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Abstract: In Mexican Americans, metabolic conditions, such as obesity and type 2 diabetes (T2DM),
are not necessarily associated with an increase in mortality; this is the so-called Hispanic paradox.
In this cross-sectional analysis, we used a metabolomic analysis to look at the mechanisms behind
the Hispanic paradox. To do this, we examined dietary intake and body mass index (BMI; kg/m2)
in men and women and their effects on serum metabolomic fingerprints in 70 Mexican Americans
(26 men, 44 women). Although having different BMI values, the participants had many similar
anthropometric and biochemical parameters, such as systolic and diastolic blood pressure, total
cholesterol, and LDL cholesterol, which supported the paradox in these subjects. Plasma metabolomic
phenotypes were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS).
A two-way ANOVA assessing sex, BMI, and the metabolome revealed 23 significant metabolites,
such as 2-pyrrolidinone (p = 0.007), TMAO (p = 0.014), 2-aminoadipic acid (p = 0.019), and kynurenine
(p = 0.032). Pathway and enrichment analyses discovered several significant metabolic pathways
between men and women, including lysine degradation, tyrosine metabolism, and branch-chained
amino acid (BCAA) degradation and biosynthesis. A log-transformed OPLS-DA model was em-
ployed and demonstrated a difference due to BMI in the metabolomes of both sexes. When stratified
for caloric intake (<2200 kcal/d vs. >2200 kcal/d), a separate OPLS-DA model showed clear separa-
tion in men, while females remained relatively unchanged. After accounting for caloric intake and
BMI status, the female metabolome showed substantial resistance to alteration. Therefore, we provide
a better understanding of the Mexican American metabolome, which may help demonstrate how this
population—particularly women—possesses a longer life expectancy despite several comorbidities,
and reveal the underlying mechanisms of the Hispanic paradox.

Keywords: obesity; macronutrient intake; micronutrient intake; LC-MS/MS; metabolomics; His-
panic paradox

1. Introduction

Obesity has increased in prevalence among Hispanics in the United States over the
last several decades and continues to trend upward [1]. Furthermore, Hispanics suffer from
disproportionately higher rates of some comorbidities associated with obesity, such as type
2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) [1]. Despite these recent trends,
Mexican Americans possess a 3.8% greater life expectancy than the general population in
the United States, a phenomenon referred to as the “Hispanic paradox” [2–4].

The current obesity rate for the Hispanic American population is 34.4%, which is
significantly higher than the general American population (28.7%) [5,6]. Two major contrib-
utors to this upsurge are considered to be low socioeconomic status and a dietary shift from
foods with low caloric density to foods with high caloric density, thereby increasing caloric
intake [7–9]. Despite elevated rates of obesity and T2DM (16.9%), Hispanic Americans,
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particularly women, demonstrate a resilience towards several metabolic-related illnesses,
including cardiovascular disease (8.3%) and cancer incidence (1.6 per 1000 individuals) [10].

The high consumption of fruits, vegetables, and legumes, which are staples in the
traditional Mexican diet, has been linked to a lower BMI [11,12]. In contrast, the high con-
sumption of meats, sugar-sweetened beverages, oils, and refined grains—key components
of a Western diet—has been associated with a significant increase in BMI [13,14]. Previous
studies have shown that exposure to the Western diet after migration to the United States
may play a significant role in adverse health outcomes [15–17]. Diet and metabolome
are closely related, and it is critical to assess mechanisms through the alterations created
at the metabolic level. Moreover, the dependence of sex on the metabolome requires
consideration. While the influence of sex has been studied extensively in disease and its
pathophysiology, more recent studies have begun to further examine its role in chronic
metabolic conditions, such as MetS and T2DM [18–20]. Sex, BMI status, and dietary intake
may all be contributing factors to the resilient metabolome of Mexican Americans.

Metabolomics offers a current physiological report of metabolic pathways through
the measurement of metabolites with molecular weight of about <2000 Da [21–24]. As
a powerful detection model, it can ascertain significantly altered major metabolic path-
ways and shed light on the key metabolic differences associated with nutritional status,
varied caloric intake, and chronic conditions such as obesity, cardiovascular disease, and
cancer [22,25–30]. In particular, large-scale targeted metabolomics has been used to study
both BMI status and caloric intake in the general American population. Previous research
indicates that there is an association between caloric intake and differing metabolic finger-
prints, as people in a caloric deficit show altered fingerprints compared to those in caloric
abundance [31–33]. Additionally, findings from a large study with non-Hispanic white
participants suggest that several metabolites varied significantly among individuals with
different BMI status [34]. Furthermore, certain metabolites have been found to not only
correlate with current BMI status but also predict future weight gain in Mexican-American
women [35]. It is also important to note that the metabolic profiles of men and women have
been found to be significantly different in numerous trials, particularly those examining
the relationship with BMI [34,36]. Such studies have shown the need to account for the
variability in metabolomes between men and women. As a result, metabolomics can be
used to identify metabolic profiles through assessing BMI status, caloric intake, and sex in
order to help explain the mechanism behind the Hispanic paradox.

In this study, we aim to assess how the metabolome may be associated with the
Hispanic health paradox in a cross-sectional study. We utilized a large-scale targeted
LC-MS/MS approach to measure the metabolic profiles of 70 normal weight, overweight,
and obese Mexican Americans. A two-way ANOVA, OPLS-DA models, and pathway
analyses were conducted to identify metabolites and pathways indicative of metabolic
resilience that may help explain how sex and BMI differently affect the Hispanic paradox
in Mexican Americans.

