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Abstract: Essential hypertension is associated with increased sympathetic and diminished parasym-
pathetic activity as well as impaired reactivity to sympathetic stimulation. However, reactivity
and recovery from parasympathetic stimulation in hypertension are unknown. We investigated
reactivity and recovery to primarily parasympathetic stimulation by Cold Face Test (CFT) in essential
hypertension. Moreover, we tested whether chronic stress modulates CFT-reactivity dependent on
hypertension status. The CFT was conducted by applying a cold face-mask for 2 min in 24 unmedi-
cated, otherwise healthy hypertensive men and in 24 normotensive controls. Systolic and diastolic
blood pressure (BP) and heart rate (HR) were measured repeatedly. Chronic stress was assessed
with the Trier-Inventory-for-Chronic-Stress-Screening-Scale. Hypertensives did not exhibit diastolic
BP decreases after CFT-cessation (p = 0.59) as did normotensives (p = 0.002) and failed to show HR
decreases in immediate response to CFT (p = 0.62) when compared to normotensives (p < 0.001).
Systolic BP reactivity and recovery patterns did not differ between hypertensives and normoten-
sives (p = 0.44). Chronic stress moderated HR (p = 0.045) but not BP CFT-reactivity (p′s > 0.64) with
chronically stressed normotensives showing similar HR reactivity as hypertensives. Our findings
indicate impaired diastolic BP and HR reactivity to and recovery from CFT in hypertensives and a
moderating effect of chronic stress on HR reactivity potentially reflecting reduced relaxation ability
of the cardiovascular system.

Keywords: hypertension; parasympathetic stimulation; Cold Face Test (CFT); cardiovascular reactivity;
chronic stress

1. Introduction

Arterial hypertension, characterized by chronically elevated arterial blood pressure
(BP), is a major risk factor for coronary heart disease [1]. About 95% of hypertensive
patients are diagnosed as “essential hypertensives” as the cause for their condition is
unknown [2]. Essential hypertension and its pathogenesis have been associated with
autonomic dysfunction manifested by increased sympathetic nervous system (SNS) activity
and reactivity to stimulation as well as concurrent diminished parasympathetic nervous
system (PNS) activity [3].

So far, activity and especially reactivity of the PNS in essential hypertension has
not been well studied. Evidence suggesting reduced basal parasympathetic activity
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in hypertension comes from few studies assessing heart rate variability (HRV) [4,5]
and salivary flow [6] under resting conditions. Reactivity to parasympathetic inhibition
in hypertension was first investigated by Julius et al. [7]. In their study, borderline
hypertensives (HT) previously treated with the SNS antagonist propranolol exhibited
comparably smaller increases in heart rate (HR) and cardiac output after atropine-induced
PNS blockade when compared to identically treated normotensives (NT), interpreted as
diminished reactivity to parasympathetic inhibition. These results were confirmed for
essential HT and also extended to BP reactivity [8]. Similarly, borderline HT had a less
pronounced decrease in salivary flow after intravenous injection of atropine compared to
NT [9] and HT were found to display attenuated HR recovery after exercise [10]. With
respect to parasympathetic stimulation, reactivity in HT in terms of either salivary flow rate,
or HR, HRV and BP seems to be impaired as was evidenced by use of the PNS stimulant
neostigmine [9] and slow/deep breathing [11–13].

A non-invasive and simple method to reliably provoke parasympathetic stimulation
is the Cold Face Test (CFT) [14,15]. The CFT comprises application of a cooled mask to
the face. This cold stimulus induces the characteristic autonomic changes that occur with
the diving reflex, i.e., primarily PNS stimulation in terms of trigeminal–vagal mediated
bradycardia and minor SNS co-stimulation by trigeminal–sympathetic mediated peripheral
vasoconstriction, but without impairment of breathing [14–17]. Notably, the CFT differs
from the Cold Pressure Test [18] often applied in the context of hypertension, where hand
or foot immersion in ice water for 1 min leads to a pressor response and thus stimulation of
the SNS [19]. Additionally, the SNS activation component of CFT exposure is assumed to
be lower as compared to that of the diving reflex since the latter has been associated with
the apnea when diving [20]. In immediate response to 1 min CFT-application, i.e., 30 to 60 s
after onset, borderline HT displayed significant increases in systolic BP (SBP) but not dias-
tolic BP (DBP) or HR, and lower HRV, while NT showed HR decreases without concomitant
changes in BP [21]. However, following 5 min CFT-conduction HT did show bradycardia,
although to a lower extent than NT, whereas no group difference was observed for HRV
response [22]. Cardiovascular recovery from CFT stimulation has not previously been
investigated, neither in NT nor in hypertension.

Chronic stress is hypothesized to play a role in the development of hypertension [23].
According to the allostatic load concept, repeated stressful challenges can result in chronic
activation of stress-responsive physiological systems which may accumulate over time and
result in chronically elevated BP [24,25]. Indeed, empirical evidence links chronic stress
with the sustained elevation of BP [26]. In reaction to sympathetic stimulation, chronic stress
relates to altered cardiovascular reactivity and impaired recovery [27]. Moreover, chronic
stress was associated with diminished basal parasympathetic activity [28] comparably to
HT [4,5]. In the context of PNS stimulation, chronic stress has not yet been investigated.

