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Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer
treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds
which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or
development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in
the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant
products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays.
However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons,
mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their
bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive
compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association
with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive
supplements for cancer treatment based on the improvement of their bioavailability goes through this association.

1. Introduction

The conventional treatments against cancer are nowadays
replaced by new approaches such as hormone therapy, bio-
logical therapy, and stem cell transplantation. In addition
to these proposals, new chemical compounds are tested,
focusing on founding antitumoral agents with high speci-
ficity response and low toxic side effects and warding off
resistance development. In this sense, phytochemicals (Phy)
have received increasing attention due to their high potency
and low toxicity compared with common chemotherapeu-
tic agents [1] and with pharmacological properties acting
through specific molecular targets [2–4]. Thus, Phy are con-
sidered as nonnutritive compounds found in plants and safe
for human intake [2] and with promising applications since
their consumption is integrated within diet components.

However, despite their promising benefits in vitro, results
from several studies highlight a low Phy bioactivity in vivo
[5], mainly attributed to their poor water solubility, rapid
metabolism, and short half-live and even causing gastroin-
testinal irritation. These factors lead to low and variable
oral bioavailability and nonreproducible absorption, which
gives rise to therapeutic concentrations that are difficult to
achieve, high intra- and intersubject variability, and lack of
dose proportionality [6], offering significant limitations or
challenges to the cancer therapy with Phy.

Therefore, to increase the Phy applicability, developing
formulation strategies that overcome limited oral bioavail-
ability of Phy is needed. In this sense, the association of Phy
to delivery systems or carriers composed of diverse materials
has been proposed [7]. Particularly, in the last decade,
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association with lipids, usually referred to as lipid-based
delivery systems, gained much interest as they are nontoxic,
biodegradable, and highly biocompatible and show great ver-
satility. In this respect, lipid formulations can be modified in
variousways tomeet awide range of product stability require-
ments (molecular weight and physicochemical properties),
disease conditions and route of administration, and existing
commercial formulations for topical, oral, pulmonary, or
parenteral product delivery [8, 9].

In these frameworks, the present work summarizes the
existing dietary Phy with promising anticarcinogenic prop-
erties and Phy-based therapies that are being currently
evaluated in vitro, in vivo, and in clinical trials as efficient
approaches for the prevention and treatment of cancer and
their bioavailability. Likewise, it also summarizes the delivery
systems currently used to enhance the clinical use of Phy by
increasing their oral bioavailability and by promoting their
safe and targeted activity, mainly emphasizing the lipid-based
delivery systems.

2. Dietary Phytochemicals Possessing
Anticancer Properties

In the last years, several studies have amply demonstrated
that tumor development could be highly associated with
diet habits [10, 11]. In this sense, current researches on
new approaches for cancer treatment are focused on the
study of three axes: dietary patterns, specific foods, and safe
and bioavailable dietary compounds [12]. Among the latter,
Phy derived from diet might be considered as promising
preventive and therapeutic alternative agents against cancer.

According to their chemical structure, Phy can be mainly
classified into four groups: polyphenols, terpenes, organosul-
fur compounds, and phytosterols. The following provides a
description of Phy belonging to the mentioned structural
categories that have shown potential anticancer properties in
in vitro studies, as the first step to evaluate their enhanced
activities, and in in vivo models, as the second step of
efficacy evaluation and determination of molecular action
and targets. Phy tested in preclinical and clinical studies
conducted with human cancer patients to validate their in
vivo therapeutic effect are also listed.

2.1. Polyphenols. Antitumor benefits of polyphenols have
been widely described. Polyphenols constitute one of the
major constituents of plants and are abundant in our diet.
The occurrence in plant matrix is very variable, going from
simple phenolic molecules to complex associations (highly
polymerized compounds). They are usually classified into
different groups according to their structure and number of
rings, highlighting phenolic acids, flavonoids, stilbenes, and
curcuminoids, which are described below and compiled in
Table 1.

(i) Phenolic acids represent 30% of total dietary polyphe-
nols [13] and they are the major constituents of phenolic
compounds. They usually include hydroxybenzoic acids and
hydroxycinnamic acids [14], where one of the positions of the
aromatic benzoic o cinnamic ring is occupied by a hydroxyl
group and the remaining four positions are available for

other chemical groups. One of the most studied phenolic
compounds is the ellagic acid, as described in Table 1.

(ii) Flavonoids. Although they are not considered as
essential dietary factors, they represent 60% of dietary pol-
yphenols [2, 13] and are starting to be considered the key
between prevention and treatment of chronical diseases
and diet. Chemically, the flavonoid skeleton consists of two
phenyl rings joined by a linear three-carbon bridge [15].
Table 1 summarizes those studied against cancer. Genistein,
(−)-epigallocatechin-3-gallate (EGCG), and quercetin are the
flavonoids more frequently tested in clinical trials against
tumors. Genistein have been extensively studied as prospec-
tive antitumor molecules in the treatment of prostate cancer.
Meanwhile, EGCG has also been largely studied in exper-
imental studies against different types of tumors, even in
clinical trials, particularly against prostate or cervical injuries.
Quercetin was tested, in addition, against tumors related to
the digestive tract, such as bowel, colon, or pancreas.