2. Results
2.1. Participant Characteristics

The similar anthropometric and biochemical values compared among BMI categories
suggest the Hispanic paradox effect in the recruited Mexican Americans in this study.
The data are shown in Table 1. Participants included 5 males and 16 females (n = 21)
representing the normal weight category (BMI < 25), 11 males and 11 females (n = 22)
representing the overweight category (25 ≤ BMI < 30), and 10 males and 17 females
(n = 27) representing the obese category (BMI ≥ 30). The total BMI range for males was
23.5–36.8 kg/m2, whereas the total BMI range for females was 19.9–45.7 kg/m2. The
average age of all participants was 36.7 years old, with no significant difference between
the three BMI categories. Total cholesterol concentrations were not significantly different
(p = 0.647), but HDL cholesterol concentrations were significantly lower among participants
with an elevated BMI status (p < 0.001). The normal, overweight, and obese BMI groups
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were all normoglycemic (91.18, 97.14, and 93.01 mg/dL, respectively) and had no significant
differences in fasting glucose concentrations. With the overweight and obese groups
displaying normoglycemia in the presence of hyperinsulinemia, some participants may
have been in a fully compensated state. With some expectant similarities and differences
between the groups, the participants’ dietary intake was then analyzed.

Table 1. Baseline data between normal, overweight, and obese participants.

Measurement

BMI Categories p-Value

Normal Overweight Obese Normal vs.
Overweight

Normal vs.
Obese

Overweight
vs. Obese

Gender (M/F) 5/16 11/11 10/17
Age (years) 35.82 ± 10.91 39.91 ± 9.42 37.00 ± 7.93 0.146 0.653 0.264

BMI (kg/m2) 22.78 ± 1.62 28.05 ± 1.46 34.05 ± 3.50 <0.001 <0.001 <0.001
Height (cm) 162.78 ± 7.11 166.78 ± 8.85 162.82 ± 7.15 0.086 0.986 0.067
Weight (kg) 60.54 ± 7.56 78.18 ± 9.10 90.38 ± 12.05 <0.001 <0.001 <0.001

Waist
Circumference (cm) 80.54 ± 6.08 93.47 ± 6.75 106.72 ± 8.28 <0.001 <0.001 <0.001

Hip Circumference
(cm) 96.25 ± 4.61 106.12 ± 5.07 116.58 ± 9.21 <0.001 <0.001 <0.001

Systolic BP
(mmHg) 114.77 ± 12.86 116.62 ± 10.26 117.83 ± 10.87 0.585 0.338 0.701

Diastolic BP
(mmHg) 71.92 ± 10.88 72.97 ± 8.86 75.00 ± 7.94 0.703 0.235 0.427

Body Fat% 26.25 ± 5.16 32.40 ± 7.33 40.86 ± 7.55 0.004 <0.001 <0.001
Total Cholesterol

(mg/dL) 177.06 ± 39.69 189.51 ± 47.25 181.54 ± 30.52 0.345 0.647 0.461

HDL (mg/dL) 52.56 ± 11.46 41.38 ± 10.22 38.67 ± 7.82 0.001 <0.001 0.279
LDL (mg/dL) 107.50 ± 36.39 115.92 ± 31.55 117.93 ± 27.21 0.411 0.242 0.804
Triglycerides

(mg/dL) 85.03 ± 44.69 175.93 ± 228.04 124.65 ± 62.77 0.073 0.015 0.244

Glucose (mg/dL) 91.18 ± 7.44 97.14 ± 22.15 93.01 ± 8.80 0.237 0.435 0.355
Insulin (mIU/mL) 5.60 ± 3.59 6.86 ± 4.17 12.42 ± 6.22 0.298 <0.001 0.001
HOMA-IR (units) 1.28 ± 0.84 1.64 ± 1.07 2.85 ± 1.42 0.301 <0.001 <0.001

2.2. Food/Nutrient Intake Data

Male and female Mexican Americans in different BMI groups had different nutrient in-
take. There were no significant differences in any intake metric, including total energy, food
groups, macronutrients, and micronutrients, among males in different BMI groups (Table 2
and Table S1). Normal-weight men consumed 2849.2 ± 1416.4 kcal/day, overweight men
consumed 2593.1 ± 1122.8 kcal/day, and obese men consumed 3887.6 ± 2783.6 kcal/day.
In contrast, obese women ingested significantly more energy (3325.6 ± 1294.9 kcal/day
vs. 1920.1 ± 682.8 kcal/day; p < 0.001), total protein (p < 0.003), red meat (p = 0.001),
white meat (p = 0.025), and fish (p = 0.017) compared to their normal-weight counterparts.
No significant differences were observed between the normal and overweight groups of
women (Table 3 and Table S2).



Metabolites 2021, 11, 552 4 of 20

Table 2. Men’s macronutrient intake.

Men’s Intake

Intake Data p-Value

Normal Overweight Obese Normal vs.
Overweight

Normal vs.
Obese

Overweight vs.
Obese

Total Calories
(kcal/day) 2849 ± 1416 2593 ± 1123 3888 ± 2784 0.7328 0.3559 0.1958

Protein (g) 130 ± 55 105 ± 41 168 ± 129 0.3870 0.4437 0.1667
Total Fat (g) 106 ± 64 88 ± 34 131 ± 89 0.5643 0.5510 0.1759

Carbohydrates (g) 341 ± 155 351 ± 200 525 ± 401 0.9139 0.2261 0.2382
Fiber (g) 29 ± 15 28 ± 17 42 ± 34 0.9270 0.3297 0.2701

Data are represented by mean ± SD; p < 0.05 represents a significant difference.

Table 3. Women’s macronutrient intake.

Women’s Intake

Intake Data p-Value

Normal Overweight Obese Normal vs.
Overweight

Normal vs.
Obese

Overweight vs.
Obese

Total Calories
(kcal/day) 1920 ± 683 1938 ± 976 3326 ± 1295 0.9585 0.0006 0.0034

Protein (g) 82 ± 31 80 ± 38 140 ± 56 0.8371 0.0011 0.0022
Total Fat (g) 61 ± 23 64 ± 29 123 ± 50 0.7969 0.0001 0.0005

Carbohydrates (g) 268 ± 96 265 ± 152 429 ± 178 0.9494 0.0033 0.0157
Fiber (g) 24 ± 10 24 ± 10 38 ± 19 0.8605 0.0172 0.0176

Data are represented by mean ± SD; p < 0.05 represents a significant difference and is bolded.