The aim of the present study was to investigate cardiovascular reactivity to and
recovery from stimulation by CFT [14,16] in unmedicated, otherwise healthy, hypertensive
men compared to normotensive controls. We repeatedly measured SBP, DBP, and HR before
and up to 10 min after CFT. Based on the above-summarized literature, we hypothesized
group differences in terms of attenuated BP and HR reactivity and consequently flatter
recovery in HT as compared to normotensive controls. Moreover, we investigated whether
chronic stress modulates cardiovascular reactivity to CFT. We specifically expected that NT
with higher chronic stress resemble the cardiovascular CFT-reactivity of HT.

2. Materials and Methods
2.1. Study Participants

With the aid of the Swiss Red Cross of the Canton of Bern and the Clinical Investiga-
tion Unit of the University Hospital of Bern/Inselspital, we recruited hypertensive and
normotensive men between 20 and 65 years who, apart from having hypertension, were
healthy and medication-free. Specifically, members of our study team accompanied the
Swiss Red Cross mobile blood donation unit that routinely assesses BP before blood dona-
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tion. Male blood donors with elevated BP (SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg)
expressing interest in study participation were asked to provide an initial BP diagnostic by
home assessment as part of the assessment of essential hypertension (see below). For each
hypertensive participant, we recruited a normotensive control of similar age on a case-by-
case basis. Participation was restricted to male subjects, in particular because of gender
differences in vagal activity and autonomic control of the heart [29]. Additional specific
exclusion criteria, verified in a structural clinical screening on the study day, included: any
regular or current prescribed or non-prescribed medication intake, psychopathology or
psychiatric diseases, respectively, alcohol abuse and illicit drug use, smoking, any heart
disease, varicosis and thrombotic diseases, elevated blood sugar levels and diabetes, ele-
vated cholesterol levels, liver and renal diseases, chronic obstructive pulmonary disease,
allergies and atopic diathesis, rheumatic diseases, cancer, chronic pain, sleep disturbances,
thyroid disease, current infectious diseases, and secondary hypertension.

The study was carried out in accordance with the Declaration of Helsinki principles
and formally approved by the Ethics Committee of the Canton of Bern, Switzerland (154/07;
07.09.09) and the Swiss Agency for Therapeutic Products (Swissmedic). All participants
provided written consent before participating.

2.2. Assessment of Essential Hypertension

For the assessment of hypertension, we applied a two-step assessment procedure.

2.2.1. Home BP Assessment

Participants provided an initial BP diagnostic by home assessment using sphyg-
momanometry (Omron IntelliSense M6, Omron Healthcare Europe B.V., Hoofdorp, The
Netherlands). Following written instructions, each participant was required to measure BP
in seated position after a minimum of 15 min rest twice per day (once in the morning and
once in the evening) on up to 3 separate days. We computed the average home BP as initial
BP diagnostic with participants conservatively categorized as preliminarily hypertensive
following the European Society of Hypertension (ESH) recommendations for home BP mea-
surements (hypertension: home assessed SBP ≥ 135 mmHg and/or DBP ≥ 85 mmHg) [30].
Participants were considered preliminarily normotensive if their home assessed SBP was
below 135 mmHg and DBP below 85 mmHg.

2.2.2. Study BP Assessment

The preliminary categorization was extended by the mean of two additional seated
study BP measurements performed using automated sphygmomanometry (Hewlett-Packard
78352C, Hewlett-Packard GmbH, Böblingen, Germany) during the clinical screening on
the study day, each after 15 min rest. The categorization of hypertension according
to study BP measurements was carried out following the World Health Organization
(WHO)/International Society of Hypertension definition (hypertension: SBP ≥ 140 mmHg
and/or DBP ≥ 90 mmHg) [31]. Notably, we considered participants as normotensive ac-
cording to study BP measurements if their SBP was below 140 mmHg and DBP below
90 mmHg.

We a priori calculated a sample size of 48 participants (see below). Of a total of
55 recruited persons, 7 had to be excluded; 5 failed to meet a clear categorization of
hypertension/normotension, e.g., due to inconsistent home vs. study BP categorization
and 2 did not complete the study due to BP and HR measurement failure during CFT (see
below). Of the final study sample of 24 HT and 24 NT, 6 HT and 5 NT did not provide
home BP measurements. To maintain the two-step BP assessment procedure, we therefore
substituted the missing home BP measurements by the baseline BP measurement before
CFT (see hemodynamic measures) to verify study-measurement based categorization.

Assessment of serum creatinine, calcium, sodium, potassium, HbA1c, and low-density
lipoprotein/high-density lipoprotein ratio on the study day would have allowed post hoc
exclusion of participants with secondary hypertension and therefore diagnosis of essential
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hypertension in all eligible hypertensive participants. However, no participant had to be
excluded due to secondary hypertension. Moreover, our two-step assessment procedure
also allowed to exclude white coat hypertension in our participants.

We calculated resting BP as the mean of the two seated study BP measurements to
obtain a continuous measure for hypertension.

2.3. Procedure

Participants were asked to abstain from excessive sports activities and consumption
of caffeinated and alcoholic beverages 24 h prior to study participation. The study was
performed in the Clinical Investigation Unit of the Bern University Hospital (Inselspital).
After their arrival between 9:00 AM and 4:30 PM, participants first completed a clinical
screening to assess study eligibility followed by a physical examination assessing partic-
ipants’ height and weight. Further, they provided a blood sample after a resting period
of at least 15 min to retrospectively verify essential hypertension and exclude potential
secondary hypertension. Afterwards, the study procedure started. After a 25 min rest-
ing period, the CFT was conducted. Prior to dismission, participants completed various
psychological questionnaires.

