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Abstract: Hypersensitivity pneumonitis (HP) is a diffuse interstitial lung disease (ILD) caused by
the inhalation of a variety of antigens in susceptible individuals. Patients with fibrotic HP (fHP)
may show histopathological and radiological manifestations similar to patients with idiopathic
pulmonary fibrosis (usual interstitial pneumonia-like pattern of fibrosis) that are associated with
a worse prognosis. We describe here the establishment and characterization of a fibroblastic cell
line derived from the broncho-alveolar lavage (BAL) of a patient with fHP, a 53 year old man who
presented at our Pneumology Unit with cough and dyspnea. The fHP diagnosis was based on
international criteria and multidisciplinary discussion. Primary fibroblasts were expanded in vitro
until passage 36. These fibroblasts displayed morpho/phenotypical features of myofibroblasts,
showing high positivity for α-smooth muscle actin, type I collagen, and fibronectin as determined
by quantitative RT-PCR and cyto-fluorographic analysis. Cytogenetic analyses further evidenced
trisomy of chromosome 10, which interestingly harbors the FGF2R gene. To our knowledge, this is
the first fibroblastic cell line derived from an fHP patient and might, therefore, represent a suitable
tool to model the disease in vitro. We preliminarily assessed here the activity of pirfenidone, further
demonstrating a consistent inhibition of cells growth by this antifibrotic drug.
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1. Introduction

Progressive fibrosing interstitial lung diseases (ILDs) are associated with high mor-
tality; in particular, patients developing the fibrotic form of hypersensitivity pneumonitis
have a poor prognosis. Hypersensitivity pneumonitis is difficult to diagnose since clinical
symptoms and pathologic or radiologic imaging often resemble those of other ILDs [1–3].
Hypersensitivity pneumonitis is caused by an exaggerated immune reaction developing in
a small percentage of individuals that are sensitized by a large variety of environmental
antigens [4]. More than 300 are the molecules specifically recognized as causing HP, but
others, putatively involved in the disease, are still unknown. Among the known antigens
that frequently cause HP, there are microbial agents (e.g., Saccaropolysphora rectivirgula),
fungi (e.g., Trichosporum cutaneum) [5], animal proteins (mostly avian) [6], or chemical
molecules (e.g., di-isocyantes) [7]. HP may be classified as acute or chronic. Symptoms of
HP in its acute form occur 4–6 h after exposure to a large quantity of allergen. However,
acute HP often resolves in some hours, with a maximum of a few days, if the exposure
to the antigen is ceased. On the contrary, fibrotic HP develops in response to a long-term
exposure to low levels of antigen; it usually occurs with more subtle symptoms, gradually
leading to a rapid decline in lung function and to early mortality [8]. In fHP, fibroblasts
progressively expand and infiltrate the lung interstitium, finally leading to loss of the vital
lung capacity. Fibroblasts, chronically infiltrating the lung in fHP, assume typical features
of myofibroblasts, thus overexpressing alpha-smooth muscle actin (α-SMA) and producing
high levels of collagen. These markers are also typically expressed in cancer-associated
fibroblasts (CAFs); notably, the overexpansion of CAFs in the tumor microenvironment
of the lung is strongly associated with poor prognosis [9]. Hypothetically, fibrosis of lung
tissue might predispose fHP patients to cancer, as already demonstrated in IPF. Kuramochi
et al., in a group of 104 fHP patients, identified 11 individuals (15 lesions) with lung can-
cer (10.6%). Interestingly the most prevalent histopathological type of lung cancer was
squamous cell carcinoma [10], which is also dominant in IPF-associated lung cancer [11,12].

Standard treatments for HP currently consist of withdrawal of the offending antigen
and systemic corticosteroid therapy. In fHP, however, an anomalous fibrotic process
strongly affects the vital function of the lung, progressively leading to the destruction
of the alveolar architecture. These observations have, therefore, recently stimulated the
evaluation of antifibrotic therapies which may ameliorate the pulmonary functions.

In this study, we established a cell line (SCI13D) derived from the broncho-alveolar
lavage (BAL) of a patient with a diagnosis of fHP. The cell line was expanded in vitro until
passage 36 and was phenotypically, morphologically, and functionally characterized. As far
as we know, this is the first cell line developed from an fHP patient and, therefore, it could
be of help in modeling novel therapies for this disease. In this prospect, we attempted to
downregulate the expression of myofibroblasts markers and inhibit the proliferation and
migration of SCI13D using pirfenidone.

2. Materials and Methods
2.1. Patient, Bronchoalveolar Fluid Collection, and Histological Sample Assessment

The present study was approved by the Regional Ethics Committee (ILDFIBRO020)
and conducted according to the current national and international guidelines; within the
study, biological samples were anonymized prior to processing. The diagnosis of fHP for
the patient was based on international criteria. After multidisciplinary discussion of the
Interstitiopathy Lung Disease (ILD) group of the case, and after subscription of an informed
consent form, explicitly authorizing the use of biological samples and any derivative
thereof for research purposes, the patient underwent a transbronchial cryobiopsy [13]
with bronchoalveolar collection (BAL) for diagnostic purposes (cyto-fluorographic and
histological analysis). Aliquots of the BAL collection, unused for diagnosis, were further
processed for additional research procedures.

