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Moderation effect is a commonly used concept in the field of social and behavioral

science. Several studies regarding the implication of moderation effects have been

done; however, little is known about how partial measurement invariance influences

the properties of tests for moderation effects when categorical moderators were used.

Additionally, whether the impact is the same across single and multilevel data is still

unknown. Hence, the purpose of the present study is twofold: (a) To investigate

the performance of the moderation test in single-level studies when measurement

invariance does not hold; (b) To examine whether unique features of multilevel data,

such as intraclass correlation (ICC) and number of clusters, influence the effect of

measurement non-invariance on the performance of tests for moderation. Simulation

results indicated that falsely assuming measurement invariance lead to biased estimates,

inflated Type I error rates, and more gain or more loss in power (depends on simulation

conditions) for the test of moderation effects. Such patterns were more salient as sample

size and the number of non-invariant items increase for both single- and multi-level

data. With multilevel data, the cluster size seemed to have a larger impact than the

number of clusters when falsely assuming measurement invariance in the moderation

estimation. ICC was trivially related to the moderation estimates. Overall, when testing

moderation effects with categorical moderators, employing a model that accounts for

the measurement (non)invariance structure of the predictor and/or the outcome is

recommended.

Keywords: measurement equivalence, measurement invariance, moderation, interaction effects, structural

equation modeling, hierarchical linear modeling, multilevel modeling

Many theories in education and psychology rely onmoderators, which in Baron and Kenny’s (1986)
words, “[affect] the direction and/or strength of the relation between an independent or predictor
variable and a dependent or outcome variable” (p. 1,174). For many years, social and behavioral
researchers are interested in understanding whether a specific moderation effect occurs as well as
what factors may influence the extent of the moderation effect. Numerous methodological studies
regarding different aspects of moderation effects have been done in contexts such as multiple
regression (Aiken and West, 1991), multiple-group structural equation modeling (multiple-group
SEM; Jaccard and Wan, 1996), latent variable models with observed composites (Bohrnstedt and
Marwell, 1978; Busemeyer and Jones, 1983; Hsiao et al., 2018), within-subject designs (Judd et al.,
1996, 2001), cross-level interactions (Kreft et al., 1995), and Bayesian estimations (Lüdtke et al.,
2013).
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Much of the methodological research regarding moderation
effects focused on continuous variables, and less research has
been done for categorical moderators. As an example of the
latter, researchers may be interested in how the effect of social
support on happiness differs by gender. Gender as a categorical
variable is treated as the moderator, and social support and
happiness are the predictor and outcome variables, respectively.
In testing such a moderation with conventional methods such
as multiple regression and multiple-group SEM, researchers
implicitly assume that the predictor and the outcome variables
are measurement invariant across the categorical moderators;
that is, the measurement characteristics for social support
and happiness are the same by different gender categories.
However, such an assumption is seldom investigated before
testing moderation effects. Additionally, little is known about
how measurement non-invariance influences the estimation of
the moderation effects. Hence, it is worth investigating whether
measurement invariance for both the predictor and the outcome
variables with respect to the moderator categories is a necessary
prerequisite before conducting a moderation effect testing.

Measurement invariance (MI) is an important issue in a
variety of social and behavioral research settings, especially when
the data are collected from multiple populations (Millsap and
Kwok, 2004). Full MI holds when individuals with identical
ability but from different groups have the same propensity
to get a particular score on that specific ability scale (Yoon
and Millsap, 2007). Under the multiple-group confirmatory
factor analysis framework, a simplified but commonly used
version of MI analyses can be conducted by testing four models
with hierarchical orders across groups: equal model structures
(configural invariance), equal factor loadings (metric invariance),
equal intercepts (scalar invariance), and equal unique factor
variances (strict invariance; Vandenberg and Lance, 2000;Millsap
and Kwok, 2004; Chen et al., 2005; Brown, 2015). Among the four
types of MI, metric invariance has been suggested as one basic
requirement for doing prediction (Vandenberg and Lance, 2000),
which is closely related to moderation effect as moderation effect
is about the difference in path coefficients across groups. Hence,
in this paper we focus on the impact of metric non-invariance
on the estimation of moderation effects. We also focus on testing
moderation effects with the multiple-group approach, which is
generally being used for examining measurement invariance.

PREVIOUS RESEARCH ON THE EFFECT
OF METRIC NON-INVARIANCE ON
PREDICTION

Millsap (1995, 1997, 1998, 2007) delineated several theorems
and corollaries for the relationship between MI and prediction
bias. Donahue (2006) conducted a simulation study to examine
the change of the prediction accuracy when the measure of
the exogenous (predictor) variable was non-invariant in some
part of the factor loadings, or with the presence of partial
metric invariance, across groups. Her study found that, if one
correctly assumes a partial invariance model on the latent
predictors’ structures, the path coefficient estimates on the

outcome variables are unbiased even with a larger degree of
metric non-invariance (i.e., more non-invariant items) on the
latent predictors. However, the study only included the effects
on tests of simple regression coefficient in each group, but not
moderation, which can be defined as the difference in path
coefficients across groups. Additionally, the study did not show
the consequences of failing to correctly model the non-invariance
structure.