2.4. Cold Face Test (CFT)

To provoke parasympathetic stimulation, we conducted the CFT which mimics the
diving reflex in particular by inducing primarily trigeminal–vagal-mediated bradycardia
accompanied by trigeminal–sympathetic-mediated peripheral vasoconstriction [14–16]. A
full-face mask (Dr. Winkler GmbH, Ainring-Mitterfelden, Germany) with openings for
eyes avoiding an oculocardiac reflex and openings for nose and mouth allowing normal
breathing, was placed on the face of the sitting participants for 2 min. The temperature of
the cold mask was 1 ◦C. To ensure a steady temperature of 1 ◦C during the period of 2 min,
an additional cold pack (Nexcare, 3M Health Care, St. Paul, MN, USA) was affixed to the
mask. Subjects were instructed in advance to continue normal breathing and abstain from
moving or talking during CFT.

2.5. Hemodynamic Measures

BP and HR were assessed in seated position on the dominant arm using automated
sphygmomanometry (Hewlett-Packard 78352C, Hewlett-Packard GmbH, Böblingen, Ger-
many). Five measurements were made to investigate CFT reactivity comprising 1 baseline
measurement 3 min before start of CFT, 1 measurement 1.5 min after onset, i.e., during
CFT (immediate CFT-reactivity), and 3 post-CFT measurements at 3, 5, and 10 min after
CFT-cessation (recovery), respectively.

2.6. Psychological Assessment

Psychological assessment was performed to (1) verify participants’ mental health, (2)
to assess their levels of chronic stress, and (3) to investigate potential associations between
chronic stress and reactivity to parasympathetic stimulation.

2.6.1. Psychopathology

To assess mental health, we tested for general psychopathology using the Brief Symp-
tom Inventory (BSI) [32]. The BSI contains 58 items about the frequency and severity of
strain resulting from somatization (7 items), obsessive-compulsivity (6 items), interpersonal
sensitivity (4 items), depression (6 items), anxiety (6 items), hostility (5 items), phobic anxi-
ety (5 items), paranoid ideation (5 items), and psychoticism (5 items). In total, 4 additional
items target loss of appetite, sleeping problems, and suicidal thoughts. Items are rated on
a 5-point rating scale ranging from 0 (“not at all”) to 4 (“very much”). By evaluating the
average of all item ratings, the Global Severity Index (GSI) representing the general current
distress is obtained. Possible GSI scores range from 0 to 4 with higher scores indicating a
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higher level of current distress. Data of 1 HT participant were missing due to incompletion.
For the GSI scale, Cronbach’s α was 0.90 in our sample.

2.6.2. Chronic Stress

To assess participant’s chronic stress, we applied the 12-item Chronic Stress Screening
Scale of the Trier Inventory for Chronic Stress (TICS-CSSS) [33]. The TICS-CSSS comprises
questions about the frequency of experienced work overload (4 items), worries, (4 items),
lack of social recognition (2 items), excessive demands at work (1 item), and social over-
load (1 item) within the last 3 months. Items are rated on a 5-point scale (0 = “never” to
4 = “very often”) with a total score ranging from 0 to 48. Higher scores indicate greater lev-
els of chronic stress. Data of 1 HT and 3 NT participants were missing due to incompletion.
Cronbach’s α for TICS-CSSS was 0.93 in our sample.

2.7. Statistical Analyses

Data were analyzed using SPSS (Version 26.0) statistical software packages for Mac-
intosh (IBM SPSS Statistics, Chicago Il, USA). All analyses were two-tailed with the level
of significance set at p < 0.05. Results with significance levels p < 0.10 were considered as
marginally significant. Missing data were list-wise excluded for the respective parameter.
Results are presented as mean ± standard error of the mean (M ± SEM). Sigma Plot
(Version 13; Systat Software GmbH, Erkrath, Germany) was used for graphics creation. We
a priori calculated power analyses using the statistical software G*Power for Macintosh
(Version 3.1.9.6; Heinrich Heine University Düsseldorf, Germany) [34]: the optimal sample
size to detect interactions between group and repeated hemodynamic parameters given
an expected small effect size of f = 0.10, an expected observed average correlation of the
repeated measures of r > 0.85, α = 0.05, and a power of 0.90 is n = 48.

Prior to statistical analysis, all data were tested for normal distribution and homo-
geneity of variance using Kolmogorov–Smirnov and Levene tests. As assumption of
normality was not met for HR data, HR data were transformed using the natural loga-
rithm and homogeneity of variance was verified. For reasons of clarity, original data are
presented in the figures. In order to protect against violations of sphericity, we applied
Huynh-Feld correction where appropriate. Body mass index (BMI) was calculated by the
formula BMI = kg/m2. Mean resting arterial BP (MAP) was calculated by the formula
MAP = (2/3×resting DBP) + (1/3×resting SBP). In HR data analyses, 6 participants had
to be excluded due to problems with HR assessment, i.e., incomplete data or problems
with baseline HR assessment.