For histology, all the four samples obtained with cryoprobe were fixed in forma-
lin, routinely processed, embedded in paraffin, and cut using a microtome, obtaining
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three levels of sections, before staining with hematoxylin and eosin (H&E). Adjunctive
histochemical staining (Alcian blue PAS and Mallory’s trichrome) and immunohistochem-
istry (Cytokeratin 7, all provided by Ventana Medical System, Inc., Oro Valley, AZ, USA)
were performed to facilitate the diagnostic process. BAL cytology was also examined for
diagnostic purposes (data not shown).

2.2. Cell Line Establishment and Culture

Cells were first pelleted from the BAL fluid and then seeded in a 24-well plate in
complete medium (RPMI-1640 + 10% FCS; Lonza, Walkersville, MD, USA) to be cultured
at 37 ◦C in 5% CO2. Fibroblast growth factor 2 (FGF2; 3 ng/mL; Miltenyi Biotech GMbH
Friederich-Ebert, Germany) was added 1 day after. The medium was changed once a week,
and FGF2 was also added. After 3 weeks, a consistent number of spindle-shaped cells
appeared, growing attached to the bottom of a well to form a colony. Cells were, therefore,
expanded and grown until confluence. After each trypsin treatment (Euroclone S.p.A.,
Milan, Italy) detached fibroblasts were washed, collected, and further expanded in 24- or
six-well plates. Aliquots of these cells were then assessed for the expression of markers
specific for fibroblast/myofibroblast differentiation by quantitative RT-PCR or through
staining with specific moAbs and subsequent cyto-fluorographic analysis, as described
below. Fibroblasts were in part frozen or continuously expanded until passage 36.

2.3. mRNA Extraction and Quantitative Real-Time RT-PCR

Cells were washed in phosphate-buffered solution (PBS; Euroclone), detached by
trypsinization, and collected by centrifugation (400× g). Total mRNA was extracted by
using the GeneUPTM Total RNA Kit (BiotechRabbit GmbH, Berlin, Germany), following
the manufacturer’s instructions. Upon generation of the cDNA pool for each sample, by
using the SuperScriptTM III First-strand synthesis system for RT-PCR Kit (Invitrogen; Milan,
Italy), real-time quantitative RT-PCR analysis was subsequently undertaken to evaluate the
relative expression of target genes; a SYBR-Green RealMasterMix SYBR ROX 2.5× (5-Prime
GmbH, Hamburg, Germany) was used in an Eppendorf Mastecycler Realplex2 apparatus.
Reactions were performed in triplicate for each treatment/sample, according to the follow-
ing settings: a single denaturation step at 95 ◦C for 3 min, followed by 45 cycles at 94 ◦C for
30 s, 60 ◦C for 30 s, 72 ◦C for 40 s, and a final step at 72 ◦C for 7 min. The specificity of each re-
action was assessed by the melting curve analysis. The expression of each gene was normal-
ized to the endogenous housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Primer sets for target genes were derived from previously published sequences,
such as for type 1 collagen [14], or purposely designed, such as for the alpha-smooth
muscle actin (α-SMA; forward primer: TGGAAAAGATCTGGCACCAC, reverse primer:
CTCAAACATAATTTGAGTCAT), fibronectin (FN; forward primer: TACACTGGGAA-
CACTTACCG; reverse primer: CCAATCTTGTAGGACTGACC), fibroblast growth factor-2
receptor (FGF-2R; forward primer: AGACAGGTAACAGTTTCGGCT, reverse primer:
CAGTGTCAGCTTATCTCTTGG), CDK1N1A (P21; forward primer: TGAGCCGCGACT-
GTGATG, reverse primer: GTCTCGGTGACAAAGTCGAAGTTC), and CDKN2A (P16;
forward primer: GTGGACCTGGCTGAGGAG, reverse primer: CTTTCAATCGGGGAT-
GTCTG). The expression level of each target gene among different samples and/or culture
conditions was normalized by the level of the corresponding gene in control cultures.

2.4. Morphology, Cyto-Fluorographic, and Immunofluorescence Analyses

Morphological characteristics of live cultured cells, expanded in 24- or in six-well
plates, were observed under an inverted Olympus CKX-41 microscope ad acquired using
a Nikon Digital Sight DS-5Mc camera equipped with the NIS-Elements F2.20 software.
Images of the cell gross morphology were acquired after fixing cells with 4% paraformalde-
hyde in PBS for 15 min and staining them with a Methylene Blue solution (1%, in borate
buffer, pH 8.8) for an additional 15 min at RT. Phenotypical analysis was performed by
staining detached cells with specific monoclonal or polyclonal antibodies (moAbs) such
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as FITC-conjugated anti-human CD105 (ImmunoTools GmbH, Friesoythe, Germany) or
-vimentin (M7020 DakoCytomation, Glostrup, Denmark), -fibronectin (DP3060, ACRIS,
LiStarfish, Milan, Italy), -procollagen-1 (SP1.D8; Developmental Studies Hybrydoma Bank,
Univesity of Iowa; Iowa City, IA, USA), -type III collagen (MAB3392; Millipore Australia
Pty, Ltd., Boronia, Victoria 3155, Australia), -α-smooth muscle actin (clone 1A4; Invitrogen-
Thermo Fisher Scientific, Milan, Italy), -p21 Waf1/Cip1(sc-187, Santa Cruz Biotechnology
Inc., Dallas, TX, USA) or -α-smooth muscle actin directly conjugated to Alexa (ab5694;
Abcam, Cambridge, UK; Prodotti Gianni S.p.A., Milano, Italy) or FITC-conjugated anti-
Ki-67 (BD Pharmingen Inc., San Diego, CA, USA) For cyto-fluorographic assessment, cells
were first stained for the CD105 membrane antigen. After 30 min of incubation at 4 ◦C,
the cells were washed with PBS + 2% FCS, fixed with 1% PFA, and incubated again on
ice in the dark for 15 min. After two washes with PBS + 2% FCS, the cells were stained
with the Alexa466-conjugated α-SMA antibody or with anti-human vimentin, fibronectin,
collagen-1, or collagen-3 antibodies. Cells were, therefore, incubated on ice for 30 min
more. After this incubation, the cells were washed and, then, when necessary, stained
with a specific anti-mouse or anti-rabbit secondary PE-conjugated antibody (Southern
Biotechnology, Birmingham, AL 35226, USA) for 30 min. Cyto-fluorographic analysis was
then performed using an FACSCanto cytofluorimeter (Becton Dickinson; Franklin Lakes,
NJ, USA).