As a percentage of calories, Table S3 shows that carbohydrates, fat, and protein were
not significantly different between normal-weight men, overweight men, and obese men,
with carbohydrates consisting of 49%, 52%, and 52% of total calories and fat consisting of
32%, 31%, and 31% of total calories, respectively (Table S3 and Figure S1). However, obese
women proportionally ate significantly less carbohydrates and more fat compared to their
normal weight and overweight counterparts (p < 0.05), with normal weight, overweight,
and obese women consuming 55%, 54%, and 50% of their calories from carbohydrates and
28%, 30%, and 33% of their calories from fat, respectively (Table S4 and Figure S1).

2.3. Metabolomic Analysis

The effects of sex and BMI on the metabolome were examined through a two-way
ANOVA, and 23 metabolites were found to be significant across the three groups. For the
BMI group, pipecolic acid (p = 0.002), creatinine (p = 0.003), acetylcarnitine (p = 0.004),
2-pyrrolidinone (p = 0.007), and TMAO (p = 0.014) were among the most significant metabo-
lites. Glucose (p = 0.005) and succinate (p = 0.032) were the only two significant metabolites
in the Sex group. Pregnenolone sulfate (p = 0.016), fructose (p = 0.021), phenylpyruvic acid
(p = 0.023), glyceric acid (p = 0.039), and acetylornithine (p = 0.046) were all significant
in the Sex and BMI group (Table 4). A Tukey’s HSD correction was also performed to
examine the differences in significant metabolites across the three BMI groups (Table S5).
Acetylcarnitine, asparagine, creatinine, glutamic acid, pipecolic acid, cytidine, picolinic
acid, kynurenine, and 2-aminoadipic acid were upregulated in the normal BMI group
in comparison to the overweight group. 2-pyrrolidinone was also found upregulated in
the normal group in contrast with the obese group, while decanoylcarnitine was upreg-
ulated in the obese group, but not in the normal weight population. Acetohydroxamic
acid, TMAO, creatinine, glutamic acid, cytidine, leucic acid, D-galacturonic acid, picolinic
acid, and 2-aminoadipic acid were found to be downregulated in the overweight group
compared to the obese group. Both succinate and glucose/galactose were determined
to be downregulated in men. Line plots of the significant metabolites and their mean
abundances and standard deviations were also conducted to reflect the alterations across
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the three BMI groups (Figure S2). In order to further investigate the differences in the male
and female metabolomes, additional assessments were conducted.

Table 4. Two-way ANOVA assessing sex, BMI, and the metabolome.

BMI Sex

Metabolites p-Value Metabolites p-Value

Acetohydroxamic acid 0.009 Glucose/Galactose 0.005
TMAO 0.014 Succinate 0.032

Acetylcarnitine 0.004
Asparagine 0.018
Creatinine 0.003

Glutamic acid 0.028
Pipecolic acid 0.002 Sex and BMI

Cytidine 0.048 Metabolites p-Value

Leucic acid 0.044 Fructose 0.021
D-Galacturonic acid 0.042 Glyceric acid 0.039

Picolinic acid 0.044 Pregnenolone sulfate 0.016
2-Pyrrolidinone 0.007 Acetylornithine 0.046

Kynurenine 0.032 Phenylpyruvic acid 0.023
Nonadecanoic acid 0.012
Decanoylcarnitine 0.035

2-Aminoadipic acid 0.019

A correlation heatmap of the two-way ANOVA significant metabolites and subject
demographics was generated with Pearson’s r (Figure S3 and Table S6). The correlation
cutoff was 0.5, and all subjects were included. TMAO and acetohydroxamic acid demon-
strated the largest correlation (r = 0.995, p ≤ 0.001), while glucose and fructose shared
the second strongest correlation (r = 0.879, p ≤ 0.001). Isoleucine also displayed robust
correlations with kynurenine (r = 0.826, p ≤ 0.001), glutamic acid (r = 0.790, p ≤ 0.001), and
creatinine (r = 0.647, p ≤ 0.001). Picolinic acid had similar correlations with kynurenine
(r = 0.684, p ≤ 0.001), glutamic acid (r = 0.518, p ≤ 0.001), creatinine (r = 0.533, p ≤ 0.001),
and 2-aminoadipic acid (r = 0.580, p ≤ 0.001). Kynurenine, glutamic acid, and creati-
nine were all significantly correlated with 2-pyrrolidinone (r = 0.669, p ≤ 0.001; r = 0.601,
p ≤ 0.001; r = 0.533, p ≤ 0.584; respectively). Asparagine was also similarly correlated
with kynurenine (r = 0.606, p ≤ 0.001), glutamic acid (r = 0.644, p ≤ 0.001), and creatinine
(r = 0.513, p ≤ 0.001).

Pathway and enrichment analyses were performed to examine the impact of sex on
the metabolome. Lysine degradation had the most significance (p < 0.001) and the sec-
ond largest impact, followed by vitamin B6 metabolism (p = 0.012) and pantothenate and
CoA biosynthesis (p = 0.013). Tyrosine metabolism and valine, leucine, and isoleucine
degradation both had a significance of p = 0.012, while valine, leucine, and isoleucine
biosynthesis was also significant (p = 0.029). Pyruvate metabolism demonstrated a sig-
nificance of p = 0.046 (Figure 1 and Table S7). An enrichment analysis of more than 900
metabolic sets related to dysfunctional enzymes showed that perixosomal FAD transporters
(p = 0.016), trehalose exchange (p = 0.017), thioredoxin reductase (p = 0.023), deoxyriboki-
nase (p = 0.023), and fatty acyl-CoA synthase (p = 0.034) were among the most significant
(Figure 2 and Figure S4).
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Figure 1. Log-transformed pathway analysis of sex and the metabolome. Data is plotted as signifi-
cance (−log10(p)) versus pathway impact.

Figure 2. Enrichment analysis of sex and the metabolome.