Guenole and Brown (2014) used Monte Carlo studies to
investigate the impact of ignoring measurement invariance
(including metric invariance) on testing linear and nonlinear
effects (including moderation effects). They adopted relative bias
of the estimated path coefficients and 95% coverage rate of the
estimated confidence intervals from both the reference group and
focal group. They found biased estimates of the path coefficients
from the two groups when two or more (out of six) ignored
non-invariant loadings occurred. The same results were observed
when the non-invariance occurred for predictors and outcomes1.

In the present research, we address two gaps from the work of
Donahue (2006) and Guenole and Brown (2014). First, we would
show the degree to which estimations and tests of moderation
are affected when researchers incorrectly assume that (metric)
MI holds. Second, we are interested in whether the location
of measurement non-invariance, particularly in the predictor
or in the outcome variable, makes a difference. Furthermore,
we extend their work by investigating the Type I error rate of
misidentifying null moderation effect and the statistical power
of detecting nonzero moderation effects in the presence of non-
invariance.

Additionally, Donahue (2006) and Guenole and Brown
(2014) focused on single level data structure, in which all
the observations were assumed to be independent. However,
educational and psychological data often have nesting structures
(e.g., students nested within classrooms; Kim et al., 2012). For
example, a researcher is interested in how the association between
students’ motivation and their academic achievement differs in
public and private schools. Since students are nested within
schools, the school variable is a moderator defined in the between
level and motivation is a predictor defined in the within level.
Therefore, the scenario represents a “cross-level” moderation
effects. In this situation, the measurement characteristics of
motivation and academic achievement are assumed invariant
across school types (i.e., public vs. private). It is still unclear
that how multilevel measurement metric (non)invariance across
groups in the between level influences the cross-level moderation
effects. Therefore, we also show how unique features of multilevel
data affect the MI-moderation relationship2.

1One prerequisite to interpretmoderation effects in the presence of non-invariance

is that the constructs being measured are still conceptually comparable across

groups (i.e., configural invariance). If the predictor and/or outcome represent

different measurement structure across groups, the computed moderation effect

may not be meaningful.
2Throughout this article, we investigated the multilevel measurement

(non)invariance across an explicitly defined grouping variable, not the non-

invariance for the between-versus within-level. Additionally, we assumed that the

outcome variable is defined at the within-level but not at the between-level. Finally,

the grouping variable was defined at the between-level but not the within-level in
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STUDY 1

In Study 1, we aim to show the effect of measurement non-
invariance on the power and Type I error rate when testing
a moderator with two categories. Both the predictor and the
outcome have a measurement structure and the moderation
effects are tested with multiple-group approach, as shown in
Figure 1. Specifically,

Xg = λXgFXg + δg ,

Yg = λYgFYg + εg ,

FYg = γgFXg + ζg ,

where g = 1, 2 was the group index number, X = [X1,X2, . . .]
′

and Y = [Y1,Y2, . . .]
′ were observed indicators as shown in

Figure 1, λX and λY were two vectors of factor loadings of
the indicators on the latent variables, δ and ε were vectors
of the effects of unique factor on X and Y, γg is the path
coefficient between FX and FY for group g, and ζ was the
latent disturbance term for FY. In addition, both the impacts
of having metric non-invariance on the outcome and on the
predictor were investigated. The simulation study was described
below.

Monte Carlo Simulation
The study had a 3 (pni, number of non-metric-invariant
indicators) × 4 (γ = {γ1, γ2}

′, vector of population regression
coefficients of the two groups) × 2 (location of non-invariance)
× 2 (N, sample size of each group) design. In each condition there
were two groups, and the sample sizes were assumed equal across
groups. Both the predictor FX and the outcome FY were latent
variables with six indicators.

Number of Non-metric-Invariant Indicators, pni

Across the simulation conditions, pni will either be 0, 2, or 4.
For all indicators in Group 1, the factor loadings were set to
0.7, while some of those in Group 2 were set to 0.3 to represent
moderate degree of metric non-invariance. This was similar to

FIGURE 1 | Data generating model for Study 1. FX and FY are the latent

predictor and outcome variables, each indicated by six observed indicators.

the multilevel case. All the mentioned conditions not investigated in the present

study may have different implications that are also worthy of future studies.

the conditions in some previous studies (Kaplan and George,
1995; Donahue, 2006).

Regression Coefficients, γ

There were four levels of γ, two of which with equal regression
coefficients ({0.1, 0.1} and {0.5, 0.5}) and two with them different
({0.5, 0.33} and {0.33, 0.5}). In the equal γ conditions the
grouping variable did not moderate the effects of FX on FY, and
Type I error rates were investigated. We were also interested in
whether the effect of FX being large (i.e., 0.5) and small (i.e., 0.1)
influences Type I error rates. In the conditions with different
γ the effects of FX on FY were different for Group 1 and for
Group 2, so there weremoderation effects between groups and FX
on FY and powers of detecting the true moderation effects were
investigated. The numbers were chosen based on the benchmark
of small (γ = 0.1), medium (γ = 0.33), and large effects (γ = 0.5;
Cohen, 1988).