Immunofluorescence was also performed on fibroblasts (SCI13D and HF) previously
grown in chamber slides (Thermo Fischer Scientific; Rodano (MI), Italy). The cells were
first fixed with 4% PFA in PBS for 15 min. After three washes with PBS + 2% FCS, cells were
incubated for 30 min in the dark with an anti-human Actin moAb (DM001P, Acris Antibod-
ies; Li.StarFISH, Carugate (MI), Italy). After three more washes, fibroblasts were stained
with an isotype-specific secondary antibody fluorescein conjugate (Southern Biotechnol-
ogy). Cell nuclei were identified by standard staining with 4′,6-diamidine-2′-phenylindole
dihydrochloride (DAPI; Merck Serono S.p.A., Rome, Italy).

2.5. Immunocytochemistry of the SCI13D Cell Line

Cytological analyses of SCI13D were performed with standard hematoxylin and eosin
staining or with immunocytochemical probing for vimentin, smooth muscle actin, and
cytokeratin AE1–AE3 (Ventana Medical Systems, Inc., Oro Valley, AZ, USA).

2.6. Proliferation and Growth Kinetic Determination

Cells were seeded in a six-well plate at a density of 3 × 104/well, expanded, har-
vested, and counted after 14 days using 0.1% trypan blue and a Neuerbauer count chamber.
Fibroblasts were then reseeded in 24-well plates to a density of 104 cells/mL in complete
medium and left to adhere for 24 h. Non-adhered cells were washed away, and treatments
were performed by exposing cells to complete medium supplemented with pirfenidone
(150–450 µg/mL; D.B.A. Italia, Segrate, Milan, Italy), TGF-β1 (5 ng/mL; Miltenyi Biotech
GMbH Friederich-Ebert, Germany), or both. At each assessed timepoint, cells were thor-
oughly washed with sterile PBS and incubated for 4 h at 37 ◦C with complete culture
medium supplemented with 10% Alamar BlueTM (Invitrogen; Milan, Italy). Subsequently,
aliquots of the supernatants were drawn and assessed spectrophotometrically at 570 and
600 nm in a Spectra MR Dynex apparatus, while cells were washed and replenished with
complete medium. Determinations were performed in duplicate for each well and treat-
ment, for each timepoint (0, 1, 4, and 7 days). In selected experiments, wherever indicated,
FGF2 was added at different concentrations (3 or 10 ng/mL).

2.7. Wound Sratch Test

Fibroblasts were seeded in 24-well plates to a density of 104 cells/mL, and then
left to adhere and proliferate to semi-confluency in complete/treatment medium. A
scratch was then made onto the cell layer, throughout the full length of the diameter
of each culture well, by using a sterile 200 µL micropipette tip. Pirfenidone treatment
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was contemporarily started (150, 300 or 450 µg/mL), wherever needed. At any assessed
timepoint, the number of cells encompassed by the lesion area was used as a parameter to
define the fastest and most efficient growth conditions among the experimental settings
assessed. Images of cells filling the gaps were acquired 0, 6, 24, 36, and 48 h after generating
the lesion. The original boundaries of each lesion area were superimposed to frames
captured from the same plate in the same position at each experimental timepoint; cells
within boundaries were then counted using the National Institute of Health ImageJ free-
software 1.48v (http://imagej.nih.gov/ij access on 1 September 2021).

2.8. Determination of the Total Cellular F-Actin with/without Pirfenidone Treatment

SCI13D fibroblasts were cultured in eight-well chamber slides (Nunc) in a total volume
of 300 µL of culture medium. The cells were then treated with TGF-β 5 ng/mL, pirfenidone
300 µg/mL, or TGF-β + pirfenidone for 72 h. Cells were, therefore, fixed in 2.5% PAF,
permeabilized with Triton × 100, and stained with Alexa-Fluor 555-conjuged phalloidin
(Thermo Fischer Scientific; Rodano (MI), Italy).