An independent Student’s t-test was used to compare metabolites of male and fe-
male participants, with 24 metabolites being significantly different. Males had a higher
concentration of proline, betaine, L-alloisoleucine, isoleucine, 2-methyl-2-oxovaleric acid,
glutamic acid, citraconic acid, 4-methyl-2-oxopentatonic acid, 2/3-aminoisobutyric acid, hy-
poxanthine, 2-hydroxyphenylacetic acid, leucic acid, picolinic acid, tyrosine, 3-phenyllactic
acid, phenylpyruvic acid, and 2-aminoadipic acid. Meanwhile, females had a higher
concentration of myristic acid, 2,3-dihydroxybenzoic acid, protocatechuic acid, creatine,
9-octadecyonic acid, and lauric acid (Table S8). A log10-scaled OPLS-DA model showed
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significant separation between men and women (Figure 3A). A log10-scaled PLS-DA model
was used for both men and women separately to assess changes in metabolic profiles among
differing BMIs (Figure 3B,C). After accounting for BMI status, the study participants were
then stratified for overall daily intake.
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Figure 3. (A) Log-transformed OPLS-DA model of men’s metabolites vs. women’s metabolites.
(B) Log-transformed PLS-DA model comparing men’s BMI using their metabolic profiles. (C) Log-
transformed PLS-DA model comparing women’s BMI using their metabolic profiles.

Both men and women were split into two groups based on caloric intake: <2200 kcal/day
—the low caloric intake group, and >2200 kcal/day—the high caloric intake group. An
independent Student’s t-test was utilized, and a log-transformed OPLS-DA model was
constructed. Three metabolites were significantly greater in men in the low caloric intake
group, including proline (p = 0.022), pyruvate (p = 0.016), and leucic acid (p = 0.033). Two
metabolites were significantly greater in men in the high caloric intake group, including
3-hydroxykynurenine (p = 0.044) and erythrose (p = 0.014). The OPLS-DA model shown
in Figure 4A for men showed clear separation with no overlap, meaning the metabolic
fingerprint of men with a lower caloric intake was significantly different than that of men with
an increased caloric intake. There was much more overlap between the high calorie group
and the low-calorie women’s group when using the log-transformed OLPS-DA model shown
in Figure 4B. The low calorie group had three significantly increased metabolites, including
creatinine (p = 0.028), cytidine (p = 0.042), and pantothenic acid (p = 0.024), and the high calorie
group had three significantly increased metabolites, including valine (p = 0.048), norvaline
(p = 0.044), and carnitine (p = 0.021).
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Figure 4. Log-transformed OPLS-DA models distinguishing metabolic phenotype of a low calorie
(<2200 kcal/day) group and a high calorie (>2200 kcal/day) group. The two score plots represent
(A) men and (B) women.

A corrected multivariate analysis of variance (MANOVA) was conducted for men’s
and women’s caloric intake to control for body weight and physical activity. After applying
the covariates, methylguanidine (p = 0.004) and 2-hydroxyphenylacetic acid (p = 0.035) were
identified as significant in the men’s group, while stearic acid (p = 0.002), nonadecanoic
acid (p = 0.011), malic acid (p = 0.026), and dimethylglycine (p = 0.032) were found to be
significant in the women’s group.

3. Discussion

The Hispanic paradox is a term used to describe how Mexican Americans demonstrate
an increased life expectancy despite lower socioeconomic status and increased prevalence
of obesity and its comorbidities when compared with the general population [2–4]. A
potential explanation is that Mexican Americans possess a metabolome that leans towards
health-promoting rather than health-deteriorating, regardless of weight. However, the
mechanisms behind the impact of sex, BMI status, and dietary intake on the metabolic
phenotype of Mexican Americans are largely unknown. Genetics and lifestyle both play
a significant role in the pathogenesis of obesity and its comorbidities. Dietary intake has
been shown to be one of the largest modulators of epigenetic changes and the subsequent
onset of obesity and disease [11–13]. The current diet of Mexican Americans has been
transitioning over the past several decades from a diet centered around whole-plant foods,
calorically low but nutrient dense, to high caloric and low-nutrient-dense foods [11–13]. A
current, long-term epidemiology study, The Hispanic Community Health Study/Study
of Latinos (HCHS/SOL), has examined the frequent occurrence of chronic disease in
16,000 adult Hispanic and Latino Americans, spanning back to 2006. The recent study
data have found that 80% of men and 71% of women have at least one risk factor for
cardiovascular disease (CVD), which highlights the effects of the paradox [37]. In addition
to overall intake, it is prudent to consider the effects of sex on metabolism and disease.
Recent studies have begun to investigate how sex may play a role in risk, pathophysiology,
complications, and treatments in metabolic diseases, such as MetS and T2DM [18–20].
Investigating the dependence of sex with BMI status and energy intake on the Mexican
American metabolome may help uncover the significant pathways of the Hispanic paradox.

With a cross-sectional analysis of dietary intake and large-scale targeted metabolomics,
we stratified 70 Mexican Americans in the Phoenix metropolitan area into men and women
with three BMI categories to find a relationship between sex, BMI, total energy intake,
and serum metabolite concentrations. After examining the participant baseline data, the
statistical results supporting the paradox hold accurate (Table 1). There are many unex-
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pected similarities between the three BMI groups, such as very little change in systolic and
diastolic blood pressure, total cholesterol, and LDL cholesterol among the groups. Outside
of this study population, one would anticipate a larger discrepancy in metabolic function.

A two-way ANOVA examining the effects of sex and BMI on the Mexican American
metabolome was employed. Results indicated differences in 23 metabolites among the
three groups. Most notably, in the BMI group, acetylcarnitine (p = 0.004), 2-pyrrolidinone
(p = 0.007), 2-aminoadipic acid (p = 0.019), and kynurenine (p = 0.032) had demonstrated
significance and were upregulated in the normal group (Table 4 and Table S5 and Figure S2).
In recent studies, both acetylcarnitine and 2-pyrrolidinone have been linked as potential
factors in stabilizing blood glucose levels and diet-induced obesity. As an enzyme found
within the mitochondrial matrix, carnitine acetyltransferase is tasked with the conversion
of acetyl-CoA to acetylcarnitine. It is a potentially vital enzyme in increasing pyruvate
dehydrogenase (PDH) activity, which stimulates glucose oxidation and regulates blood
glucose [38]. With increased acetylcarnitine concentrations, PDH activation may be ex-
pected. Interestingly, 2-pyrrolidinone was one of the only metabolites to be downregulated
in the obese group. Its anorectic effects and derivatives were examined for their influence
on α-adrenoreceptors in obese mice. It was found that their ability to serve as an antagonist
to α2-adrenoreceptors resulted in reduced body weight through decreased food intake
and blood glucose levels with improved lipolysis and thermogenesis [39]. In addition,
2-aminoadipic acid has been shown to be not only a potential biomarker for T2DM, but
also a protective agent against T2DM and obesity [40]. With an opposing effect, the up-
regulated kynurenine pathway has been highly associated with endothelial dysfunction
and cardiovascular disease due to its role in regulating inflammation [41]. Moreover,
kynurenine induces immunosuppression by activating the AhR receptor, which inhibits T
cells from destroying cancer cells [42]. The protective effects of the previously mentioned
metabolites appear to aid in countering the well-researched kynurenine pathway and its
role in metabolic disease.