Location of Non-invariance
The metric non-invariance occurred either on only FX or only
FY. Note that this design factor were not applicable to conditions
with pni = 0.

Sample Size, N
There were two levels of sample size: 200 and 500, in consistent
with some previous studies (e.g., Yoon and Millsap, 2007).

Mplus 7.0 (Muthén and Muthén, 2012) was used to generate
500 data sets for each condition. All variables were assumed
multivariate normally distributed. The two factor variances in
Group 1 were 1.0 and those in Group 2 were 1.3. For Group 1,
the unique factor variances of all indicators were set to 0.51 in
the population, so that the invariant indicators had a variance
of 1.0. The unique factor variances for Group 2 were set to
0.51× 1.3 = 0.663 so that the proportion of explained variances
for the invariant indicators was constant across groups. Because
scalar invariance was not the focus of the present study and
might not be required for correctly modeling moderation effects,
all intercepts and factor means in the population were set to
zero.

The data sets generated were then analyzed in Mplus. The
analytic model was identified by fixing the factor loadings of the
first indicators for FX and for FY to the population value (i.e.,
0.7), while allowing the latent factor variances of FX and of FY
to be freely estimated. Hence, both FX and FY were scaled to
the same unit as the population model and across replications,
so that the γ values from the two groups were comparable. To
identify the mean structure, the latent factor mean of FX and the
latent intercept of FY were fixed to zero for both groups, while
the intercepts and the unique factor variances were allowed to
be freely estimated without cross-group equality constraints, as
scalar and strict invariance conditions were not assumed.

For conditions with pni = 0, the data sets were analyzed
by fitting only the model with metric invariance. For other
conditions with pni > 0, both the (misspecified) model with
metric invariance and the (correct) model with partial metric
invariance were fitted. Then for each data set, we obtained
the point estimate of 1γ̂ = γ1 − γ2 (using the MODEL
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CONSTRAINT command in Mplus) and the Wald test statistic
(using the MODEL TEST command in Mplus) for the null
hypothesis γ1 = γ2 . Note that we also obtained the results
for the likelihood ratio test, which is usually more accurate for
finite samples, but we only presented the results for the Wald test
as the two tests were nevertheless asymptotically equivalent and
produced similar empirical powers and Type I error rates across
simulation conditions.

The dependent variables of investigation for the simulations
were the percentage of replications where the test statistics were
statistically significant at 0.05 level and the standardized bias
of 1γ̂. If in the population, γ1 = γ2, then the percentage of
replications with statistically significantWald test statistic was the
empirical Type I error rate (α∗). Taking into account the sampling
variability in 500 replications, an α∗ between 3.4% and 7.3% is
within the 95% confidence interval when the true Type I error
rate is 5%. Empirical Type I error rates over the range of [3.4%,
7.3%] are defined as biased. We expected to see biased Type I
error rates and the standardized biases to be large when metric
invariance is incorrectly assumed.

If in the population γ1 6= γ2, the percentage where
the test statistics were statistically significant at 0.05 level
was the empirical power. Given that power is a function of
effect size and sample size, the empirical power rates yielded
from fitting the model with metric invariance in pni = 0
condition were treated as the baseline; those yielded with
pni > 0 from incorrectly assuming measurement invariance
and correctly assuming partial invariance models were then
compared to the baseline. We expected to see power estimates
frommodels incorrectly assuming measurement invariance were
more different from the baseline then the correctly assuming
partial invariance models.

Denote γ̂
(i)
1 and γ̂

(i)
2 as the estimated values of γ1 and γ2 for

the ith replication, and γ̄1 and γ̄2 as the corresponding means

across replications. The standardized bias (Collins et al., 2001)
was computed as

standardized bias =
(γ̄1 − γ̄2)− (γ1 − γ2)

SD(γ̂1 − γ̂2)
,

where

SD(γ̂1 − γ̂2) =

√

∑R
i=1[(γ̂

(i)
1 − γ̂

(i)
2 )− (γ̄1 − γ̄2)]2

R
,

and i = 1, 2, . . . ,R was the index of replications where R = 500.
The standardized bias was the ratio of the average raw bias over
the standard error of the sample estimator of the parameter, and
a standardized bias with absolute value < 0.40 was regarded as
acceptable (Collins et al., 2001).

Result
The simulation results for the condition with null moderation
effects were displayed in Table 1. When the measurement
invariance assumption held on both the predictor and the
outcome in population model (i.e., pni = 0), using the analytic
model assuming measurement invariance across groups yielded
unbiased moderation effect estimates and unbiased α∗.