The content of F-actin was determined by fluorescence microscopy (Nikon Optiphot-2;
Nikon, Melville, NY, USA), as described previously [15]. Image capturing was performed
with a Hamamatsu color-chilled 3 CCD camera. Identical camera settings (time of exposure,
brightness, contrast, and sharpness) and an appropriated white balance set according to
the fluorescence filter were used. Pictures were acquired and analyzed using Image-Pro
Plus 4.0 (Media Cybernetics Inc., Rockville, MD, USA). Nuclei were counterstained with
DAPI. The mean fluorescence density was determined from a linear measurement of cell
fluorescence in randomly chosen fields of each slide (six fields per slide). Results depict the
mean ± SEM of the fluorescence densities (the relative intensity was normalized counting
cells nuclei of each field for each individual slide).

2.9. β-Galactosidase Assessment

Senescence-associated β-galactosidase is a manifestation of residual lysosomal activity
at a suboptimal pH (pH6), which becomes detectable due to the increased lysosomal
content in senescent cells. The senescence-associated β-galactosidase assay is, therefore,
widely used as a biomarker of senescent cells [16]. SCI13D fibroblasts cultured in six-well
plates were first washed with PBS 1× and then fixed with PFA 4% for 5 min at room
temperature. Cells were rinsed with PBS and incubated overnight in the incubator at 37 ◦C
in SA-β-Gal staining solution containing 1 mg·mL−1 X-gal, 40 mM citric acid/sodium
phosphate buffer pH 6.0, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide,
150 mM sodium chloride, and 2 mM magnesium chloride in water. Cells were then rinsed
with PBS and observed at an inverted bright field microscope. At least five images for each
well were acquired as described above.

2.10. Cytogenetics

The patients’ fibroblasts at the third passage were detached from the plate with trypsin
and collected. PHA-activated lymphocytes from peripheral blood obtained from the same
subject were also analyzed. A chromosome study was performed on the SCI13D cell
line and on peripheral blood using standard cytogenetic techniques. Briefly, cells were
exposed to colcemid (0.04 µg/mL) for 30 min at 37 ◦C and to hypotonic treatment (0.075 M
KCl) for 15 min at room temperature. Cells were fixed in a methanol and acetic acid (3:1
volume/volume) mixture for 15 min and then washed three times in the fixative. The slides
were air-dried, and karyotyping was carried out on QFQ-banded chromosomes and was
reported using the ISCN 2020 nomenclature. Fluorescence in situ hybridization (FISH) was
performed using a human chromosome 10 alpha satellite probe (ZytoLight CEN10 probe,
ZytoVision GmbH, Bio-Optica, Milano, Italy) according to the manufacturer’s recommen-
dations, and the automated VP2000 processor was utilized for paraffin-embedded tissue
studies, allowing high performance of all the procedures [17].

http://imagej.nih.gov/ij
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2.11. Short Tandem Repeat Analysis

Short tandem repeat (STR) profiling was performed to verify the authenticity, as
well as the unicity, of the cells using the services provided by Banca Cellule Interlab Cell
Line Collection (ICLC; IRCCS Ospedale Policlinico San Martino, Genoa, Italy). The STR
profiles of the cell line and of the PBMCs of the patient were determined. Fifteen highly
polymorphic STR loci plus amelogenin (Cell IDTMSystem, Promega Italia, 20126 Milano,
Italy) were used. Detection of amplified fragments was obtained using the ABI PRISM
3100 Genetic Analyzer. Data analysis was performed using Gene Mapper software, version
3.2 (Applied Biosystems, Whaltman, MA, USA).

2.12. Statistical Analysis

Whenever needed, Student’s t-test was used to determine the significance of p-values
as follows: 0.05 ≥ p > 0.01 (*); 0.01 ≥ p > 0.001 (**); p ≤ 0.001 (***).

3. Results
3.1. Patient’s Clinical and Diagnostic Features

The patient (53 years old; male) presented at the Pneumology Unit of our Institute
with cough and moderate dyspnea. The CT scan showed an alternative diagnosis pat-
tern according to the Official ATS/ERS/JRS/ALAT clinical practice guidelines [18], with
predominant ground glass opacity and peribronchovascular distribution. The functional
test showed a moderately restrictive form. Transbronchial cryobiopsy, in the lower right
lobe, and BAL collection, in the middle lobe, were performed for diagnostic purposes
after multidisciplinary discussion. Cyto-fluorographic analysis evidenced the presence of
lymphocytosis (26%). Diagnosis of fHP, first based on lymphocytosis detection in BAL and
on a UIP pattern with abundant inflammation, was also confirmed by histological sample
assessment, as described below.

The putative fHP diagnosis was supported by histological examination of the cryobiopsy-
derived samples. Four samples were examined and showed a spatially heterogeneous fibrotic
pattern (Figure 1A,B) with sparse fibroblastic foci and intervening normal lung parenchyma.
In this context, diffuse inflammatory infiltration, composed of lymphocytes and plasma
cells, was present, sometimes in aggregates (Figure 1C). The presence of collagenic fibrosis
was further highlighted by Mallory’s trichrome staining (Figure 1D), and typical fibroblastic
foci are displayed in Figure 1E. In some sections, isolated giant multinucleated cells, with
cholesterine clefts and poorly formed granuloma, were observed (Figure 1F). Honeycombing
or other pathological patterns were absent.