Within flavonoids, proanthocyanidins are also under-
lined as effective naturally occurring compounds in grape
seeds or pine bark with antitumorigenic effects. They take
the form of oligomers or polymers (+) catechin and (−) epi-
catechin, and the carried-out in vivo studies have remarked
the preventive and effective action against UV-induced skin
tumors but also showed the inhibition of lung metastasis
and mammary and prostate cancer [16]. Concerning clinical
studies, the is just one concluded trial which studied the
positive chemoprevention proanthocyanidin effect on breast
cancer [17].

(iii) Stilbenes constitute a large family within polyphenols
and have numerous implications in plant disease resistance
and human health (including antitumoral activity). Stilbenes
have a 1,2-diphenylethylene core and belong to a small
group of phenylpropanoids and only a few plants spices can
synthetize them. They are produced in response to a biotic
or abiotic stress [18]. The most largely studied is resveratrol,
which is produced in plants in response to mechanical
injuries. It is reported to be efficient against gastrointestinal
tumors in clinical trials, and in vivo tests were carried out in
breast, ovarian, lung, or skin tumors (Table 1).

(iv) Curcuminoids are derived from curcumin, and they
are obtained from turmeric (Curcuma longa). Curcumin
belongs to diarylheptanoid series and is characterized by
1,3-diketones and two methoxylated phenols [19]. Curcumin
is largely used as medicinal and food ingredient in Asia,
especially in India.Within cancer therapies, it has been tested
in several in vivo tumor models and even in clinical trials
(Table 1).

2.2. Terpenes. Another important group of phytochemicals
is that constituted by terpenoids or terpenes, which is the
most abundant and structurally diverse group synthetized by
plants. Terpenes show a wide range of physiological func-
tions, many of them related to the plant defense system, and
they are often components of essential oils and resins [20].
Terpenes are synthesized from two to five carbon building
blocks based upon the isoprene unit. Depending on the num-
ber of blocks, they can be classified as monoterpenes (C10),
sesquiterpenes (C15), diterpenes (C20), triterpenes (C30),
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tetraterpenes (C40), and polyterpenes [21]. Their potential
antitumor properties have been described in several works
[22], as shown in Table 2.

(i) Carotenoids are the most abundant tetraterpenes, and
in natural samples they could be found free or esterified by
fatty acids, the degree of esterification being related to the
hydroxyl groups. They also are characterized by the presence
of 11 or 12 conjugated carbon double bounds [23]. All of them
represent variants or degradation derivatives of 𝛽-carotene,
which is found in carrot (Daucus carota). Antitumor activity
of the acyclic tetraterpene lycopene has been largely studied
in both in vivo and clinical trials, especially conducted
with prostate tumors (Table 2). Besides lycopene, astaxanthin
may exert antitumor activity through its antioxidant and
immunomodulatory characteristics in tumors such as colon
and hepatic carcinomas, as shown in Table 2.

(ii) Noncarotenoids are not derived from carotenes. This
group of terpenes includes carnosol, a phenolic diterpene
largely studied in cancer and associated with bioactivity of
rosemary (Table 2). For carnosol, there are in vivo positive
studies against colon, prostate, and skin tumors and no
clinical studies proposed.

2.3. Organosulfur Compounds. Organosulfur compounds are
Phy with one or more carbon-sulfur bonds in their structure
and a thioketal-linked glucose molecule (S-glycosides). They
are classified into two groups: glucosinolates and thiosulfi-
nates [24]. Glucosinolates are sulfur-containing plant sec-
ondary metabolites that usually exist in cruciferous plants
and are hydrolyzed by specific enzymes (myrosinases) to
release biologically active sulfurated aglycones, known as
isothiocyanates [2, 25]. Glucosinolates and their hydrolysis
products exhibit direct and indirect antioxidant effects by
scavenging harmful radicals and modulation of detoxifica-
tion enzymes, such as glutathione S-transferase [26]. Thus,
consumption of cruciferous plants, such as cabbage and broc-
coli, is believed to promote health and to reduce the risk
of cancer development [27]. Among isothiocyanates, sul-
foraphane, produced from the glucosinolate glucoraphanin,
has been largely studied as chemopreventive agent in different
tumors in vivo, and it is the unique organosulfur compound
that has been tested in a clinical trial as antitumorigenic agent
[28] (Table 2).

Thiosulfinates (allyl sulfides), such as diallyl sulfide
(DAS), diallyl disulfide (DADS), and diallyl trisulfide
(DATS), are mainly present in garlic and onion (Allium
family) [25]. Among them, DADS, an oil-soluble organo-
sulfur compound, has been described as the major one
responsible for therapeutic properties against prostate and
colon in in vitro models and gastric, breast, and leukemia in
in vivomodels (Table 2).