When the non-invariance occurred on FX, as partial metric
invariance was the correctly specified model, with a partial
invariance model α∗ was close to the 0.05 nominal significance
level and the moderation effect was estimated with absolute
values of standardized bias <0.02 (< 0.40 as acceptable). On
the other hand, α∗ was inflated when metric invariance were
falsely assumed. The difference between α∗ from the nominal
level increased as one or more of pni, N, and the values of γ

increased. For example, when N = 200, pni = 2, and γ =

{0.1, 0.1}, α∗ = 4.2%; when N = 500, pni = 4, and γ = {0.1, 0.1},

TABLE 1 | Empirical type I error rate (in percentage) and standardized bias for study 1.

Non-invariance on FX Non-invariance on FY

Type I error (%) Std. Bias (1γ̂) Type I error (%) Std. Bias (1γ̂)

N γ pni MI pMI MI pMI MI pMI MI pMI

200 {0.1, 0.1} 0 4.2 – 0.00 – – – – –

2 4.2 4.6 −0.12 0.00 4.2 4.0 0.11 0.01

4 6.0 4.6 −0.34 −0.01 5.4 4.2 0.33 0.02

{0.5, 0.5} 0 4.6 – 0.01 – – – – –

2 8.0 4.4 −0.64 0.00 7.8 4.2 0.62 0.02

4 35.2 4.0 −1.60 −0.01 38.8 4.8 1.74 0.02

500 {0.1, 0.1} 0 4.6 – 0.01 – – – – –

2 5.4 5.2 −0.18 0.01 5.0 5.2 0.19 0.01

4 7.6 5.0 −0.51 0.01 7.0 5.0 0.52 0.00

{0.5, 0.5} 0 4.0 – −0.01 – – — – –

2 14.4 3.6 −1.06 −0.01 13.8 4.8 0.97 −0.01

4 77.8 3.2 −2.79 −0.01 77.8 5.2 2.74 −0.01

pni , number of non-metric-invariant indicators; γ, population regression coefficient of FY on FX ; MI, analytic model assumed metric invariance; pMI, analytic model correctly assumed

partial metric invariance; Std. Bias, standardized bias = 1γ̂/SD(1γ̂), where SD(1γ̂) is the standard deviation of the differences in the estimated γs across all replications.
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α∗ = 7.6%; and when N = 500, pni = 4, and γ = {0.5, 0.5},
α∗ = 77.8%. An analysis of variance (ANOVA) including N,
γ, and pni showed that pni produced the largest impact on α∗

(η2 = 0.34), followed by γ (η2 = 0.21) and N (η2 = 0.04).
The bias of the estimated values of 1γ followed a similar pattern.
For instance, With N = 500, pni = 4, and γ = {0.5, 0.5}, the
standardized bias of the null moderation effects was−2.79, which
was a substantial bias.

The pattern of α∗ and the absolute values of the standardized
bias when non-invariance occurred in FY was very similar to
those when non-invariance occurred in FX. However, the sign of
the standardized bias was reversed, which means that when non-
invariance occurred in the outcome’s structure, the moderation
effects were overestimated. Considering both the locations of
the non-invariance, we found that using models that incorrectly
assumed measurement invariance would result in substantially
biased moderation effect estimate and inflated Type I error rate.

Table 2 showed the results of both the powers and
standardized biases with nonzero moderation effects. When the
non-invariance occurred on FX, the corrected partial metric
invariance models performed well as they showed no bias on the
moderation effect estimates with standardized biases from−0.03
to 0.01. On the contrary, the metric invariance model yielded
biased estimates of the moderation effects and the influence was
more salient as both N and pni increased. For example, when
γ = {0.5, 0.33}, the standardized bias was −0.43 with N = 200
and pni = 2; the standardized bias increased to −1.84 with
N = 500 and pni = 4. An ANOVA showed that pni produced the
largest impact on the biased moderation estimates (η2 = 0.79),
followed by N (η2 = 0.09) and γ (η2 = 0.01).

In terms of the powers for detecting the moderation effects,
the corrected partial invariance model yielded powers around
30% and 60% for N equals 200 and 500, respectively. Such power
estimates were close to population model with the measurement

invariance assumption held (33% for N = 200 and 70% for
N = 500). On the other hand, if metric invariance was falsely
assumed, there was a substantial decrease in powers for the
conditions where non-invariance occurred. For example with
γ = {0.5, 0.33}, N = 500, pni = 2, and non-invariance on
FX, the empirical power was half as would be obtained when
metric invariance held in the population (33.8% vs. 70.2%); with
γ = {0.33, 0.5}, N = 200, pni = 4, and non-invariance on FY, the
empirical power was only 1/8 as the power would be obtained
when metric invariance held in the population (4.2% vs. 33.0%).

Note that power loss was detected as both the N and
pni increased when the non-invariance occurred on FX and
γ = {0.5, 0.33}; simulation conditions related to non-invariance
occur-ed on FY and γ = {0.33, 0.5} would lead to inflated
power estimates as both the N and pni increased. The main
reason for different patterns on the power estimates were that
when the factor loadings of Group 1 (0.7) was larger than those
of Group 2 (0.3) in the presence of non-invariance on FX,
the estimated moderation effect was negatively biased, whereas
when non-invariance occurred in FY, the estimated moderation
effect was positively biased. Additionally, the true moderation
effect was −0.17 when γ = {0.33, 0.5}; therefore, the negative
biases caused by falsely assuming measurement invariance would
result in more negative moderation effects estimates and inflated
power.