3.2. Establishment of a Unique Fibroblastic Cell Line (SCI13D) from fHP Patient

We here report the establishment and characterization of a fibroblastic cell line derived
from the broncho-alveolar lavage (BAL) of a patient diagnosed with fHP. The present cell
line was continuously expanded until passage 36. Briefly, cells present in BAL were first
pelleted by centrifugation and then seeded in a 24-well plate in complete culture medium
with the addition of FGF2. After 3 weeks, we could note that a few fibroblasts started to
grow and form colonies. These cells, named SCI13D, were continuously expanded in the
culture medium with the addition of FGF2 at the suboptimal concentration of 3 ng/mL
once a week, in part characterized and frozen. To evaluate proliferation of SCI13D, we
first counted the cells to be seeded in a six-well plate at time 0 using trypan blue dye.
After 14 days of culture, the expanded cells were detached from each well and collected to
determine their number and, therefore, their growth.

As shown in Figure 2A, we observed that the number of SCI13D cells was almost
threefold increased at day 14. We also assessed the proliferation of SCI13D using the Alamar
BlueTM test, thus comparing, in a time-course experiment, SCI13D growth with that of
human skin fibroblasts derived from a healthy donor as control. Figure 2B shows that
SCI13D grew moderately faster than the skin fibroblasts used as control (HF). Observations
of cultured SCI13D using an inverted light microscope revealed that these fibroblasts
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gave rise to colonies morphologically more heterogeneous than those formed by HF cells;
typical spindle-shaped fibroblasts appeared in fact mixed with a discrete number of larger
polygonal cells, which more closely resemble myofibroblasts features (Figure 2C,D). In
addition, as shown in Figure 2E, we could note that SCI13D cells tended to overgrow, thus
losing contact inhibition, unlike fibroblasts of the control (HF). We further analyzed the
expression of β-galactosidase (β-gal), P16, and P21, all of which are considered senescence
markers; a consistent number of cells were positive for β-gal (Figure 3A), apparently
brighter in enlarged cells with a polygonal morphology. In addition, mRNA levels of the
cell-cycle inhibitors P16 and P21 were higher in SCI13D than in the lung control cell line
MRC5 (Figure 3B).
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Figure 2. Determination of proliferation and morphological characterization of SCI13D as compared
to control fibroblasts. Determination of SCI13D cell line proliferation by (A) trypan blue dye exclu-
sion (histograms are the mean of three experiments ± SD), or (B) Alamar BlueTM test at different
timepoints; (C) Morphological representation of growing SCI13D fibroblasts or of control fibroblasts
(HF) as observed in bright field; (D) SCI13D colony and cell morphology after fixation and staining
with Methylene Blue; scale bar = 10 µm; (E) actin/DAPI immunofluorescence staining of control
fibroblasts (HF) and of SCI13D cell line after their culture in chamber slides; scale bar = 12.5 µm.

Using cyto-fluorographic analysis (Figure 4A) and quantitative RT-PCR (Figure 4B),
we then assessed the expression of markers, such as α-SMA, type 1 collagen, and fi-
bronectin, which are usually upregulated during the differentiation of fibroblasts toward
myofibroblasts; all these markers were higher in SCI13D cells than in the MRC5 cell lines,
both evaluated at passage 3 (Figure 4A,B). Collagen-1, α-SMA, and fibronectin expression
further appeared quite stable along the many passages of the in vitro culture; expression
levels of these markers in SCI13D, at early or late passages, presented only a slight increase
at passage 30, as compared to passage 4 (Supplementary Figure S1), which is likely to
be due to the aging of fibroblasts when cultured in vitro for a long time, as commonly
happens in normal control fibroblasts.
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Figure 3. Assessment of senescence markers in SCI13D cell line. (A) Evaluation of β-galactosidase
activity in SCI13D cell line; scale bar = 25 µm; (B) p16 and p21 mRNA levels of expression in SCI13D
cell line and in the fibroblast cell line of control MRC5, as detected by quantitative real-time PCR.
Histograms depict normalized average values ± SD of three determinations.

We further show here higher mRNA levels of the receptor for FGF2 in SCI13D than
in the lung control cell line, which could represent an advantage for cell proliferation.
However, it has recently been demonstrated that endogenous overexpression of FGF2
induces myofibroblast dedifferentiation [19]; the role of FGF2 in the fibrotic process of
the lung is still unclear and debated [20,21]. Given that we added FGF2 (3 ng/mL) to the
culture medium of SCI13D cells, we attempted to clarify whether its presence favored the
expansion of dedifferentiated cells. We observed a strong downregulation of the expression
of collagen-1 and, to a lesser extent, of α-SMA and fibronectin by FGF2, in basal conditions,
as well as after TGFβ stimulation (Supplementary Figure S2). Downregulation of these
molecules, as well as the FGF2-induced cell proliferation, detected by Ki67/Coll-1 double
staining, was further dose-related (Supplementary Figure S3). The expression of collagen-1
at higher levels was, however, reacquired after culturing SCI13D cells in medium alone
for 12 days. (Supplementary Figure S4). These findings collectively highlight the dynamic
nature and plasticity of these cells, further indicating that the FGF2-mediated loss of
collagen-1 appears as a transient phenomenon. Moreover, the proof that SCI13D cells at the
late passage 30 still express collagen-1 at levels as high as at the early passage 4 supports
the view that these fibroblasts maintain their features and may effectively be representative
of fibroblasts/myofibroblasts classically expanded during the fibrotic process in lung tissue
in HP patients.
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Figure 4. Cyto-fluorographic and RT-PCR determination of typical markers of fibrob-
lasts/myofibroblasts in SCI13D and in MRC5 control cell line. (A) Membrane (CD105) and in-
tracytoplasmic detection of vimentin, collagen-1, collagen-3, and α-smooth muscle actin (SMA) in
SCI13D as compared with MRC5 cell line, both evaluated at passage 3; (B) quantification of mRNA
expression levels of α-SMA, type 1 collagen (Coll 1), fibronectin (FN), and FGFR2 in SCI13D with
respect to MRC5. Histograms depict normalized average values ± SD of three determinations.