To test for group differences in demographic, resting, and baseline physiological as
well as psychological measures, we used univariate analyses of variance (ANOVA). To test
for group differences in CFT-induced reactivity, we calculated repeated measures ANOVAs
with group (HT vs. NT) as the independent variable and repeated SBP, DBP, or HR levels as
repeated dependent variables. Complementarily, we tested for linear associations between
CFT-induced reactivity and MAP as a continuous measure of hypertension assessment by
calculating the same repeated ANOVAs using MAP as a continuous independent variable
instead of group. Post-hoc tests comprised univariate ANOVAs for each measurement time
point while controlling for the respective baseline, repeated measures ANOVAs between
baseline and every later measurement time point, and/or separate analyses of repeated
measures ANOVAs in each group. Due to the potentially confounding effects of age on
autonomic activity, we additionally performed all repeated AN(C)OVAs controlling for
age as a covariate [35]. Moreover, as obesity is associated with ANS dysfunction in terms
of increased SNS (re)activity and decreased PNS activity [36], we also controlled for BMI.

To test for associations between chronic stress and hemodynamic CFT-reactivity,
we calculated general linear models (GLM) with repeated SBP, DBP, or HR levels as
dependent variables, group (HT vs. NT) as categorical independent variable, chronic stress
as continuous independent variable, and the interaction term between group and chronic
stress. Notably, group and chronic stress were Z-transformed prior to computation of
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interaction terms. Again, we performed all GLMs with and without controlling for age and
BMI as potentially confounding covariates.

To graphically illustrate our findings, we performed a median split on the TICS-CSSS
rendering four subgroups, i.e., HT with lower chronic stress, HT with higher chronic stress,
NT with lower chronic stress, and NT with higher chronic stress.

Effect size parameters (f ) were calculated from partial eta squared (η2) using G*Power
for Macintosh (Version 3.1.9.6; Heinrich Heine University Düsseldorf, Germany) and
are reported where appropriate (effect size conventions: f 0.10 = small, 0.25 = medium,
0.40 = large) [37].

3. Results
3.1. Participants’ Characteristics

Our final sample comprised a total of 48 participants, 24 hypertensive participants
and 24 normotensive controls. As expected, HT displayed significantly higher average
resting SBP, DBP, and MAP compared to NT. In addition, HT had a higher BMI than NT.
The two groups did not significantly differ in terms of average resting HR, age, or any
psychological measure (p′s ≥ 0.40). Participants’ characteristics are depicted in Table 1.

Table 1. Characteristics of study participants.

Normotensives (n = 24)
Mean ± SEM (range)

Hypertensives (n = 24)
Mean ± SEM (range) p

Age (years) 52.71 ± 2.08 (29–64) 54.13 ± 1.25 (38–64) 0.56
BMI (kg/m2) 23.82 ± 0.41(20.73–29.04) 26.13 ± 0.51 (21.29–30.76) 0.001 **

MAP (mmHg) 92.80 ± 1.25 (81.67–103.67) 112.94 ± 1.27 (97.83–123.83) <0.001 ***
Resting SBP α (mmHg) 122.98 ± 1.46 (105.5–134.0) 149.40 ± 1.64 (133.5–163.5) <0.001 ***
Resting DBP α (mmHg) 77.71 ± 1.37 (62.0–89.0) 94.71 ± 1.43 (74.0–107.0) <0.001 ***

Resting HR α

(min−1) 69.52 ± 2.14 (53.0–91.5), n = 23 69.96 ± 2.23 (49.0–99.5) 0.89

GSI 0.20 ± 0.04 (0.00–0.89) 0.25 ± 0.04 (0.02–0.72), n = 23 0.40
TICS-CSSS 10.19 ± 1.67 (2–34), n = 21 11.35 ± 1.50 (0–29), n = 23 0.61

BMI = body mass index; DBP = diastolic blood pressure; GSI = Global Severity Index of the Brief Symptom Inventory; HR = heart rate;
MAP = mean arterial blood pressure calculated from mean resting BP; n = number of participants in case of missing data; n = total number
of participants; SEM = standard error of the mean; SBP = systolic blood pressure; TICS-CSSS = Chronic Stress Screening Scale of the Trier
Inventory for Chronic Stress. α = mean of two resting measurements. *** p < 0.001; ** p < 0.01.

3.2. CFT-Induced Reactivity

As expected and in line with average resting measurements, HT had higher baseline
SBP and DBP (p < 0.001) whereas baseline HR did not differ between groups (p = 0.21).

3.2.1. Systolic Blood Pressure

HT and NT did not differ significantly in their SBP reactivity to CFT (interaction
group-by-time: p = 0.44; with age and BMI: p = 0.08). However, SBP significantly decreased
in response to CFT in both, HT and NT (main effect of time: F(3.50, 160.82) = 14.89, p < 0.001,
partial η2 = 0.25, f = 0.57), with lowest levels +3 min after CFT-cessation (see Figure 1). This
main effect of time was not independent of age and BMI (p = 0.11).