STUDY 2

In Study 2, we aim to extend the scope of the MI-moderation
relation to multilevel data. We focused on how the measurement
(non-)invariance across groups at the between level influences
the test of cross-level moderation effect, which was one of
the prevailing issues among social and behavioral research.

TABLE 2 | Empirical power (in percentage) and standardized bias for study 1.

Non-invariance on FX Non-invariance on FY

Power (%) Std. Bias (1γ̂) Power (%) Std. Bias (1γ̂)

N γ pni MI pMI MI pMI MI pMI MI pMI

200 {0.5, 0.33} 0 32.2 – −0.01 – – – – –

2 16.0 30.8 −0.43 −0.02 53.0 31.2 0.48 0.00

4 4.4 31.2 −1.12 −0.03 81.8 29.4 1.29 0.02

{0.33, 0.5} 0 33.0 – 0.02 – 33.0 – – –

2 50.0 30.8 −0.61 0.01 15.8 30.0 0.52 0.03

4 77.0 26.8 −1.57 −0.01 4.2 27.4 1.52 0.04

500 {0.5, 0.33} 0 70.2 – −0.01 – – – – –

2 33.8 67.2 −0.69 −0.02 89.0 67.4 0.76 −0.01

4 5.0 62.4 −1.84 −0.02 99.2 62.4 2.01 −0.02

{0.33, 0.5} 0 67.6 – 0.00 – – – – –

2 90.6 67.2 −1.01 −0.01 36.0 66.2 0.79 0.00

4 99.4 59.4 −2.71 −0.01 5.0 62.8 2.38 0.00

pni , number of non-metric-invariant indicators; γ, population regression coefficient of FY on FX ; MI, analytic model assumed metric invariance; pMI, analytic model correctly assumed

partial metric invariance; Std. Bias, standardized bias = 1γ̂/SD(1γ̂), where SD(1γ̂) is the standard deviation of the differences in the estimated γs across all replications.

Frontiers in Psychology | www.frontiersin.org 5 May 2018 | Volume 9 | Article 740

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hsiao and Lai Measurement Invariance and Moderation

FIGURE 2 | Data generating model for Study 2. FX(w) and FX(b) are the latent predictor variable at the within-level and the between-level, respectively. Yij and Yj are

the within-level and the between-level components of the outcome variable Y . β1j = within-level regression coefficient of Y on FX(w), whose magnitude varies across

clusters as indicated by the black dot. Conditioning on the grouping variable, measurement invariance was assumed across clusters such that the within-level and the

between-level factors loadings were identical, and that there were no residual variances for the six indicators at the between-level.

Specifically, we used the data generating model shown in
Figure 2, which was one of the simplest models including
multilevel measurement (non-)invariance and a within-level
predictor, to depict the cross-level moderation effect. As can
be seen in Figure 2, the latent predictor was measured by six
indicators and the cross-level interaction effect was denoted by
the difference between the within-level path coefficient from the
predictor to the outcome across groups. It was assumed that the
predictor did not have an effect on the outcome in the between
level.

Because multilevel data are usually of larger sample size, we
expect the impact of multilevel non-invariance on the Type I
error rate and power to be bigger. In addition, we are interested in
whether the impact varies across multilevel specific design factors
such as the intraclass correlation (ICC), number of clusters, and
cluster size. Because in Study 1, we found that different locations
of non-invariance mainly resulted in changes in signs of the
biases of the moderation effects, in Study 2 we only focused on
measurement non-invariance on the predictor side. Likewise, we
only consider the positive moderation effects condition in Study
2 given that negative moderation effect led to similar results in
biases in Study 1. A second Monte Carlo simulation study was
conducted, as described below.

Monte Carlo Simulation
The study had a 2 (pni) × 2 (γ) × 2 (ICC, intraclass correlation)
× 2 (m, number of clusters) × 2 (c, cluster size) design. In
each condition there were two groups (Group 1 and Group
2), and sample sizes (both within and between) were assumed

equal across groups. The latent predictor, FX, had the same
six-indicator measurement structure in both the within and the
between level as in Study 1; the observed outcome, Yij, of the
ith observation in the jth cluster, contained no measurement
error and was assumed measurement invariant. The model can
be expressed as

Within level: Yijg = Y(b)jg + γ10gFX(w)ijg + rijg ,

Xijg = X(b)jg + λ(w)gFX(w)ijg + δ(w)ijg;

Between level: Y(b)jg = γ00g + ζjg ,

X(b)jg = αg + λ(b)gFX(b)jg + δ(b)jg ,

where X = [X1,X2, . . .]
′ was a vector containing the observed

values of the indicators, and their group means comprised
X(b). The vectors λ(w) and λ(b) contained the within-level and
between-level factor loadings, respectively. In this study we
assumed that λ(w)g = λ(b)g = λg . In the within level, FX(w) (the
within-level exogenous factor) had an effect of magnitude γ10g
on Y , where g is the group index. In the between level, FX(b) (the
between level exogenous factor) had no effect on Y . Note that
there were no between-level random effects on γ10g and on the
factor loadings. We also assumedmeasurement invariance across
clusters, implying that δ(b)jg = 0 and homogeneous δ(w)jg across
clusters (Jak et al., 2013), in addition to λ(w)g = λ(b)g . The design
factors were described below.