3.3. Immunocytochemical Characteristic of the SCI13D Cell Line

Cytological analysis of the fibroblastic SCI13D cell line evidenced fusiform elements,
with elongated nuclei and an eosinophilic cytoplasm. Immunocytochemistry showed
strong vimentin positivity and a weaker staining for smooth muscle actin (Figure 5, lower
and central rows, respectively), as well as negativity for cytokeratin(s) (data not shown).
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Collectively, these results indicate that the SCI13D line is composed of fibroblasts with
partial myofibroblastic differentiation.
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Figure 5. Immunocytochemical characterization of cytocentrifuged samples of SCI13D cells with
hematoxylin–eosin (H&E), anti-α-smooth muscle actin (Anti α-SMA), and anti-vimentin (Anti VIM)
staining of SCI13D cells; areas indicated in the 10× images (left column; scale bar = 25 µm) are
enlarged (40×; scale bar = 6.25 µm) in the right column.

3.4. Karyotype and FISH

In SCI13D, we detected an aneuploid karyotype with a trisomy of chromosome 10
(46XY + 10) by G banding karyotype analysis (Figure 6A, left panel). This finding was
then confirmed by fluorescence in situ hybridization (FISH) performed with a specific
probe detecting chromosome 10, in metaphase (Figure 6A, central and right panels) or in
interphase (Figure 6B). A normal karyotype was instead found in PHA-activated peripheral
blood lymphocytes (PBLs) obtained from the same patient (Figure 6A, right panel). Trisomy
of chromosome 10 was already observable at the early passages of in vitro expansion
(passage 3), intriguingly suggesting that this anomaly was not acquired during their long-
term culture. This suggestion was also supported by the detection of fibroblasts with
trisomy 10 in vivo, within the patient’s biopsy, as shown in Figure 6C. It is worth noting
that the trisomy of chromosome 10 was observed in nearly 99% of the nuclei analyzed, and
that this percentage was stable along the many passages in culture, thus indicating that
these fibroblasts appear representative of a clonal population and exhibit stable features.
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Figure 6. Karyotype of SCI13D cell line. (A) Analysis in metaphase of SCI13D cell line identified an
aneuploid karyotype with a trisomy of chromosome 10. PBL from the same patient showed instead
a normal karyotype in metaphase (100×); (B) the presence of three chromosomes 10 was further
confirmed by fluorescence in situ hybridization (FISH) of the nuclei of the SCI13D cell line using a
specific satellite probe for human chromosome 10; (C) chromosome 10 trisomy was already present
in vivo in a consistent number of cells in the lung biopsy, as revealed by FISH. (scale bars in B, left
panel, and C = 5 µm; scale bar in B, right panel, =2.5 µm).

3.5. Authenticity of the SCI13D Cell Line

The authenticity of the SCI13D cell line was verified through short tandem repeat
(STR) profiling by the Banca Cellule Interlab Cell Line Collection (ICLC; IRCCS Ospedale
Policlinico San Martino, Genoa, Italy), thus providing the true origin and a unique profile
of these cells, with respect to the profiles present in the reference databases (Table 1).

3.6. Inhibition of Proliferation by Antifibrotic Therapy

Trying to explore whether the potential use of pirfenidone could be of help in limiting
pulmonary fibrosis in fHP patients, we tested this drug in TGF β-stimulated SCI13D
cells. As shown in Figure 7A,B, pirfenidone exerted a consistent inhibition of SCI13D cell
growth, which was dependent on the concentration of the drug added at the beginning
of the cell culture (150–450 µg/mL). The treatment with 450 µg/mL completely blocked
cell proliferation along 7 days of culture, while the growth of fibroblasts exposed to
150–300 µg/mL was only partially inhibited.
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Table 1. STR profile of the assessed cell lines. Fifteen highly polymorphic STR loci plus amelogenin
(AM) were used.

Cells Assessed

STR Locus PBL SCI13D

D5S818 11,12 11,12
D13S17 9,11 9,11
D7S820 11 11

D16S539 9,14 9,14
VWA 16 16
TH01 6 6
AM x, y x, y

TPOX 9,10 9,10
CSF1PO 11,12 11,12
D21S11 27,30 27,30

D3S1358 16 16
D18S51 13,16 13,16
Penta E 7,17 7,17
Penta D 9,11 9,11
D8S1179 14,15 14,15

FGA 19,22 19,22

3.7. Pirfenidone Slightly Inhibited Type 1 Collagen Expression in TGF-β-Treated SCI13D Cells

We further evaluated if pirfenidone could modulate the expression of type 1 collagen
and fibronectin. We detected upregulation of type 1 collagen, α- SMA, and FN expres-
sion with TGF β (5 ng/mL) in SCI13D. The contemporary administration of pirfenidone
(150 µg/mL) caused a more remarkable downregulation of collagen-1 than α- SMA or FN
(Figure 7C).