In addition, multiple other metabolites were found to be elevated in the lower BMI
classes. A non-essential amino acid, asparagine (p = 0.018), facilitates glycoprotein syn-
thesis and aids in the excretion of ammonia [43]. It has also been shown that intracellular
asparagine regulates cellular uptake of serine, arginine, and histidine and, as a result,
mTORC1 activation and protein synthesis [44,45]. Interestingly, a previous study examin-
ing BMI and weight gain in Mexican American women found similar results and reduced
asparagine levels with increased weight [35]. Additionally, as a metabolite of trypto-
phan metabolism and product of the kynurenine pathway, picolinic acid (p = 0.044) has
been thought to have anti-proliferative, immunological, and neuroprotective effects [46].
Furthermore, as the main component of pectin, D-galacturonic acid (p = 0.042) has been
investigated for its use as an anti-inflammatory agent in intestinal cell permeability and
was found to attenuate inflammation as a result of poor function [47].

Elevated in the normal weight group, but significantly increased in the obese group,
TMAO (p = 0.014) has been of recent interest to researchers. Several studies have investi-
gated its role in insulin resistance and cancer for new pharmacological targets [48,49]. The
consumption of certain nutrients, such as choline and carnitine, from red meat results in the
production of trimethylamine by the intestinal bacteria, which is then converted to TMAO
in the liver. As a metabolite produced by the gut microbiome, elevated circulating levels of
TMAO have been shown to be correlated with increased risk of clotting conditions, such as
a stroke and heart attack [50]. Due to the large prevalence in cardiovascular disease and
T2DM, it has become a well-researched predictor of obesity in adults [51,52].

In the Sex group, the glycolysis substrate, glucose (p = 0.005), and TCA cycle interme-
diate, succinate (p = 0.032), were the only significant metabolites and were downregulated
in men, which may highlight a difference in energy usage between Mexican American
men and women. In addition, reduced glucose levels may be a result of increased insulin
resistance [53]. Similarly in the Sex and BMI group, the simple sugar and potential energy
source, fructose (p = 0.021), was identified. Many studies have identified the potential
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harmful effects of ingesting high quantities of fructose. Due to its inability to promote
a satiety comparable to that of glucose, fructose intake results in higher consumption of
food and increased risk of obesity and insulin resistance [54]. It should be noted that in a
fasting state, energy substrates and storage molecules, such as ketone bodies and glycogen
may play a role in the measured blood glucose and insulin levels. In the same group, an
interesting metabolite was revealed, pregnenolone sulfate (p = 0.016). Pregnenolone sulfate
is a neurosteroid that aids in the regulation of gene expression. A recent study showed its
involvement in improving cognitive ability, reducing depression, and promoting neuronal
cell survival [55]. Phenylpyruvic acid (p = 0.023) was also identified in the Sex and BMI
group and is a derivative of phenylalanine metabolism. A close product found in the plant
rooibos and commonly used for herbal tea, phenylpyruvic acid-2-O-β-D-glucoside is a
protective agent against heart disease and hyperglycemia-induced oxidative stress. It is
thought that the mechanism of action is the inhibition of cellular apoptosis induced by
endoplasmic reticulum stress, mitochondrial depolarization, impairment of substrates, and
insulin resistance [56]. A discrepancy among the harmful and protective metabolites in the
Sex and BMI group is evident, potentially identifying differing metabolomes among men
and women.

An additional analysis of the significant metabolites was conducted to examine po-
tential correlations between the metabolites (Figure S3 and Table S6). While the literature
is lacking in the association of TMAO and acetohydroxamic acid, the two metabolites
demonstrated the strongest correlation (r = 0.995, p ≤ 0.001). As previously mentioned,
TMAO has extensive studies demonstrating its presence in obesity, cardiovascular dis-
ease, and T2DM, and it has also been shown to be a uremic retention solute in kidney
dysfunction [57]. Acetohydroxamic acid, a urease inhibitor, has long been used to treat
renal stones and urinary infections [58]. While there is no literature on the clear association
of TMAO and acetohydroxamic acid, it may be hypothesized that the potential correlation
between the two compounds is urea and compromised kidney function, typically observed
in T2DM-related kidney disease. It is also expected that two simple sugars, glucose and
fructose (r = 0.879, p ≤ 0.001), which are both involved in energy metabolism, would share
such a high correlation. Recent studies have concluded that low doses of fructose are
cleaved into three-carbon molecules and converted into glucose by the small intestine.
However, high doses of fructose saturate the enzyme, ketohexokinase, and are sent to the
liver to be converted to glyceraldehyde-3-phosphate for glycolysis [59]. A separate study
utilizing isotopic tracers postulated that the fructose to glucose mean conversion rate was
41% three to six hours after intake and confirmed the hyperlipidemic outcomes of excess
fructose ingestion [60]. With the high rates of obesity in Mexican Americans, high doses of
fructose should not be surprising, but it does not seem to result in the same hyperlipidemia
profiles as other populations.