Post-hoc testing revealed (marginally) significant differences from baseline +3 min
and +5 min after CFT-cessation across all participants (p′s≤ 0.010). Separate analyses in HT
and NT revealed a main effect of time in both groups (HT: F(4, 92) = 8.97, p < 0.001, partial
η2 = 0.28, f = 0.63; NT: F(4, 92) = 6.25, p < 0.001, partial η2 = 0.21, f = 0.52). Moreover, both,
HT and NT, displayed significant decreases compared to baseline at all measurement time
points after CFT-cessation (p′s≤ 0.013), but not during CFT (p′s≥ 0.30). The expected main
effect of group was confirmed (F(1, 46) = 80.60, p < 0.001, partial η2 = 0.64, f = 1.32; with age
and BMI: F(1, 44) = 66.49, p < 0.001, partial η2 = 0.60, f = 1.22; see Figure 1); and post-hoc
tests revealed significant group differences for all measurement time points controlling for
baseline SBP (p′s ≤ 0.046).
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Similarly, complementary ANCOVAs using MAP as linear independent variable
instead of group, could not detect a significant MAP-by-time interaction (p = 0.28; with
age and BMI: p = 0.07). The expected main effect of MAP was confirmed (F(1, 46) = 138.55,
p < 0.001, partial η2 = 0.75, f = 1.73; with age and BMI: F(1, 44) = 103.08, p < 0.001, partial
η2 = 0.70, f = 1.53). However, there was no significant main effect of time (p = 0.60; with
age and BMI: p = 0.92).
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Figure 1. Systolic Blood Pressure (SBP) response to Cold Face Test (CFT; grey bar) in hypertensive
participants (black dots) and normotensive controls (white dots) (mean± SEM). A repeated measures
ANOVA revealed that SBP reactivity did not differ between hypertensives and normotensives
(interaction group-by-time: p = 0.44) except for the higher overall SBP in hypertensives (main
effect of group: p < 0.001). Repeated measures ANOVAs calculated separately in hypertensives and
normotensives revealed main effects of time in both groups (p′s < 0.001). Asterisks indicate significant
differences between measurement timepoints during/after CFT and the respective baseline levels
within each group (* p < 0.05; ** p < 0.01; *** p < 0.001).

3.2.2. Diastolic Blood Pressure

As a main finding of our study, HT and NT differed in their DBP reactivity to CFT
(interaction group-by-time: F(4, 184) = 2.81, p = 0.027, partial η2 = 0.06, f = 0.25; with age
and BMI: F(4, 176) = 2.03, p = 0.092, partial η2 = 0.04, f = 0.20). As displayed in Figure 2,
DBP decreased in NT after CFT-cessation with lowest levels at +3 min after cessation, while
in HT, DBP did not decrease. We observed the expected significant group effect for DBP
(main effect of group: F(1, 46) = 37.99, p < 0.001, partial η2 = 0.45, f = 0.91; with age and
BMI: F(1, 44) = 38.75, p < 0.001, partial η2 = 0.47, f = 0.94; see Figure 2) whereas the main
effect of time was not significant (p = 0.23; with age and BMI: p = 0.13).

Post hoc tests revealed significant group differences for all measurement time points
after CFT-cessation controlling for baseline DBP (+3 to +10 min after CFT-cessation:
p′s ≤ 0.011). During CFT, HT did not significantly differ from NT in DBP (+1.5 min
after CFT-onset: p = 0.82), again controlling for baseline DBP. Separate analyses in HT
could not detect a main effect of time (p = 0.59) whereas separate analyses in NT did
(F(4, 92) = 4.47, p = 0.002, partial η2 = 0.16, f = 0.44). NT displayed significant decreases
compared to baseline for all measurement time points after CFT cession (p′s ≤ 0.018), but
not during CFT (p = 0.30).

Complementary ANCOVAs using MAP as a linear independent variable instead of
group similarly revealed a significant MAP-by-time interaction (F(4, 184) = 2.85, p = 0.025,
partial η2 = 0.06, f = 0.25; with age and BMI: F(4, 176) = 2.14, p = 0.078, partial η2 = 0.05,
f = 0.23). Additionally, across all participants, the expected main effect of MAP was
confirmed (F(1, 46) = 148.38, p < 0.001, partial η2 = 0.76, f = 1.78; with age and BMI:
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F(1, 44) = 137.31, p < 0.001, partial η2 = 0.76, f = 1.78) and we observed a significant main
effect of time (F(4, 184) = 3.17, p = 0.015, partial η2 = 0.06, f = 0.25; with age and BMI:
F(4, 176) = 3.34, p = 0.012, partial η2 = 0.07, f = 0.27).
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3.2.3. Heart Rate 

Figure 2. Diastolic Blood Pressure (DBP) response to Cold Face Test (CFT; grey bar) in hyperten-
sive participants (black dots) and normotensive controls (white dots) (mean ± SEM). A repeated
measures ANOVA revealed that hypertensives did not show DBP decreases after CFT-cessation as
did normotensive controls (interaction group-by-time: p < 0.027). Repeated measures ANOVAs
calculated separately in hypertensives and normotensives confirmed a significant main effect of time
for DBP in normotensives (p < 0.002), but not in hypertensives (p = 0.59). Asterisks indicate significant
differences between measurement timepoints during/after CFT and the respective baseline levels
within each group (* p < 0.05; ** p < 0.01).

3.2.3. Heart Rate

HT and NT differed in their HR reactivity to CFT on a marginal significant level
(interaction group-by-time: F(3.14, 125.49) = 2.46, p = 0.063, partial η2 = 0.06, f = 0.25), but
not when controlling for age and BMI (p = 0.16). As displayed in Figure 3, HR decreased in
NT during CFT but increased after cessation, while in HT, HR did not decrease.