3.8. Inhibition of SCI13D Migration by Pirfenidone

We studied the effect of pirfenidone on SCI13D migration by utilizing a wound scratch
assay and then measuring the cell migration rate toward the injured site. Pirfenidone
decreased basal and TGF-β-induced migration, and the inhibition was particularly evident
after 48 h at the concentration of 300 µg/mL (Figure 8).

3.9. Reduction of the TGFβ-Induced Profibrotic Phenotype by Pirfenidone in SCI13D Cell Line

We then assessed the effect of pirfenidone in SCI13D cytoskeleton reorganization.
The profibrotic myofibroblast phenotype, strongly evident in TGF-β-stimulated cells, was
significantly reduced after pirfenidone treatment, thus showing a consistent inhibition
of F-actin stress fiber formation. A discrete inhibition of F-actin fluorescence was also
observable in cells cultured with pirfenidone in basal conditions (Figure 9A,B). These find-
ings altogether suggest that pirfenidone may limit differentiation toward myofibroblasts,
possibly reverting their typical features through contractile structure disassembly.
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Figure 7. Evaluation of the TGF-β-induced proliferation or of the expression of typical myofibroblast markers in SCI13D in
the presence/absence of pirfenidone treatment. (A) Pirfenidone (150 µg/mL; PIRF) consistently reduced TGF-β-stimulated
SCI13D proliferation as evaluated by Alamar BlueTM test at different timepoints; (B) inhibition of SCI13D cell proliferation
resulted further strongly enhanced when pirfenidone was used at a higher concentration (i.e., 450 µg/mL completely
blocked cell growth). Histograms depict mean values of triplicate analysis; (C) pirfenidone strongly diminished TGF
β-induced expression of type-1 collagen and, to a lesser extent, that of α- SMA or FN in SCI13D cells.
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Figure 8. Wound scratch assay. (A) The migratory capacity of the SCI13D cells, in the presence or absence of TGF-β and/or
pirfenidone (PIRF), was assessed by acquiring images of the cells filling in the lesion gap (yellow lines) at the indicated
timepoints (0, 6, 24, 36, and 48 h); (B) histograms quantify the cell numbers within the lesion boundaries, at each timepoint,
for each treatment. Cells were scored in three images for each timepoint and treatment.
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Figure 9. Evaluation of the expression of F-actin in SCI13D cells treated or untreated with TGFβ or
TGFβ + Pirfenidone (A) Pirfenidone (PIRF) consistently reduced F-actin fiber fluorescence in SCI13D
fibroblasts treated at basal conditions as well as stimulated with TGFβ. (B) Determination of F-actin
relative intensity. Histograms are the average ± SD of six different images acquired in duplicate
wells for each treatment after 72 h.; scale bars = 12.5 µm and 6.25 µm for the left and right columns,
respectively.

4. Discussion

A complex interplay of genetic, host, and environmental factors influences the de-
velopment of HP, and the mechanisms that trigger irreversible fibrotic progression in this
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disease are still uncertain. During chronic inflammation, fibroblasts expand to differentiate
into myofibroblasts, thus producing a large amount of extracellular matrix and finally lead-
ing to the destruction of the lung tissue. In fibrotic hypersensitivity pneumonitis, the source
of fibroblasts is still unclear. They may possibly derive from local or migrated mesenchy-
mal cells, from bone-marrow fibrocytes, attracted in loco by an imbalanced production
of chemokines, or from epithelial cells differentiated into mesenchymal cells (epithelial–
mesenchymal transition; EMT). Here, we report the establishment and characterization of
a fibroblastic cell line (SCI13D) derived from the broncho-alveolar lavage of a patient with
fHP. This cell line displays features of myofibroblasts; we in fact detected higher mRNA
levels of α-SMA, as well as of type 1 collagen and fibronectin, than in the control cell line
MRC5. From a morphological point of view, we observed spindle-shaped cells mixed with
enlarged flattened cells, which could more likely resemble the myofibroblast morphology.
A consistent number of SCI13D cells show β-galactosidase activity, and mRNA levels of
the two cell-cycle inhibitors P16 and P21, typical markers of senescence, were also higher
than in the MRC5 cell line used as control. While a close link between senescence and IPF
has been previously well established [22,23], robust evidence supporting an association
between cellular senescence and progressive fibrosis in fHP is still missing. Interestingly,
fibroblasts and epithelial cells within fibroblastic foci observed in lung samples from IPF
patients were P16-positive. In addition, the proof that the secretome of senescent fibroblasts
is profibrotic appears of particular relevance [24]. The findings of abnormal shortening of
telomeres, observed in a number of fHP patients [25,26], as well as the demonstrations that
the response to inhalational antigens differs in young and in old mice or that fibrosing HP
is mostly diagnosed in elder patients [27–29] might indeed suggest a relationship between
cellular senescence and fibrosis. Further studies will be of help to deeply clarify whether
and how senescent cells might contribute to progressive fibrosis in HP or to determine
if the usage of senolytic drugs, clearing senescent cells, could attenuate lung injury and
inhibit fibrosis.