2.4. Phytosterols. Phytosterols are lipid-like compounds and
essential for maintaining permeability and fluidity on cell
plant permeability. Vegetable oils are the main source of
dietary phytosterols. They occur in various structural forms
(as steryl glucosides, acetylated steryl glucosides, esters,
or alcohols) [29], each of them existing in different com-
partments of the plant cell. There are approximately 200

phytosterols, among which 𝛽-sitosterol, campesterol, and
sitostanol are the major ones [30].
𝛽-Sitosterol is the most abundant phytosterol and

although it is well known for its cholesterol lowering action
[31], several in vitro and in vivo evidences suggest it possesses
preventive effects against cancer (Table 2). Campesterol and
sitostanol, however, have not shown any effect on tumor
growth [32].

Within terpenes, triterpenoids (squalene) play a deter-
minant role as they are considered common precursors of
steroids, including phytosterols. Triterpenoids exist in free
form or combined with sugar into glycosides. The free form
shares the same chemical properties as phytosterol so long
as they can be dissolved in organic solvents but insoluble
in water [33]. In the last years, triterpenoids have demon-
strated antitumor efficacy against breast, leukemia, multiple
myeloma, and non-small cell lung carcinomas, specially
affecting cell proliferation [34, 35]. Some triterpenes are
already tested in Phase I clinical trials [36], with beneficial
effects, even if some authors defend their combination with
other triterpenoids, Phy, or synthetic drugs.

In general, in vitro and in vivo assays conducted with
dietary Phy (Tables 1 and 2) showed tumorigenesis inhibi-
tion or potential chemopreventive effects. However, a high
variability in anticancer effects was observed among different
patients during clinical trials, which is one of the major
limitations of the Phy-based therapy in the clinical practice.

3. In Vivo and Clinical
Bioactivity of Phytochemicals

Although Phy hold part of their biological activity in vivo,
as said above, their activity in this context is lower than
observed for the same compound in the in vitro evaluation
phase. An obvious reason for the “loss” of activity is the
lack of pharmacokinetic optimization or compatibility [37].
One of the main factors that influences pharmacokinetics
of the tested bioactive compound is its tissue bioavailability,
which is defined by the Food and Drug Administration as
“the rate and extent to which the active ingredient or active
moiety is absorbed from a drug product, reach plasma and
body tissues and becomes available at the site of action in an
unchanged form”. Thus, bioavailability should be considered
when the efficacy of dietary Phy is evaluated in vivo in
animal models and/or human clinical trials. The impact of
bioavailability is especially pronounced when the bioactive
compound is intended for oral use, whereby gastrointestinal
(GI) absorption constitutes the primary barrier between an
active ingredient and systemic circulation. In the present
review, we focus on oral bioavailability as the major phar-
macokinetic aspect for the clinical application of orally
delivered dietary Phy with high bioefficacy as anticancer
agents. In this respect, factors affecting GI absorption and
oral bioavailability of main dietary Phy will be addressed.

3.1. Oral Bioavailability of Dietary Phytochemicals. Oral route
is generally considered the easiest and most convenient
method for the delivery of drugs and dietary bioactive
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Coingested compounds or foods
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Exogenous factors: physicochemical properties and pharmacokinetics of active compound and physiological, biochemical, and

Figure 1: Determinant factors of the oral bioavailability of bioactive compounds, including phytochemicals.

compounds due to properties such as noninvasiveness, cost-
effectiveness, and being less prone to side effects, such as
injection-site reactions [9]. In fact, although in some of the in
vivo studies and clinical trials listed in Tables 1 and 2 Phy were
administered by intraperitoneal or intratumoral injection
and topical route [38–44], in most of the cases, they were
orally administered (by gavage, diet supplementation, water
suspension, or capsules).

However, as commented above, the suitability of this
administration route depends on the oral bioavailability of
the active ingredient, which, as summarized in Figure 1, is the
result of the synergistic effect of the following factors:

(i) Physicochemical properties of Phy, which determine
their water solubility and stability inside the GI tract

(ii) Physiological barriers, including the chemical (e.g.,
pH) and biological environment (e.g., microbiota)
inside the GI tract, which also have a significant influ-
ence on Phy stability during digestion and absorption
[45]

(iii) Biochemical barriers (including biodistribution), bio-
logical barrier (GI wall permeability), and pharma-
cokinetics (metabolism and clearance) of the active
ingredient

(iv) Endogenous factors, as the individual age and gender,
mucosal mass, gastric emptying, genetics, and dis-
eases [46]

(v) Amount of coingested compounds or foods

A compound which can exist in a stable form to survive
the GI environment and that has optimum physicochemical
properties to penetrate the GI wall is most likely to possess
acceptable oral bioavailability. Most of Phy, however, have
shown physicochemical properties that lead to a poor water
solubility and stability in the GI environment and poor
permeability. These include complex structure, size, high
molecular weight, high lipophilicity, compound H-bonding
to solvent, intramolecular H-bonding, intermolecular H-
bonding, crystal packing, crystallinity, polymorphic forms,
ionic charge status, isoelectric point (pI), and salt form
[47]. In addition to physicochemical properties limiting
their GI absorption, Phy are usually subjected to extensive
metabolism in the enterocyte and hepatocyte and/or quickly
eliminated in the urine [48]. All these factors result in a
poor and variable bioavailability, which leads to therapeutic
concentrations that are difficult to achieve, nonreproducible
absorption, variable efficacy intra- and intersubject during
clinical trials, and lack of dose proportionality. This explains
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the lower in vivo bioactivity and nonreproducible data
obtained in previous studies (Table 2) [6, 49]. Bioavailability
studies of the major dietary Phy are described below.