The association of kynurenine and metabolic disease has been mentioned, but its
robust correlation with isoleucine (r = 0.826, p ≤ 0.001) and other amino acids is an
intriguing concept. Multiple amino acids, particularly isoleucine, have been proven able
to significantly reduce the formation and concentrations of the tryptophan metabolite,
kynurenine, and its derivative, kynurenic acid. It has been highlighted that large neutral
amino acid transporters (LATs), which are vital for the production of kynurenic acid, have
a much higher affinity for branched-chain amino acids (BCAAs) [61]. While BCAAs have
their own correlation with T2DM, their ability to reduce the pro-atherogenic properties
of kynurenine may help shed light on the paradox, which involves high levels of T2DM
but lower than expected cardiovascular disease. Additionally, isoleucine was strongly
associated with glutamic acid (r = 0.790, p ≤ 0.001), a derivative of glutamine. This is
because BCAAs, such as isoleucine, are the primary nitrogen source in the synthesis
of glutamine.

The neuroprotective metabolite, picolinic acid, is synthesized through the kynurenine
pathway and thus their identified correlation (r = 0.684, p ≤ 0.001) is expected. Kynurenine
was also found to have a significant association with 2-pyrrolidinone (r = 0.669, p ≤ 0.001).
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The anorectic effects of 2-pyrrolidinone on α2-adrenoreceptors have been noted [39], which
may contribute to this correlation with kynurenine. Asparagine was also found to have
a similar correlation with kynurenine (r = 0.606, p ≤ 0.001). Asparagine is important in
glycoprotein synthesis, ammonia carrying, and providing carbon backbones for the TCA
cycle, which indicates that these biological processes could be involved in the mechanisms
of the Hispanic paradox.

Pathway and enrichment analyses were also performed to better investigate the
potential impact of sex on metabolic pathways in Mexican Americans (Figures 1 and 2).
The results indicate several pathways linked to cardiovascular disease, insulin resistance,
and T2DM. Lysine degradation and tyrosine metabolism had the highest level of impact
and significance (p < 0.001 and p = 0.018, respectively). As a metabolic intermediate of
lysine metabolism, 2-aminoadipic acid and its protective effects have been previously
discussed [40]. In addition, a systemic review also showed the effects of lysine and its
residues on critical metabolic reactions pertaining to cardiometabolic health and T2DM [62].
In another recent study, the effects of plasma tyrosine levels on T2DM risk were investigated
in the presence of low HDL-C. It was determined that reduced HDL-C and elevated tyrosine
levels were associated with an increase in T2DM risk [63]. The analysis also revealed a
significant alteration in BCAA metabolism, particularly the biosynthesis and degradation
of BCAAs (Table S7). It is well documented that circulating levels of BCAAs are associated
with the incidence of insulin resistance, cardiometabolic diseases, and obesity [64–66]. With
a high prevalence of T2DM and obesity in Hispanic Americans, high levels of BCAAs
would be expected.

In order to examine the difference in the metabolic profiles of men and women, a
log-transformed OPLS-DA model was generated (Figure 3A). The OPLS-DA model demon-
strated good separation between the groupings and displayed the potential differences
in the metabolomes of both sexes. A log-transformed PLS-DA model was also created
for normal-weight, overweight, and obese men and women (Figure 3B,C). While the BMI
model produced less clear results, there were identifiable trends among the normal-weight,
overweight, and obese groups.

After investigating the influence of sex and BMI status, the subjects were stratified for
sex and energy intake. An OPLS-DA model did reveal clear separation in relation to relative
metabolite concentrations (Figure 4A). The low-energy intake group (<2200 kcal/day) had
significantly higher plasma concentrations of proline, pyruvate, and leucic acid. It has
been previously shown that plasma amino acid levels, including proline, increase in times
of lower caloric intake and weight loss [67]. Intriguingly, one study found increased
plasma pyruvate concentration was associated with decreased weight gain [68]. Leucic
acid is an intermediate metabolite in the degradation of lysine and is considered to be
an anti-catabolic metabolite [69]. The high energy intake group (>2200 kcal/day) had
significantly higher 3-hydroxykynurenine and erythrose metabolites. 3-hydroxykynurenine
is an intermediate in the degradation of tryptophan, while erythrose is a 4-carbon aldose
that is readily converted into erythronate. Previous studies have shown an increased
plasma concentration of both of these to be linked to obesity [70,71].

While the female low (<2200 kcal/day) and high (>2200 kcal/day) energy consump-
tion groups displayed some separation in their metabolic profiles (Figure 4B), the more
interesting finding is that females showed very little separation in comparison with the
male groups. Despite differing caloric intake, the female metabolome displayed resiliency
toward a higher energy intake. Six metabolites were significantly different between the
low and high energy intake groups. The low energy intake group had significantly higher
concentrations of creatinine, cytidine, and pantothenic acid. Creatinine is a waste product
from the breakdown of muscle and is a reliable indicator of kidney function. It should
be noted that creatinine concentrations have been proven to be significantly affected by
large quantities of meat ingestion. In a previous study examining diabetes-related kidney
disease, it was determined that after a 12 h fast, the effect of meat consumption had been
normalized in all subjects [72]. A recent study has also shown that low circulating levels
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of creatinine may be a risk factor for T2DM in both sexes [73]. As a pyrimidine, cytidine
is integrated into nucleic acids and needed for the critical phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) pathways. Imbalances in PC:PE ratios have been linked to
the advancement of disease due to their impact on energy metabolism [74]. Pantothenic
acid, also known as vitamin B5, is used as a precursor to coenzyme A (CoA). CoA has a
whole host of uses in the metabolism of lipids, proteins, and CHOs, and an increased CoA
metabolite level would indicate that there is a decrease in energy intake [75].

In contrast with Mexican American women with low energy consumption, the female
high energy intake group had significantly greater concentrations of valine, norvaline, and
carnitine. Valine is an essential BCAA that has been shown to increase energy expenditure
in humans and is generally not associated with weight gain [76]. Norvaline is an isomer
of valine and would also be expected to increase based on increased valine plasma con-
centration [77]. As previously identified with the pathway analysis, valine, leucine, and
isoleucine biosynthesis and degradation pathways were significant. A study examining
BCAA metabolic signatures in lean and obese non-Hispanic Americans also found elevated
concentrations of valine, leucine, and isoleucine in obese men and women [78]. As a
dipeptide made from lysine and methionine, carnitine plays an essential role in shuttling
fatty acids for β-oxidation in the mitochondria and has been associated with a lower
weight status [79]. Additionally, the previous two-way ANOVA revealed the significance
of its derivative, acetylcarnitine, among the BMI groups and its ability to regulate blood
glucose via PDH stimulation [80]. While these three metabolites are typically associated
with energy consumption, their prevalence in the non-Hispanic male and female obese
group may demonstrate a metabolic shift that drives a healthy metabolome in Mexican
American women.