Number of Non-metric-Invariant Indicators, pni

pni was either 0 or 2 out of the six indicators of FX. Whereas
two of the factor loadings were always set to 0.7 in Group 1, for

Frontiers in Psychology | www.frontiersin.org 6 May 2018 | Volume 9 | Article 740

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hsiao and Lai Measurement Invariance and Moderation

conditions with pni = 2, those loadings were set to 0.3 in Group
2. The factor loadings for other four indicators were 0.7, 0.3, 0.5,
and 0.6, for both the within level and the between level.

Regression Coefficients, γ

There were two levels of γ: {0.3, 0.2} (moderation present) and
{0.3, 0.3} (moderation absent).

Intraclass Correlation, ICC
Based on previous simulations (Kim et al., 2012), in this study
there were two levels of ICC: 0.10 and 0.35, representing small
and large within-cluster correlations for the latent variable FX and
for the outcome Y .

Cluster Size, c
Based on previous literature (Clarke, 2008; Kim et al., 2012), there
were two levels of cluster size: 5 and 20, representing small and
medium number of observations within a cluster. For simplicity
we generated data with all clusters having the same size in both
groups.

Number of Clusters, m
Hox andMaas (2001) suggested the number of groups larger than
100 as the minimum requirement for yielding accurate multilevel
regression estimates. Later on, Maas and Hox (2005) found
groups number equal to 30 could also yield accurate multilevel
regression estimates. McNeish (2017) did a literature review on
70 multilevel studies and found 90% of them fail to meet Hox
and Maas’s criterion of 100 clusters, and that the median number
of clusters was 44. In the present study, we specified the number
of clusters in each group either 30 or 100, representing the small
and large number of clusters.

Mplus 7.0 was used to generate and analyze (with
ESTIMATOR=MLR) 500 data sets for each condition. All
exogenous variables and random effects were assumed
multivariate-normally distributed. For both groups the variances
of FX(w) and Y both equaled to 1.0, and that of FX(b) and ζjg
were functions of the ICC. The variance of δ(w)ijg was set to
0.5I so that the level-1 unique factor variances were similar in
values to those in Study 1 (i.e., 0.51 in Study 1 when the latent
factor variance is one). The covariance and mean structure were
identified similarly as in Study 1 by fixing the factor loadings
of the first indicators for FX(b) to the population value and the
latent mean of FX(b) to zero for both groups. Additionally, within
the same group the factor loadings were constrained to be equal
in the between and the within levels so that metric invariance
was assumed across clusters (Jak et al., 2013). Because scalar
invariance was not the focus of the present study and may not be
required for correctly modeling moderation effects, all intercepts
and factor means in the population were set to zero.

The dependent variables of investigation were the
standardized biases and the rejection rates of the Wald test
statistics for the difference in γ10, which reflected either the
empirical Type I error rate (α∗) or the empirical power, and were
obtained in the same manner as in Study 1. Also as in Study 1,
for conditions with pni = 2, both the metric invariance model
and the partial metric invariance model were fitted. We expected
that model falsely assuming measurement invariance would lead

to biased moderation estimation, inflated Type I error rate (when
pni = 0), and power more different from the baseline (when
pni = 2).

Result
Results for Study 2 were shown in Table 3. In the conditions
absent of moderation effects (γ = {0.3, 0.3}), fitting data with
a metric invariance model when the true population model
followed the measurement invariance assumption (pni = 0)
led to unbiased moderation effect estimates and unbiased α∗,
regardless of the level of ICC, m, and c. The same pattern
was observed while employing the corrected partial metric
invariance model to fit data from a measurement non-invariance
population, as such practice also led to unbiased moderation
estimates and α∗ close to the 5% nominal significance level across
different ICC,m, and c simulation conditions.

When non-invariance occurred (pni = 2), fitting data with
a metric invariance model yielded substantially underestimated
moderation effect and inflated α∗. Such trend became more
salient as m and c increased. For example with ICC = 0.10,
pni = 2, m = 30, and c = 5, the standardized bias was −0.55
with α∗ of 9%; with ICC = 0.10, pni = 2, m = 100, and c = 20,
the standardized bias increased to −2.13 with α∗ of 55.2%. An
ANOVA analysis on the standardized bias with pni, m, c, and
ICC showed that pni had the largest impact on estimation biases
(η2 = 0.70), followed by c (η2 = 0.08), m (η2 = 0.06), and ICC
(η2 close to 0). ICC showed no impact of falsely assuming metric
invariance on yielding biased moderation estimates and inflated
α∗. For example with ICC = 0.10, pni = 2, m = 100, and c = 5,
the standardized bias was −1.07 with α∗ of 16.4%; increasing
the ICC to 0.35 while keeping the other design factors to be the
same led to similar results with standardized bias = −1.04 and
α∗ = 15.8%.