3.1.1. Bioavailability Studies of the Major
Dietary Phytochemicals

(i) Polyphenols. Most of the studies focus on bioavailability
related to levels of the polyphenol present in blood or urine
[50], but few of them determine the bioavailability in target
tissues, which can be more determinant for affirming their
application for a specific illness. After intestinal hydrolysis,
polyphenols are conjugated by glucuronidation (addition of
glucuronic acid), methylation (addition of a methyl group),
or sulfurylation (addition of a sulfo-group), which often facil-
itate their urinary elimination. Thus, they are well absorbed
on tissues where they are metabolized (bowel and liver) [51,
52], but their bioavailability in target tissues is low because of
their rapid clearance from the body.

Nevertheless, there is a study that reveals that once sulfate
and glucuronide conjugates of resveratrol are circulating in
plasma (with an expected low bioavailability), their sub-
sequent hydrolysis releases free resveratrol which can be
captured by those cells with specific membrane receptors,
increasing thus its bioavailability in specific tissues [53].

These conjugations may also depend on factors described
in Section 3.1 such as age and gender, genetics and dis-
eases, and protein-binding in tissues and blood. Moreover,
independently of the mechanistic processing of flavonoids,
some authors have also described the preventive efficacy of
flavonoids (resveratrol) as dependent on the type of diet.
In this sense, it has been demonstrated that low doses of
resveratrol were able to reduce colon tumor progression
better than high doses in subjects exposed to a high fat diet.
[54].

(ii) Terpenes. Clinical relevancies of terpenes depend on their
presence in target organs. Terpenes have a high lipophilic
behavior, and therefore they depend on their solubility in
the aqueous phase of the gut lumen. Thus, it has been
observed that bioavailability of terpenes is related upon their
incorporation to a lipid phase either during digestion or
during food processing, making the presence of a quantity of
fat necessary for their absorption [20]. Lycopene, one of the
major carotenoids described for its anticarcinogenic poten-
tial, has been demonstrated to enhance its bioavailability
when they are integrated in a chylomicron [55].

(iii) Organosulfur Compounds. Studies related to organosulfur
compounds are frequently carried out in combination with
other Phy or drugs. Indeed, few experimental data determine
their bioavailability, and urine levels after uptake of Brussels
or broccoli sprouts [56] are the unique parameter usually
measured.

But as they are increasingly consumed due to their
potential antitumoral effects, a new variety with genetic
variations has been proposed increasing thus the expression
of transcription factors involved in glucosinolate biosynthe-
sis. The resulting broccoli could deliver a larger amount of

glucoraphanin (active sulforaphane) in plasma and urine
[57], although it has not been evaluated in specific organs
levels.

(iv) Phytosterols. Phytosterol structure is similar to that
of cholesterol but each phytosterol has an additional side
chain, which confers dissimilarities in their absorption. Low
bioavailability of phytosterols is reported in human plasma
after intake. Before absorption starts, the esters are split in
the duodenum, increasing their hydrophobicity and reducing
their absorption at the same time. In addition, it has been
described that they poorly reesterify in the enterocytes,
explaining their poor absorption and their subsequently low
concentration in the blood circulation [58, 59].

4. Use of Lipid-Based Delivery Systems to
Increase the Clinical Efficacy of Antitumor
Phytochemicals Administered Orally

The development of crystalline solid formulations by mod-
ifying physicochemical properties, as salt formation and
micronization (particle size reduction), was initially adopted
to amend the poor water solubility of Phy [60]. However,
the low wettability and handling difficulties of reduced size
formulations as well as the aggregation of nanocrystals inside
the body and the impossibility of salt formation from neutral
compounds limit the use of these approaches [61]. Amor-
phous formulations, including solid solutions (active com-
pound immobilized in polymer) and self-dispersing solid
solutions (with surfactants), have been also applied; however,
the questionable physical stability of product (possibility of
crystallization of drug or polymer) limited their use [62].

Over the last years, new formulation strategies to increase
the clinical efficacy of poor water-soluble active compounds
have been developed. Figure 2 shows the new ones, specif-
ically those developed for oral administration of active
compounds (in italic). In addition, polymer-based delivery
systems (PBDS) have also been popularly adopted to increase
the clinical efficacy of some Phy, as observed in Table 4 [63,
64]. To a lesser extent, inclusion complexes with cyclodex-
trins and its derivatives as well as inorganic, hybrid, and other
novel nanocarriers are being currently used (Table 4).