Furthermore, a corrected MANOVA model for caloric intake in men and women was
generated to consider the effects of current body weight and physical activity (Table 5). In
men, both methylguanidine (p = 0.004) and 2-hydroxyphenylacetic acid (p = 0.035) were
found to be significant. The typical mechanism in which methylguanidine is formed is
through the oxidation of creatinine, which occurs in a diet rich in boiled beef [81,82]. Both
methylguanidine and 2-hydroxyphenylacetic acid are common urea waste products, which
may signify a diet centered on red meat consumption and compromised kidney function
in the obese group.

Table 5. Corrected MANOVA assessing caloric intake and the metabolome.

Corrected Caloric Intake Model

Metabolites p-Value

Men
Methylguanidine 0.004

2-Hydroxyphenylacetic acid 0.035
Women

Stearic acid 0.002
Nonadecanoic acid 0.011

Malic acid 0.026
Dimethylglycine 0.032

For the female group, the saturated fatty acids, stearic acid and nonadecanoic acid,
were among the most significant. Despite the well-known harmful effects of saturated
fatty acids, stearic acid (p = 0.002) behaves more similarly to an unsaturated fatty acid.
Studies have shown that stearic acid is able to improve mitochondrial function through
mitofusin-2, a cellular metabolism facilitating protein, and lipid metabolism [83,84]. A
similarly intriguing metabolite is nonadecanoic acid (p = 0.011), which has protective
effects against cancer. Identified in the two-way ANOVA, it was one of the few compounds
to display significantly reduced levels in the obese group. It is abundantly found as a
phytochemical within the reishi mushroom (Ganoderma lucidum); more typical but less
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plentiful sources of nonadecanoic acid are vegetable oils [85]. Dietary choices and cooking
methods may explain the rise in the overweight group, but a decline for the obese group.
The natural sources of malic acid (p = 0.026) are typically vegetables, berries, cherries, and
citrus fruits; more recently, it has been incorporated into popular fruit vinegar drinks for its
antioxidant properties and taste [86]. Commonly found in beans, a staple of the Hispanic
diet, dimethylglycine (p = 0.032) is known to exert beneficial effects. It has been proven
to aid in the prevention of oxidative stress, mitochondrial dysfunction, and T2DM, while
improving energy through increased nutrient digestibility and glucose metabolism [87–89].
In contrast with the identified metabolites in the male group, the female metabolome
continues to demonstrate how it may be more resilient to existing comorbidities.

Despite our findings, the study did contain several limitations. A cross-sectional study
design was employed, which cannot allow for the analysis of variations in dietary intake
and BMI. In addition, the participants were a homogenous sample of healthy adults, with a
relatively small sample size: n = 21 subjects for the normal weight group, n = 22 subjects for
the overweight group, and n = 27 subjects for the obese group. Additionally, there was an
over-representation of women in the normal group. The subjects’ diets were also assessed
with a food frequency questionnaire, and the findings were reliant on self-reported data.

4. Materials and Methods
4.1. Participants

Generally healthy adults (age 18–60 y) of Mexican descent were recruited from the
Phoenix Metropolitan area between March and June 2010 through flyers, advertisements
in Spanish media, and word of mouth. Prospective participants were asked to complete a
screening questionnaire by phone to ensure they met the inclusion criteria. Participants
were excluded for any of the following reasons: (a) pregnancy or breastfeeding; (b) known
chronic conditions (e.g., diabetes, heart disease, cancer, renal disease, hepatitis, uncontrolled
thyroid disease); (c) use of cholesterol-lowering medications; (d) history of difficult vein
access or fear of needles; (e) body weight lower than 110 pounds (50 kg); (f) restrictive
dietary regime (e.g., veganism, very low carbohydrate diet); and (g) participation in any
other research study in which diet was being assessed or manipulated. A total of 75
qualifying participants attended a study visit after an overnight fast (12 h) for the collection
of anthropometric measurements, blood pressure, and a fasting blood sample as well as for
completion of a study survey and a food frequency questionnaire. The present analysis
included 70 participants (26 males, 44 females) from whom there was sufficient stored
plasma to perform large-scale targeted liquid chromatography tandem mass spectrometry
(LC-MS/MS) analysis. The study was approved by the Institutional Review Board at
Arizona State University, and all participants provided written consent prior to study
participation. All study documents were available in English and Spanish, and participants
could use their language of preference.

4.2. Anthropometric Assessment

Upon arrival to the study visit and after confirming fasting status, participants were
asked to empty their bladder prior to collecting anthropometric measurements (all in
triplicate). Weight (in kilograms) and body fat percentage were measured using a Tanita
body composition analyzer (Tanita Corporation of America, Arlington Heights, IL, USA).
Height was measured in centimeters using a wall-mounted stadiometer. Waist and hip
circumferences were measured following standardized protocols using a flexible measuring
tape. BMI was calculated as weight divided by height in meters squared (kg/m2). Blood
pressure was measured from the non-dominant arm following a 5 min rest using an
electronic sphygmomanometer (Intelli-Sense Blood Pressure Monitor HEM-907-XL, Omron
Healthcare, Kyoto City, Japan).

Normal weight was defined as having a BMI between 18.5 and 24.99 kg/m2, over-
weight was defined as having a BMI between 25 and 29.99 kg/m2, and obese was defined
as having a BMI equal to or greater than 30 kg/m2.