In the conditions with nonzero moderation effect (γ:
{0.3, 0.2}), again, employing the correctly specified partial
invariance model resulted in unbiased moderation effect
estimates. On the other hand, falsely assuming metric invariance
led to substantially underestimated moderation effects across
simulation conditions with standardized biases from −0.39
to −1.61. Consistent with the null moderation condition, an
ANOVA analysis on the standardized bias indicated pni had the
largest impact on estimation biases (η2 = 0.70), followed by c
(η2 = 0.10), m (η2 = 0.06), and ICC (η2 close to 0). There was
also a substantial loss in power when fitting a metric invariance
model to data draw from a population with non-invariance. For
example, the power of the simulation condition of ICC = 0.10,
pni = 0, m = 100, and c = 20 was 80% but it dropped to 16.8%
when ICC = 0.10, pni = 2,m = 100, and c = 20. Again, ICC only
had a trivial effect on the deflation of power.

DISCUSSION

In the literature, the impact ofmeasurement invariance on testing
moderation effects has not been fully examined. The ratio of
the non-invariant items have been found to be an important
factor on the estimation accuracy of the path coefficients by the
moderating groups (e.g., Guenole and Brown, 2014). In much of
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TABLE 3 | Empirical type I error rate, power, and standardized bias for study 2.

γ = {0.3, 0.3} γ = {0.3, 0.2}

Type I Error (%) Std. Bias (1γ̂) Power (%) Std. Bias (1γ̂)

ICC pni m c MI pMI MI pMI MI pMI MI pMI

0.10 0 30 5 6.60 – 0.01 – 15.00 – 0.01 –

20 7.20 – −0.02 – 34.80 – −0.02 –

100 5 5.80 – 0.02 – 31.20 – 0.02 –

20 6.00 – 0.04 – 81.00 – 0.03 –

2 30 5 9.00 5.80 −0.55 0.01 7.00 14.20 −0.41 0.01

20 25.60 7.00 −1.17 −0.02 10.00 34.40 −0.91 0.02

100 5 16.40 6.40 −1.07 0.01 4.80 28.60 −0.81 0.02

20 55.20 5.80 −2.13 0.03 16.80 79.20 −1.60 0.03

0.35 0 30 5 6.20 – 0.02 – 15.20 – 0.02 –

20 7.40 – −0.02 – 35.20 – −0.03 –

100 5 5.40 – 0.01 – 30.80 – 0.02 –

20 5.40 – 0.03 – 80.60 – −0.03 –

2 30 5 7.60 5.20 −0.53 0.02 6.80 14.60 −0.39 0.02

20 25.20 7.20 −1.16 −0.02 10.20 32.80 −0.91 −0.02

100 5 15.80 5.80 −1.04 0.01 4.60 25.80 −0.79 0.02

20 54.60 5.40 −2.13 0.03 18.20 78.20 −1.61 0.03

γ, population regression coefficient of FY on FX ; ICC, intraclass correlation; pni , number of non-metric-invariant indicators; m, number of clusters; c, number of observations in a cluster;

MI, analytic model assumed metric invariance; pMI, analytic model assumed partial metric invariance; Std. Bias, standardized bias = 1γ̂/SD(1γ̂), where SD(1γ̂) is the standard deviation

of the differences in the estimated γs across all replications.

previous work, the focus was limited to single level data structure,
without considerations of nested data structure. Additionally, the
direct statistical test of the moderation effect was largely ignored
in previous research. The current study investigated the impact
of partial measurement invariance, with a focus on the metric
invariance, on the estimation and testing of moderation effects
on both single and multilevel structures, in terms of standardized
bias, power and Type I error rate.

The results suggest that incorrectly assuming metric
invariance holds while estimating moderation effects would lead
to biased estimates. The impact is more salient as the number of
non-invariant items increases, which is consistent with Guenole
and Brown (2014)’s and Shi et al. (2017)’s findings with direct
effects. On the other hand, fitting models correctly assuming
partial metric invariance yielded accurate estimates regardless of
samples size, main effects, number of non-invariant items, and
the location of the non-invariance occurred.

In testing null moderation effects (i.e., γs are equal between
two groups), the high Type I error rate yielded from falsely
assuming metric invariance is not only related to the non-
invariant item ratio but the magnitude of the main effects. These
results suggest that evaluation of measurement invariance is of
more importance when the main effect of the predictor is larger.
On the other hand, the Type I error rates were on or below
5% with models correctly assuming partial metric invariance.
Thus, before examiningmoderation effects, the metric invariance
assumption should not be presumed without conducting any
invariance test, even for cases in which the moderation tests turn
out to be non-significant.