Furthermore, it is worth mentioning that, in recent years,
an increased interest has been focused on the incorporation
of poorly water-soluble compounds into lipid-based delivery
systems (LBDS). Association with lipid-based delivery sys-
tems has been shown to be one the most powerful strategies
for the formulation of poorlywater-soluble active compounds
[8, 9], as they show several advantages compared to other
carriers, including

(i) higher degree of biodegradability and biocompatibil-
ity;

(ii) higher degree of versatility: lipid formulations can
be modified in various ways to suit the stability
requirements (molecularweight andphysicochemical
properties) and toxicity and efficacy of the active
agent as well as the route of administration and cost;

(iii) high and enhanced loading capacity;
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Figure 2: Types of (nano)carriers used to increase bioefficacy of phytochemicals. Those developed for oral administration of active
compounds are in italic characters.

(iv) pharmaceutical stability;
(v) release of the active compound in controlled and

targeted way;
(vi) simple preparation methods and easy scale produc-

tion;
(vii) low risk of side effects (nontoxic).

The present work reviews the novel LBDS (vesicle and lipid
particulate systems and emulsions) as recorded in Figure 2,
describing the formulation approaches and mechanism of
action. Furthermore, the LBDS combined with Phy in vitro
and in vivo studies are also listed.

4.1. Formulation Approaches for Oral Lipid-Based Delivery
Systems. LBDS can be obtained by blending excipients such
as pure triglyceride oils, mixed glycerides, lipophilic surfac-
tants, hydrophilic surfactants, and water-soluble cosolvents,
which determine the absorption process [65]. Thus, in order
to maximize the success in lipid-Phy formulation develop-
ment and commercialization, it is precise to consider the
following aspects:

(i) Screening and preselection of lipid excipients, mainly
considering their solubility, dissolution/dispersion
properties, digestibility, and absorption.Other factors
are irritancy, toxicity, purity, chemical stability (reg-
ulatory issues), capsule compatibility, melting point
(depending on the fatty acid composition), and cost

(ii) Identification of the suitable formulation technique
for the intended dosage form.Often solid form, devel-
oped mainly by adsorption on solid carriers [66],
spray drying [67], lyophilization [68], melt extrusion
[69], and nanoparticle technology [62], is preferred
over liquid and semisolid forms, which offer low sta-
bility, irreversible drug/excipient precipitation, large
volume of dose, and difficulty of handling and porta-
bility

(iii) Testing the formulation in appropriate animalmodels
to predict the in vivo behavior (bioavailability, phar-
macokinetics, and intestinal lymphatic absorption)

(iv) Optimization of the formulation based on the Phy
loading and dissolution profile.
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Figure 3: Mode of action of lipid-based delivery systems designed for the efficient oral administration of phytochemicals. (A) Allowing
paracellular transport by opening tight junction; (B) facilitating transcellular absorption due to increased membrane fluidity; (C) promotion
of phagocytosis via specialized microfold cells (M cells) of Peyer’s patches; (D) increased intracellular concentration and residence time by
surfactants due to inhibition of P-gp and/or CYP450; (E) lipid stimulation of lipoprotein/chylomicron production.

4.2.Mode of Action of Oral Lipid-Based Delivery Systems. The
goal of any oral LBDS is to enhance theGI absorption andoral
bioavailability of the active compound. Their mode of action
involves the alteration of the following physiological effects.

(I) After oral administration of the lipid-Phy formulation
and once in the aqueous environment of the stomach, gastric
lipase initiates the digestion of formulation lipids. Simul-
taneously, peristaltic movements of the stomach facilitate
dispersion of lipid excipients into small droplets (Figure 3(I)).
This accelerates the solubilization process of Phy in the lipid
base and keeps the Phy in solution for prolonged period,
avoiding its precipitation and protecting it from the low pH

in stomach and the enzymatic and/or chemical degradation
within the GI tract [1, 5, 6, 70].

(II) Once in the small intestine, lipid excipients stimulate
bile flow and pancreatic juices excretion [71]. Pancreatic
lipase hydrolyzes triglycerols (TG) into free fatty acids (FFA),
monoglyceride (MG), and diglyceride (DG), which, along
with bile salts and phospholipids (PL) from gallbladder, form
vesicles, micelles, and mixed micelles (Figure 3(II)). These
colloidal structures favor solubilization and transportation
of Phy until absorption area protecting it from microbiota
metabolism and enzymatic degradation, prolonging its res-
idence time, and leading to the uniform distribution of Phy
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in the GI tract, which minimizes irritation of gut wall due to
direct contact with Phy [1, 72].

(III) Formation of colloidal systems (vesicles, micelles,
and mixed micelles) that significantly enhances the intestinal
absorption of lipid digestion products and Phy as follows:

(i) Changing Phy uptake by interacting with transport
processes of enterocyte. These include mucoadhesion (inter-
action with mucin to increase membrane fluidity), paracel-
lular transport by modulating tight junctions, and promo-
tion of receptor-mediated transport processes (endocytosis,
transcytosis, and phagocytosis) via M cells of Peyer’s patches
and other mucosa-associated lymphoid tissues (MALT)
(Figure 3(III)(A)–(C)).