Metabolites 2021, 11, 552 14 of 20

4.3. Biological Markers Assessment

A 40 mL fasting blood sample was collected from the antecubital vein into evacuated
tubes and centrifuged at 1100× g at 4 ◦C for 20 min. EDTA-plasma was separated, stored
at −80 ◦C, and analyzed with a Cobas C111 auto analyzer (Roche, Basel, Switzerland). The
biomarkers were total cholesterol, HDL, LDL, triglycerides, hsCRP, and glucose. Insulin
was measured via Radioimmunoassay (Millipore, Darmstadt, Germany). The Homeostatic
Model of Insulin Resistance (HOMA-IR) was calculated with the formula of fasting insulin
(mU/mL) × fasting glucose (mg/dL)/405 [90].

4.4. Diet/Lifestyle Assessment

Diet was assessed using the Southwestern Food Frequency Questionnaire, a validated
bilingual (English/Spanish) questionnaire that includes food items commonly consumed
by Hispanics in the Southwestern U.S. [91–93]. Output variables derived from this ques-
tionnaire include intake amount of macro and micronutrients, amino acids, fatty acids,
cholesterol, and carotenoids.

4.5. Sample Preparation for Metabolomic Analyses

The following method was modeled after previous protocols [23,24,30,94–96]. The
metabolic pathways under investigation were selected from >30 metabolic pathways of
important biological significance, including glycolysis, TCA cycle, amino acid metabolism,
fatty acid metabolism, etc. Initially, plasma samples (50 µL each) were homogenously mixed
with a solution containing 500 µL MeOH and 50 µL internal standard solution (1× PBS
containing 1.81 mM L-lactate-13C3 and 142 µM L-Glutamic acid-13C5). Subsequently, the
mixtures underwent vortexing for 5 s and were stored at −20 ◦C for 20 min, before being
centrifuged at 14,000 RPM for 10 min. A total of 450 µL of supernatant was then extracted
from each original sample container and separately transferred into a new 2 mL Eppendorf
vial and immediately dried in a CentriVap Concentrator at 37 ◦C for 120 min. The newly
dried samples underwent reconstitution in 150 µL of 40% PBS/60% acetonitrile (ACN)
and were promptly vortexed until 5 s had passed. Each sample was then centrifugated at
14,000 RPM for 10 min, and 100 µL of supernatant was extracted from the 2 mL Eppendorf
vial and transferred into an LC vial for LC-MS/MS analysis. The remaining supernatant
(50 µL) from each sample was pooled together in order to create a quality-control (QC)
sample. During the LC-MS/MS assay, the QC sample was analyzed once every 10 study
sample runs.

4.6. LC-MS/MS Analyses

Targeted metabolic LC-MS/MS assay of each plasma sample was conducted using
an Agilent Technologies 1290 UPLC-6490 Triple Quad MS system (Santa Clara, CA, USA).
Liquid chromatography separation was achieved using an Xbridge® BEH Amide column
(2.5 µm, 2.1 × 150 mm; Waters, Milford, MA, USA) at a temperature of 40 ◦C. Hydrophilic
interaction liquid chromatography (HILIC) and multiple reaction monitoring (MRM) meth-
ods were applied to quantify 180 metabolites utilizing the measured retention time from
their respective standards.

The sample injection volume was calibrated to 4 µL for positive ionization mode and
10 µL for negative ionization mode, with a flow rate of 0.3 mL/min. The stock solution
contained 10 mM NH4OH and 10 mM NH4OAc in ACN. The mobile phase of the LC
system consisted of solvent A (ACN: stock = 5:95) and B (ACN: stock = 95:5) for both
positive and negative ionization modes. The LC gradient was identical for both positive
and negative ionization modes. Initially, each sample underwent a 1.0 min isocratic elution
of 10% A. The LC gradient percentage of Solvent A was then linearly increased to 60%
at t = 11 min. At t = 15.5 min, the percentage of A was consequently reduced to 10% in
preparation for the next injection. The net experimental time for each individual sample
injection was 30 minutes.
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The QQQ mass spectrometer was performed under the following conditions: the
capillary voltage for positive and negative ionization modes was 3.5 kV, gas temperature
was set at 175 ◦C, and nitrogen flow rate was continuously 15 L/min; meanwhile, the
nebulizer was calibrated to 30 psi, the sheath gas was 225 ◦C, and the flow rate of the
sheath gas was set at 11 L/min.

4.7. Statistical Analysis

A coefficient of variation (CV) of less than 20% and a collective 80% peak intensity of
greater than one thousand for each metabolite were employed. Any missing values were
omitted from analysis, and metabolites fulfilling these criteria (n = 109) were selected for
analysis. A false discovery rate (FDR) cutoff of 0.05 was applied. BMI was split into three
categories: normal weight (<25 BMI), overweight (25 < BMI < 30), and obese (BMI > 30).
Two-way analysis of variance (ANOVA) was employed to analyze sex, BMI, and the
metabolome. A Tukey’s HSD test for post hoc analysis was performed for the ANOVA
model. A Multivariate ANOVA (MANOVA) was produced for caloric intake testing, with
physical activity and body weight as covariates, using SPSS 22.0 (SPSS Inc., Chicago, IL,
USA). Physical activity was scored according to the Stanford Brief Activity Survey and the
Rapid Assessment of Physical Activity. Independent Student’s t-tests were used to measure
caloric intake in men and women, as well as the mean nutrient consumption between each
BMI group, using Microsoft Excel (Redmond, WA, USA). Partial least squares-discriminant
analysis (PLS-DA), orthogonal PLS-DA (OPLS-DA), pathway analysis, enrichment analysis,
and Pearson’s r correlation models were log-transformed and run between groups using
MetaboAnalyst software [97].

5. Conclusions

With the goal of studying the Hispanic paradox, the metabolic profiles among Mexi-
can American men and women were investigated through LC-MS/MS-based large-scale
targeted metabolomics analysis. When stratified for BMI and caloric intake, the female
metabolome showed substantial resistance to alteration. Additionally, pathway and en-
richment analyses revealed significantly altered profiles and metabolism, which have been
commonly linked with metabolic conditions such as CVD, insulin resistance, and T2DM.
The understanding of these pathways and their impact may help explain how Mexican
Americans, particularly women, possess a longer life expectancy despite comorbidities and
reveal the underlying mechanisms of the Hispanic paradox.
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