Indeed, separate analyses in HT and NT confirmed a significant main effect of time
in NT (F(3.16, 69.51) = 10.26, p < 0.001, partial η2 = 0.32, f = 0.68), but not in HT (p = 0.62).
In NT, further post hoc testing revealed that compared to baseline, HR was significantly
decreased during CFT and at the first measurement time point after CFT-cessation (+1.5 min
after CFT-onset: p = 0.005; +3 min after CFT-cessation: p = 0.007). Across all participants,
HR significantly decreased in response to CFT (main effect of time: F(3.14, 125.49) = 5.99,
p = 0.001, partial η2 = 0.13, f = 0.39) with marginally significant differences from baseline
during CFT (+1.5 min) and +5 min and +10 min after CFT-cessation (p′s < 0.09). This main
effect of time was not independent of age and BMI (p = 0.61). The main effect of group in
HR did not reach statistical significance (p = 0.15; with age and BMI: p = 0.18).

Complementary ANCOVAs using MAP as linear independent variable instead of
group similarly revealed a significant main effect of time without (F(3.10, 124.34) = 2.77,
p = 0.043, partial η2 = 0.07, f = 0.27) but not with control for age and BMI as confounding
variables (p = 0.16). We observed a main effect of MAP across all participants (F(1, 40) = 4.13,
p = 0.049, partial η2 = 0.09, f = 0.31; with age and BMI: F(1, 38) = 3.90, p = 0.056, partial
η2 = 0.09, f = 0.31). However, there was no MAP-by-time interaction (p = 0.12; with age
and BMI: p = 0.20).
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Figure 3. Heart rate (HR) response to Cold Face Test (CFT; grey bar) in hypertensive participants
(black dots) and normotensive controls (whites dots) (mean ± SEM). A repeated measures ANOVA
revealed that hypertensives failed to show HR decreases in immediate response to CFT as did
normotensive controls (interaction group-by-time: p < 0.063). Repeated measures ANOVAs calculated
separately in hypertensives and normotensives confirmed a significant main effect of time for HR
in normotensives (p < 0.001), but not in hypertensives (p = 0.62). Asterisks indicate significant
differences between measurement timepoints during/after CFT and the respective baseline levels
within each group (** p < 0.01).

3.3. Associations between Chronic Stress and CFT-Induced Reactivity
3.3.1. Systolic and Diastolic Blood Pressure

GLMs with SBP or DBP measures, respectively, as repeated dependent variables,
group as categorical variable, and chronic stress as continuous independent variable could
not reveal a moderating effect of chronic stress (three-way interactions TICS-CSSS, group,
and time for SBP: p = 0.80; with age and BMI: p = 0.59, for DBP: p = 0.64; with age and
BMI: p = 0.50). There were no significant interactions TICS-CSSS-by-time in terms of SBP
(p = 0.49; with age and BMI: p = 0.72) or DBP (p = 0.51; with age and BMI: p = 0.71).

3.3.2. Heart Rate

For HR reactivity, we observed a significant three-way interaction of TICS-CSSS,
group, and time (F(3.42, 116.32) = 2.66, p = 0.045, partial η2 = 0.07, f = 0.27; with age and
BMI: F(3.61, 115.60) = 2.24, p = 0.075, partial η2 = 0.07, f = 0.27) when calculating GLMs
with HR measures as repeated dependent variable, group as categorical, and chronic stress
as continuous independent variable and thus a moderation effect of chronic stress. There
was no significant interaction TICS-CSSS-by-time (p = 0.27; with age and BMI: p = 0.11).

HR reactivity in HT and NT with higher and lower chronic stress is illustrated in
Figure 4. Whereas HR reactivity profiles of HT seem comparable without marked decreases
independent of the amount of chronic stress, NT with higher chronic stress differ from
NT with lower chronic stress. More precisely, NT with higher chronic stress displayed HR
reactivity profiles without prominent CFT-decreases similar to those of HT. In contrast, NT
with lower chronic stress showed a notable decline in HR during CFT which returned to
baseline levels after CFT-cessation.



J. Clin. Med. 2021, 10, 2714 10 of 15

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

GLMs with SBP or DBP measures, respectively, as repeated dependent variables, 

group as categorical variable, and chronic stress as continuous independent variable 

could not reveal a moderating effect of chronic stress (three-way interactions TICS-CSSS, 

group, and time for SBP: p = 0.80; with age and BMI: p = 0.59, for DBP: p = 0.64; with age 

and BMI: p = 0.50). There were no significant interactions TICS-CSSS-by-time in terms of 

SBP (p = 0.49; with age and BMI: p = 0.72) or DBP (p = 0.51; with age and BMI: p = 0.71).  

3.3.2. Heart Rate 

For HR reactivity, we observed a significant three-way interaction of TICS-CSSS, 

group, and time (F(3.42, 116.32) = 2.66, p = 0.045, partial η2 = 0.07, f = 0.27; with age and 

BMI: F(3.61, 115.60) = 2.24, p = 0.075, partial η2 = 0.07, f = 0.27) when calculating GLMs with 

HR measures as repeated dependent variable, group as categorical, and chronic stress as 

continuous independent variable and thus a moderation effect of chronic stress. There 

was no significant interaction TICS-CSSS-by-time (p = 0.27; with age and BMI: p = 0.11).  

HR reactivity in HT and NT with higher and lower chronic stress is illustrated in 

Figure 4. Whereas HR reactivity profiles of HT seem comparable without marked de-

creases independent of the amount of chronic stress, NT with higher chronic stress differ 

from NT with lower chronic stress. More precisely, NT with higher chronic stress dis-

played HR reactivity profiles without prominent CFT-decreases similar to those of HT. In 

contrast, NT with lower chronic stress showed a notable decline in HR during CFT which 

returned to baseline levels after CFT-cessation.  