(ii) Inhibiting efflux transporter P-glycoprotein (P-
gp) and metabolism by cytochrome P450 (CYP450) or
cytochrome 3A (CYP-3A) isozymes (Figure 3(III)(D)). This
increases the intracellular concentration and residence time
of Phy in enterocyte.

(iii) Enhancing Phy transport to the systemic circulation
via intestinal lymphatic system [73–75]. Lipid metabolites
stimulate lipoprotein/chylomicron production, which react
with Phy molecules enhancing its intestinal lymphatic trans-
port (Figure 3(III)(E)). This avoids the first-pass hepatic
metabolism, which provides resistance to metabolic pro-
cesses, leading to changes in Phy disposition and, finally, in
its pharmacokinetic properties [70, 75].

All of this leads to an enhanced absorption, oral bioavail-
ability, and bioefficacy of Phy, which should allow applying
an accurate oral dosage to obtain reproducible results in
clinical assays (reduced inter- and intrasubject variability)
and enhance, thus, the clinical use of Phy therapy.

(IV) In addition of increasingwater solubility, absorption,
and oral bioavailability, lipid-based delivery systems have
been shown to

(i) reduce the effect of coingested food on pharmacoki-
netics of the bioactive molecule [70];

(ii) increase Phy pharmaceutical stability and lengthen its
systemic circulation time [76];

(iii) release Phy slowly over an extended duration (days
or months) after a single administration (sustained
release) [77];

(iv) enhance penetration into tumoral matrices, promot-
ing more reliable Phy access, and enhance blood-
brain barrier permeability [78, 79];

(v) modulate the biodistribution of incorporated
molecules, which leads to targeted effects and, hence,
reduced side effects [1];

(vi) overcome multidrug resistance [80];
(vii) enhance efficiency of codelivery of active ingredients

and therapeutic agents [81].

4.3. Types of the Main Oral Lipid-Based Delivery Systems and
Their Applications

4.3.1. Vesicle Systems. As indicated in Figure 2, lipid-based
delivery systems can be classified in three categories,

including vesicle systems, lipid particulate systems, and
emulsions. Among the vesicle systems, liposomes and phos-
pholipid complexes are the most frequently used.

(i) Liposomes. Liposomes are the most common and well-
investigated nanocarriers for targeted drug/active delivery.
The use of liposomes to deliver phytochemicals began
in the 1980s as an approach to overcome limitations of
clinical application of these compounds [1]. Conventional
liposomes consist in small spherical vesicles, which present
a simple bilayer membrane enclosing aqueous spaces. The
lipids mainly used are phospholipids, so that, in an aqueous
medium, the hydrophobic tails tend to gather together, while
the hydrophilic heads are exposed towards water, thereby
forming the round-shape vesicles. Amphiphilic nature of
these systems makes them capable of encapsulating from
hydrophilic agents, which can be located within the aqueous
core, to hydrophobic substances, which can be embedded
into the inner fatty acid layers [82–85].

Liposomes are highly biocompatible and possess self-
assembly capacity. They are considered pharmacologically
inactive with minimal toxicity [82–85], although they are not
as immunologically inert as previously suggested [86]. Like-
wise, conventional liposomes have been shown to increase
oral bioavailability and bioefficacy of loaded agents by

(i) improving their water solubility and stability;
(ii) avoiding their early precipitation and intestinal and

hepatic degradation;
(iii) leading to drug concentration in tumoral tissues.This

is because liposomes are preferentially delivered and
passively accumulate here due to the high interstitial
pressure, enhanced vascular permeability and reten-
tion, and the lack of functional lymphatic drainage of
solid tumors (passive targeting effect) [87, 88];

(iv) minimizing side effects.

However, conventional liposomes show some disadvantages
that limit their applicability. These include poor stability in
the systemic circulation and high recognition by reticuloen-
dothelial system (RES), which leads to short circulation time
(short shelf life) and low encapsulation efficacy expulsion of
loaded molecules by intermembrane transfer [89].

Over the last years, structural and physicochemical prop-
erties of liposomes have been modified to develop different
types of liposomal delivery systems, called nanostructured
liposomes, which do not show the drawbacks of the conven-
tional ones [90] (Figure 4). Among them, we find the PEGy-
lated liposomes, which are modified by adding polyethylene
glycol (PEG) to the surface. This confers steric stabilization
and, hence, higher stability in vivo. Structural modification
can also consist in the attachment of different types of
ligands (e.g., antibodies, peptides, and carbohydrates) to the
surface or to the terminal end of the attached PEG chains.
These systems, which are called ligand-targeted liposomes,
are used for specific (active or physicochemical) targeting
[91, 92]. Finally, to develop more efficient drug delivery
systems, multifunctional liposomal formulations, also called
theranostic liposomes, have been recently developed. These
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Figure 4: Schematic representation of the different types of liposomal drug delivery systems: (A) conventional liposome; (B) PEGylated
liposome; (C) ligand-targeted liposome; (D) theranostic liposome (reprinted from Frontiers in Pharmacology, 6, article 286, 1–12. Advances
and Challenges of Liposome Assisted Drug Delivery, by Sercombe et al. [87], with permission from the authors).

carriers usually consist of the nanoparticle, the therapeutic
agent, an imaging component, and one or more targeting
ligands which enhance their accumulation in pathological
sites and promotes organelle-specific delivery. In this sense,
theranostic liposomes can be used as therapeutic and diag-
nostic tool at the same time [87, 91].