The location of the non-invariance (predictor vs. outcome)
is associated with the direction of the biases of the moderation
effects. In our simulations, all of the non-invariance conditions
were specified such that factor loadings of Group 1 were
equal or larger than those of Group 2. As evident from
the simulation results, under such settings ignoring predictor
non-invariance leads to underestimation of the moderation
effects, whereas ignoring outcome non-invariance results in
overestimated moderation effects. Our findings are consistent
to Chen (2008) and Guenole and Brown (2014), in which they
found that non-invariance on the predictor with lower factor
loadings in group 2 would lead to underestimated path coefficient
in group 1 (γ1) and overestimated path coefficient in group
2 (γ2). Hence, the moderation effect (γ1 − γ2) would likely
be underestimated. On the other hand, non-invariance on the
outcome changes the association to the opposite direction and
results in the overestimation of the moderation effects.

Compared with models correctly assuming partial metric
invariance, models falsely assuming metric invariance yielded
moderation test with statistical power varying substantially.
Taking into account the signs of the moderation effects, when
the moderation effects are positive, ignoring non-invariance on
the predictors leads to power loss, but ignoring non-invariance
on the outcomes leads to increased power (at the cost of highly
inflated Type I error rate). Likewise, an opposite association
between the location of non-invariance and power is observed
when the moderation effects are negative. Therefore, the increase
in power in half of our simulation conditions in Table 2 is
actually a byproduct of sacrificing the estimation accuracy of
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the moderation effects (i.e., overestimation). Ignoring non-
invariance and resulting in power gain or loss depends on (a) the
location of the non-invariance, (b) the signs of the moderation
effects. Overall, it is not recommended to fit a model assuming
metric invariance when the assumption is actually violated, even
though it may increase the power of the moderation test.

There is also prospective evidence that falsely assuming
multilevel metric invariance across groups has a negative impact
on the estimation of the cross-level moderation effects, which
leads to either substantially inflated Type I error rate or
inflated/deflated statistical power of the moderation test. Both
increases in m and in c, or in other words an increase in the
total sample size, resulted in bigger problems in the estimation
accuracy as well as α∗ and power. Thus, for multilevel data, even
with only one-third of the indicators being non-metric-invariant,
tests of moderation can become hugely misleading.

Across simulation conditions, the number of non-invariant
items played a huge role in influencing the performance of the
moderation estimates. Researchers use multilevel data with a
number of clusters (e.g., number of classrooms) larger than 100
or cluster size larger than 20 (e.g., 20 students in each classroom)
should be particularly cautious about the negative impact of
non-invariant items. Additionally, the cluster size (c) seemed
to have a larger impact than the number of clusters (m) when
falsely assuming measurement invariance in the moderation
estimation. Intraclass correlation (ICC) was trivially related to
the moderation estimates, probably because the path of interest
was defined in the within-level. On the contrary, previous
research has shown that ICC is highly related to between-level
analysis (Kim et al., 2012). Thus, one potential explanation for
the discrepancy is that, given that the cross-level moderation
coefficients were mainly defined in the within-level, the level
of data dependency has less influence on the moderation effect
estimates.

Findings from Study 1 and Study 2 highlight the importance
of testing metric invariance before conducting a moderation test
with both single and multilevel data structure. If the metric
invariance assumption is violated, a partial metric invariance
model in which the non-invariant factor loadings between
groups are correctly reflected should be employed. Researchers
should also be aware that the MI-moderation relationship is
highly affected by the ratio of non-invariant items in the scale

and the overall sample size. Overall, while testing moderation
effects in a multiple-group analysis setting, we recommend
the test of measurement invariance for both the predictors
and outcomes by the moderator groups. If the measurement
invariance assumption holds, then employing models with such
an assumption implied is appropriate. On the other hand, if the
measurement invariance assumption is violated, then the use of
a corrected partial invariance model would yield more accurate
estimates and unbiased Type I error rates or power.

Some limitations and future study directions should be
addressed. First, the research scenario only focused on metric
invariance (i.e., invariance of the factor loadings). In practice,
non-invariance may exist in the intercepts, factor loadings,
unique factor variances, or some combinations of them. Previous
simulation studies on latent growth modeling have shown that
ignoring intercept non-invariance only leads to biased factor
mean (or intercept) estimates (Kim andWillson, 2014). Research
on multiple-group analysis also showed that ignoring intercept
non-invariance has less impact on the prediction bias of the path
coefficient in each group (Guenole and Brown, 2014). Therefore,
we suspect that the impact of intercept non-invariance on the
moderation effect estimates should be much smaller than that
of factor loading non-invariance, but more conclusive evidence
needs to be obtained from future methodological inquiries.

Second, for Study 2 we only tested cross-level moderation in
the present study, but moderation effects may also occur at the
between level, in which factors such as ICC may play a more
important role in affecting the moderation estimates. Lastly, in
the simulation, the indicators were assumed to be continuous
and normal distributed when conditioned on the latent factors.
It is important to see how measurement non-invariance with
skewed and categorical indicators influence the estimation of the
moderation effects. Therefore, future study can investigate the
impact of falsely assuming measurement invariance under more
complicated research settings.
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