In SCI13D, the early appearance of an aneuploid karyotype is also intriguing; proof
of the presence of a trisomy 10 within the lung biopsy demonstrated that this anomaly
is already present in vivo as a somatic mutation, possibly characterizing at least a part of
the patient’s fibroblasts. We still do not know whether this anomaly provides a selective
advantage to cell expansion in vivo or in vitro. Given that chromosome 10 harbors the
FGF2R gene, presumably higher levels of this receptor, due to the presence of an extra
chromosome 10, may lead to overgrowth of a proliferative clone. Although it is still unclear
how aneuploidies may control the expression and transcriptional activities of the genes
encompassed within the extra chromosome, Sunyoung Hwang and coworkers recently
demonstrated that their mRNA levels increase proportionally with gene copy numbers
and that mechanisms required to compensate for the gene expression of an extra copy of a
human autosome do not seem to be engaged [30]. SCI13D expressed higher mRNA levels
of FGFR2 than the MRC5 lung control cell line; however, further investigations would be
of help to better establish a potential link between the presence of an extra chromosome 10
and its putative selective advantage for cell expansion.

FGF2 has been reported to be profibrotic [31], but it was also recently demonstrated
that its overexpression may instead protect from bleomycine-induced pulmonary fibro-
sis [19], through promotion of proliferation and myofibroblast dedifferentiation [32]. FGF2
may in fact lead to downregulation of collagen-1, α-SMA, and fibronectin in myofibroblasts,
thus reverting their phenotype and features. We report here that the addition of FGF2 in
culture affects the levels of expression of these markers in the SCI13D cell line, especially
for collagen-1, but only in a transitory manner. This finding, together with the proof that
SCI13D at late passages does still express at high levels the typical myofibroblast markers,
allows excluding the selection of dedifferentiated cells along the in vitro culturing process.
It is, however, conceivable that FGF2 might promote a small fraction of cells as a less differ-
entiated proliferating reservoir, as already demonstrated for the expansion of mesenchymal
cells [33]. Hence, in this pathology, the specific role of FGF2 in fibrosis development in



Biomedicines 2021, 9, 1193 18 of 20

promoting myofibroblast dedifferentiation to resolve fibrosis deserves further attention. It
is, however, likely that, in vivo, an imbalance in concentrations of cytokines, present in the
microenvironment, particularly TGFβ and FGF2, may influence the course of pulmonary
fibrosis, as well as the response to therapy.

The antifibrotic drug nintedanib was recently shown to be effective at slowing disease
worsening in individuals with progressive fibrosis due to any cause [34]. Similarly, pir-
fenidone was demonstrated to improve lung function decline in patients with unclassifiable
ILD [35], but further studies will better clarify which treatments should be considered the
first line in fHP and whether immunosuppressants should be combined with antifibrotic
drugs [36]. Although pirfenidone is deemed to be effective in IPF and the compound is
now in widespread clinical use, to date, its molecular activities are only partly defined;
apposite investigations are required to purpose pirfenidone for the treatment of other
respiratory diseases. Indeed, pirfenidone was recently proposed as an implemental treat-
ment to disrupt tumor–stroma interactions in non-small-cell lung cancer [37], and novel
in vitro models might, therefore, be of help to better define its utility. The effectiveness of
pirfenidone in inhibiting SCI13D proliferation was demonstrated here as a dose-dependent
inhibition, especially when 450 µg/mL pirfenidone was added at the beginning of the
culture. We also observed that pirfenidone downregulated the TGF-β-induced expres-
sion of collagen-1, inhibited migration of SCI13D in a wound scratch test, and induced
cytoskeleton re-organization, thereby reducing F-actin stress fiber expression.

In-depth characterization of fHP fibroblasts might be limited by the short life of these
cells when cultured ex vivo. The availability of a great number of cells may, therefore,
allow to better characterize fHP fibroblasts, to define molecular mechanisms regulating
their interactions with epithelial and/or endothelial cells in 2D/3D models, or to devise
lung-tissue-like organoids. Collectively, these in vitro models might be helpful for drug
screening and preclinical studies. In this context, the SCI13D cell line, displaying features
comparable to primary cells but with improved proliferation capacity, may represent a
suitable tool.

5. Conclusions

In conclusion, we believe that the cell line here reported may provide a useful tool to
study mechanisms of progressive fibrosis in HP disease. In vitro models, mimicking the
in vivo situation, could be of help to study disease-relevant cell–cell interactions and to
explore novel therapies. Therefore, the SCI13D cell line might be valuable in the generation
of 2D or even more complex 3D models of lung-like tissue.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9091193/s1, Figure S1: Comparison of myofibroblast markers between early
and late passages of SCI13D cell line; Figure S2: Evaluation of defects of FGF-2 stimulation on the
modulation of myofibroblasts (Col 1, α-SMA, FN) and senescence (p21) markers in SCI13D at different
passages (p7 and p31, panel A and B respectively); Figure S3: Determination of FGF2-stimulated
proliferation by Trypan Blue cell counts and by Ki-67 staining and cytofluorimetric analysis; Figure S4:
Recovery of the expression of Collagen 1 after 12 days from the FGF2 stimulation of SCI13D p4.
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