 

Figure 4. Heart rate (HR) reactivity to Cold Face Test (CFT; grey bar) in hypertensive participants 

and normotensive controls with higher and lower chronic stress (mean ± SEM). A general linear 

model revealed that chronic stress moderates HR reactivity to CFT (three-way interaction TICS-

CSSS-by-group-by-time: p < 0.045) with chronically stressed normotensives resembling the HR re-

activity patterns of hypertensives. 

4. Discussion 

We (1) investigated cardiovascular reactivity to and recovery from CFT in medica-

tion-free hypertensive men as compared to normotensive controls and (2) tested whether 

chronic stress modulates reactivity to and recovery from CFT. SBP, DBP, and HR were 

repeatedly assessed before, during, and after CFT. We first found that while NT experi-

enced significant decreases in DBP after CFT-cessation in combination with HR decreases 

as an immediate response to CFT with subsequent recovery after CFT-cessation, HT did 

Figure 4. Heart rate (HR) reactivity to Cold Face Test (CFT; grey bar) in hypertensive participants
and normotensive controls with higher and lower chronic stress (mean ± SEM). A general linear
model revealed that chronic stress moderates HR reactivity to CFT (three-way interaction TICS-CSSS-
by-group-by-time: p < 0.045) with chronically stressed normotensives resembling the HR reactivity
patterns of hypertensives.

4. Discussion

We (1) investigated cardiovascular reactivity to and recovery from CFT in medication-
free hypertensive men as compared to normotensive controls and (2) tested whether
chronic stress modulates reactivity to and recovery from CFT. SBP, DBP, and HR were
repeatedly assessed before, during, and after CFT. We first found that while NT experienced
significant decreases in DBP after CFT-cessation in combination with HR decreases as an
immediate response to CFT with subsequent recovery after CFT-cessation, HT did not
display significant changes in response to CFT either in terms of DBP or HR. In other
words, HT failed to show the “normal” normotensive reactivity or recovery, to CFT in
terms of DBP and HR, respectively, showing a rather static picture with reduced up to
absent reactivity instead. With respect to SBP, NT and HT exhibited similar reactivity
patterns, i.e., decreases in response to CFT, except for the general higher SBP values in
HT. Second, depending on hypertension status chronic stress moderated HR reactivity but
not SBP or DBP reactivity to CFT. More precisely, regardless of the extent of chronic stress,
HT did not exhibit significant HR decreases in response to CFT. While NT with lower
chronic stress showed HR decreases with subsequent recovery back to baseline, NT with
higher chronic stress resembled the absent reactivity of HT and did not show prominent
HR decreases in response to CFT.

4.1. Immediate Reactivity to CFT

The observed expected HR decreases in NT during CFT are in line with previous
CFT-studies [14–17,21,22,38]. Regarding SBP and DBP, NT did not display any changes in
their immediate response to CFT in some studies [15,21], while other studies found either
increased SBP or DPB [14,16,17]. In all CFT-studies observing immediate increases in SBP
and/or DBP in NT, CFT was conducted for a maximum of 60 s with BP decreases starting
about 35–45 s after CFT-onset [16,17]. Given that CFT-duration has been found to influence
HR decreases [17], extension of CFT-duration as in our study may comparably act on BP
resulting in further BP decreases. This might explain why we did not observe BP changes
in NT in response to CFT assessed 90 s after onset in our study. Regarding immediate
HR reactivity to CFT in HT, the two hitherto published CFT-studies in HT are in line with
our findings and observed no immediate HR changes [21,22]. Moreover, in our study, HT



J. Clin. Med. 2021, 10, 2714 11 of 15

did not display any changes in SBP or DBP in immediate response to CFT assessed 90 s
after CFT-onset. This result is opposed to the previously reported SBP increases in HT in
response to CFT where BP changes were investigated 30–60 s after CFT-onset [21]. We
speculate that early BP changes within the first 60 s of the CFT may not persist up to 90 s
after CFT-onset.

4.2. Recovery from CFT

Recovery from CFT has not yet been investigated in humans. Based on the literature
presented above, we hypothesized HT to show impaired recovery from CFT. Our results are
in line with the hitherto only animal study investigating HR recovery from parasympathetic
stimulation in atropine injected and thus PNS inhibited muskrats [39].

4.3. Moderation by Chronic Stress

Chronically stressed individuals show reduced basal PNS activity [28] and impaired
recovery from sympathetic stimulation [27] whereby the PNS is supposed to play a crucial
role [40,41]. Similar patterns of autonomic (re)activity are reported in HT [4,5]. So far,
associations between chronic stress and reactivity to parasympathetic stimulation have not
been investigated. The observed impaired CFT-reactivity in chronically stressed NT and
in HT resemble each other and indicate impaired parasympathetic activity with altered
reactivity to parasympathetic stimulation in both, chronic stress and hypertension.

Which mechanisms may underlie our findings?

4.3.1. SBP and DBP in NT

The observed SBP decreases in NT likely result from acetylcholine (ACh)-induced
reduced atrial contractility [42] and diminished ventricle contraction force [43]. We assume
the observed DBP decreases in NT to be mediated by the vasodilatory effect of nitric oxide
released as a result of M3-receptor stimulation by ACh [44] and by the reduced constric-
tive sympathetic influence on smooth vascular muscles in response to parasympathetic
stimulation [45]. Notably, we observed transient BP decreases in our NT immediately
after CFT-cessation. Given the CFT-induced sympathetic co-stimulation and resulting
peripheral vasoconstriction within the first minute of the CFT [16,17], we speculate that
this effect inhibits immediate BP decreases during CFT allowing BP to decrease not before
this inhibitory effect disappears. Further, the observed BP increases in our NT during
the second half of the recovery period most likely reflect counterregulatory homeostatic
feedback mechanisms [46].

