fraction may be 
compensated by other fractions in the cumulative dose analysis. In the absence of an established 
relationship between daily dose and accumulated dose, daily CTV D99 > 97% was chosen as 
adequate coverage here based on previous studies.(17,32,39,40) If a strict criterion of daily CTV 
D99 > 99% is used, even the 8/5 mm margin provides only 88% fractions with adequate target 
coverage (Table 2).

The current margin analysis did not account for intrafractional variation. Our clinical practice 
has a typical beam-on time of 7 min. Based on previous studies with similar treatment time 
and patient setup,(40,41) a 3 mm uniform margin for the intrafractional motions may suffice for 
our clinical practice. Since the combined effect of intrafractional and interfractional variations 

Table 2.  Dosimetric endpoints with online IGRT shifts.

			   8/5 mm 	 6/4 mm	 4/2 mm	 2 mm
	 Percent of the 126 Daily Fractions

		  ≥99%	 88.1%	 81.0%	 54.0%	 31.0%	
	Prostate (CTV)	 ≥97%	 95.2%	 90.5%	 65.1%	 53.2%	
	 D99	 ≥95% 	 95.2%	 95.2%	 73.0%	 65.9%	
	 (% of 78 Gy)	 ≥90%	 96.8%	 96.8%	 82.5%	 74.6%	
		  ≥80%	 100%	 100%	 94.4%	 92.9%
	 	 ≥30% 	 6.3%	 1.6%	 0%	 0%	

	Rectum V70Gy
	 ≥25%	 10.3%	 5.6%	 0.8%	 0.8%	

		  ≥20%	 17.6%	 12.7%	 6.3%	 4.8%	
		  ≥10%	 76.2%	 67.5%	 45.2%	 32.5%
	 	 ≥30% 	 15.1%	 10.3%	 0.8%	 0.8%	
	Bladder V65Gy	 ≥20%	 19.8%	 16.7%	 3.2%	 0.8%	
		  ≥10%	 68.3%	 54.8%	 39.7%	 37.3%
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is not a simple addition, the whole PTV margin for the composite effect may be accurately 
estimated only when both types of variations are captured in future studies.

 
V.	 CONCLUSION

With daily diagnostic quality imaging guidance and translation position correction, the inter-
fractional planning margin may be reduced from 8/5 mm to 6/4 mm. Further reduction of the 
margin to 4/2 mm or less may result in inadequate dose delivered to the prostate unless com-
pensation for prostate rotation and deformation is incorporated.
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