The stability in vitro and in vivo of nanostructured
liposomes as well as the release profile of the loaded agent
is determined by the liposome surface charge, particle size,
lipid composition, and number of lamellae and the nature of
polymers and ligands attached to their surface [85, 93].

Nanostructured liposomes have been adopted in recent
years for the efficient oral delivery of several Phy with poor
water solubility and stability in the gastric environment
(Table 5).Thus, for instance, vinorelbine, a chemotherapeutic
obtained by semisynthesis from alkaloids extracted from the
rosy periwinkle (Catharanthus roseus), has been loaded into
a cholesterol-polyethylene glycol (cho-PEG) coated liposome
with the purpose of increasing circulating half-life and
reducing severe side effects of this agent [94]. Likewise, N-
trimethyl chitosan chloride- (TMC-) coated liposomes for
the oral delivery of curcumin were found to be a promising
strategy to reduce toxicity and increase therapeutic index
[88].

Moreover, brucine, an alkaloid isolated from Strychnos
nux-vomica L. (Loganiaceae), produced impressive dose-
dependent antitumor effects by causing apoptosis. However,
brucine was characterized by a narrow therapeutic index,
and high doses of brucine cause severe central nervous
system toxicity. Brucine-loaded stealth liposomes enhanced
antitumor activity and decreased distribution to the brain
[95], which, therefore, considerably improved its therapeutic
index.

(ii) Phospholipid-Phytochemical Complexes (Phytosomes�).
Several plant bioactive compounds and extracts, mainly con-
stituted by polyphenols and terpenoids, are conjugated with
naturally occurring phospholipids, as phosphatidylcholine
(PC), in a ratio of 1 : 1 or 1 : 2 (w : w).This formulation strategy
leads to the formation of the patented complexes called
Phytosomes. Like liposomes, structure of these complexes
consists in spherical vesicles with a bilayer membrane of
phospholipids, in which the hydrophilic heads are exposed
towards the aqueous medium, while the hydrophobic tails
remain together in the inner layer. Unlike liposomes, the
active agent is not located within the aqueous core, but it
binds to the polar end of phospholipid through weak chem-
ical bonds, and the nonpolar portion of the phospholipid
remains free [96, 97]. Phy-loaded phytosomes are highly
biocompatible and bioavailable as compared to unloaded
Phy. Incorporation into phytosomes increases the enterocyte
cell membrane permeability of Phy and, hence, the amount
reaching the systemic circulation. Likewise, phytosomes offer
a controlled and sustained Phy release pattern, which leads to
a longer action time and, therefore, to the need of a reduced
Phy dose [96, 97].

Silybin was the first bioactive compound marketed as
Phytosome formulation. Phospholipid complexation signif-
icantly increased the water solubility and liver protection of
silybin, which resulted in an increase of its oral bioavailability
and pharmacological activity [98]. In a comparative phar-
macokinetic study using an equimolar dose of silybin and
its complex, the plasma 𝐶max of silybin after four hours was
<35 ng/mL,whereas, for the silybin complex, it was 112 ng/mL
[99]. Similarly, quercetin loaded-phytosome showed a water
solubility 12-fold higher than free-form quercetin. However,
complexation did not affect its antioxidant activity [100].
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Figure 5: Structure of solid lipid nanoparticles (SLNs) versus
nanostructured lipid carriers (NLCs).

Ginkgo biloba L. and green tea extracts have been also
loaded into phytosomes. Ginkgo biloba L. phytosome was
supplied via oral to rats and, then, the pharmacokinetic
profile of the major flavonoids of the extract (quercetin,
kaempferol, and isorhamnetin) was evaluated by measuring
their plasma𝐶max, AUC0, and𝑇max. Pharmacokinetic param-
eters of the three flavonoids were significantly improved after
formulation, demonstrating that complexation with phos-
pholipids leads to a large increase in Phy oral bioavailability
[101]. Likewise, phytosome of green tea extract, principally
represented by (−)-epigallocatechin 3-O-gallate, showed an
enhanced absorption of catechins as compared to unloaded
green tea catechins [102].

4.3.2. Lipid Particulate Systems: SLNs and NLCs. Generally,
there are two types of lipid nanoparticles (LNPs), solid
lipid nanoparticles (SLNs) and nanostructured lipid carriers
(NLCs) [103]. Both SLNs and NLCs have spherical shape
and their average size usually ranges from 40 to 1000 nm.
LNPs can be produced by several techniques such as high-
pressure or high-speed homogenization, supercritical fluid
extraction of emulsions, solvent emulsification/evaporation,
spray drying, and ultrasonication [104–106].