4.3.2. SBP and DBP Reactivity Divergence in HT vs. NT

The observed similar SBP recovery in NT and HT except for the general higher BP
in HT, suggests a functioning SBP recovery in HT. The absence of DBP decreases in HT
after CFT-cessation may result from functional impairment of the windkessel function.
The windkessel function resembles the ability of the ascending aorta to store part of the
blood ejected during systole, forcing it into the peripheral vessels after the aortic valves are
closed and thus creating a continuous blood flow [47]. As hypertension is accompanied by
endothelial dysfunction, arteriosclerotic stiffening, and calcification of the vessel walls [48],
this may impair the relaxation ability of the resistance vessels and thus adjustment ability
of the windkessel function in HT [49]. Since the windkessel function accounts for a large
extent of the diastolic component of arterial pressure [50], the relaxation capacity of the BP
system in the immediate CFT post-exposure phase is likely to be impaired in HT. In line
with such reasoning, impairment of endothelium-dependent vasodilatation in essential
hypertension has previously been reported [51]. As the elastic capacity of the resistance
vessels primarily impacts DBP but not SBP [52], this may also explain why we did not
observe the same reactivity patterns for SBP and DBP in HT.
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4.3.3. Decrease in HR in NT and absence of HR Decreases in HT

We propose ACh-induced stimulation of M2-receptors in the sinoatrial node to mediate
the HR decreasing effect of the CFT [42]. Consequently, the absence of CFT-induced HR
decreases in our HT may indicate that parasympathetic reactivity to the CFT is insufficient
to elicit HR decreases in HT. Whether this relates to the generally reduced PNS activity in
HT remains to be elucidated [3]. Alternatively, dysfunction of M2-receptors in HT [53,54]
or the persistently heightened sympathetic activity in HT [3] may play a role. With respect
to the observed HR increases in NT towards the end of the recovery period, we assume
that they result from a compensatory rise of SNS activity after CFT [46].

4.4. Absence of HR Decreases in Chronically Stressed NT

A likely explanation is reduced vagal inhibitory control in response to parasympathetic
stimulation given the decreased basal PNS activity with chronic stress [28]. However, as
chronic stress did not relate to BP reactivity to CFT, we assume that effects of chronic stress
on endothelial function do not substantially manifest prior to sustained BP elevations [55].

With regard to potential clinical implications, the observed impaired hemodynamic
reactivity to CFT emphasizes the role of the PNS in hypertension in the sense that in
reaction to CFT the cardiovascular system shows impaired ability to relax which likely
contributes to the sympathovagal imbalance in hypertension. Our findings may point to
potential benefits of therapeutic approaches targeting the PNS in hypertensive patients.
Whether e.g., direct stimulation of the vagus nerve [56,57] and/or (repeated) application of
the non-invasive CFT show beneficial effects in essential hypertensive humans remains
to be elucidated. Moreover, the observed absence of HR decreases to CFT in chronically
stressed NT may relate to the hypertension risk with chronic stress.

Strengths of our study include the application of the CFT as a standardized short,
simple, and non-invasive method to stimulate the PNS, notably without breath holding
or facial immersion. Second, the repeated assessment of hemodynamic parameters for
up to 10 min after CFT-cessation provides a sufficient time interval for BP and HR kinetic
monitoring. Third, we considered effects of chronic stress which may shed light on factors
involved in the development of essential hypertension. Finally, we controlled for effects
of age and BMI and can thus exclude that the observed reactivity differences of HT and
NT result from weight differences and accompanying autonomic changes [36,58]. This is
in line with our expectations, as decreased parasympathetic activity has been reported
in hypertension even after controlling for BMI [59] and BMI has been shown to be an
independent contributor to sympathovagal balance in hypertension development [60].

Our study also has its limitations. First, generalizability of our results is limited
as our study sample comprises normotensive and hypertensive but otherwise healthy
and medication-free men. Second, given the effects of age and testosterone levels on
vascular functioning in men [61], further investigation in men of different age ranges is
warranted. Third, CFT-application stimulates the PNS non-invasively but at the same time
co-activates the SNS which does not allow to disentangle pure PNS from mixed PNS plus
SNS effects [14,15,17]. Fourth, continuous BP and HR recording would have allowed for a
more comprehensive understanding of the reactivity kinetics in response to CFT. Last, we
did not assess the full spectrum of assessable SNS and PNS parameters beyond HR and BP
such as HRV or pre-ejection period.

5. Conclusions

Essential HT show altered reactivity and recovery patterns in response to CFT in
terms of HR and DBP but not in terms of SBP as compared to normotensive controls.
These findings indicate impaired ability of the cardiovascular system to relax in essential
hypertension. Therefore, therapeutic approaches targeting the PNS might be promising in
the treatment of hypertension. Moreover, the observed moderation effect of chronic stress
on HR reactivity to CFT may relate to the hypertension risk with chronic stress. Future
studies are needed to verify the observed cardiovascular reactivity impairment in essential
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hypertension and chronic stress and to investigate whether our results extend to further
SNS and PNS parameters and other populations. Clinical and therapeutical implications
remain to be elucidated.
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