LNPs are composed of a lipid solid matrix lipid and sur-
factants that provide stability [107]. SLNmatrix is constituted
by biocompatible, biodegradable, and GRAS solid lipids,
which are solid at room and body temperature (e.g., highly
purified triglycerides, partial glycerides, fatty acids, and
steroids) [108].Thematrix of NCLs is also solid at room/body
temperature; however, unlike SLNs, often it is composed of
a mixture of solid and liquid lipids [101]. Figure 5 shows a
scheme of these formulations, where structural differences
between both LNPs are observed.

In the last years, a great attention has been paid to LNPs
as an interesting and cost-effective alternative to polymeric
nanoparticles, liposomes, and emulsions. LNPs are cheaper
and safer than polymeric carriers, as their production is an
organic solvent-free process [103]. Likewise, compared to
conventional liposomes, nanoparticle solid matrix allows a

higher control release and specific delivery of the loaded
agent, which minimizes side effects [109]. LNPs show other
benefits as compared to other systems, including ease of
preparation and high scale production and sterilization [110,
111], excellent physical stability, and chemical versatility.
Moreover, incorporation into the nanoparticle matrix can
protect molecules from light, moisture, chemical degrada-
tion, and oxidation [109] and favor their penetration through
mucus barrier due to nanosize [103, 112–114].

(i) Solid Lipid Nanoparticles (SLNs). Despite all these advan-
tages, applicability of SLNs presents several limitations such
as the growth of matrix lipid particles, high water content,
ease of gelation, and unpredictable polymorphic transitions,
resulting in poor loading capacity [115–117]. In general,
drug molecules stay in between the fatty acid chains or
as amorphous clusters in crystal imperfections within SLN
matrix. However, during SLN storage time, a transition of
lipids to a low-energetic form can occur, giving rise to a
perfect crystalline structure with very little space for the
drug molecules. This promote the expulsion of encapsulated
molecules, especially when SLN matrix is composed of a
highly purified lipid, which results in a nanoparticle low
incorporation capacity and a changing release profile with
storage time [103, 113].

(ii) Nanostructured Lipid Complexes (NLCs). To overcome
SLNs drawbacks, NLCs have been developed as alternative
carrier systems. The presence of liquid lipids (oil) in the
solid matrix makes more imperfections to accommodate
more active molecules than SLNs, which reduces the active
molecule expulsion and enhances the nanoparticle loading
capacity. Furthermore, the release and delivery of the active
compound can be easily modulated by changing the lipid
composition of matrix [113]. NLCs present a lower water
content than SLNs and no significant differences regarding
biotoxicity have been observed [118].

Table 5 shows in vitro/in vivo studies where SLNs and
NLCs have been applied for the efficient oral delivery of
antitumor Phy, mainly flavonoids, with limited therapeutic
potential [119]. Thus, for instance, Luo et al. [120, 121]
investigated the effect of loading puerarin, an isoflavonoid
derived from Radix Puerariae, into SLNs, including phar-
macokinetics, tissue distribution, and relative bioavailability
in rats. When incorporated into the SLNs, puerarin was
rapidly absorbed and its relative oral bioavailability was
improved more than 3-fold as compared with that of the
puerarin suspensions. In addition, SLNs produced increased
tissue concentrations in puerarin target organs, particularly
heart and brain. Likewise, triptolide, a diterpenoid epoxide
isolated from Tripterygium wilfordii with anti-inflammatory,
anticystogenesis, and anticancer effects, showed enhanced
clinical efficacy and minimized side effects (irritation of the
gastrointestinal tract) after encapsulation into SLN [122].This
was attributed to the solubilization of triptolide during GI
digestion by the SLN matrix and colloidal mixed micelles
(Figure 4), avoiding its precipitation and degradation as well
as theGI irritation caused by insolubilized crystals.Moreover,
SLNs minimize direct contact of triptolide with the mucosal
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surface and lead to a gradual release, avoiding high local and
irritating concentrations.

Several Phy have been also loaded into NLCs in studies
focused on improving water solubility, enhancing GI absorp-
tion and oral bioavailability, controlling release, increas-
ing stability, and lengthening circulation time by reducing
the recognition by the reticuloendothelial system (RES)
(Table 5). The flavonoid silymarin has been used clinically
to treat several hepatic disorders without a high efficiency.
To improve oral absorption, silymarin-loaded NLCs were
developed [123]. These formulations showed fast in vitro
lipid digestion, suggesting that NLCs may facilitate the rapid
silymarin absorption, and gave rise to relative silymarin
bioavailability 2.54- and 3.10-fold greater than that produced
bymarketed LEGALON� and solid dispersion pellets, respec-
tively. The ability of NLCs to enhance absorption was con-
firmed in other studies using tripterine, a triterpenoid from
the Celastraceae family, extracted from the Chinese herbal
plant Tripterygium wilfordii [124]. More recently, various
novel and complex NLCs have emerged as carrier designed
to achieve specific functions. For example, cell penetrating
peptide- (CPP-) coated NLCs loaded with tripterine notice-
ably enhanced antitumor activity in vitro in prostate tumor
cells, as well as in prostate tumor-bearing mice [124]. Ionic
complex loaded NLCs enhanced the encapsulation efficiency,
improved lipophilicity, andproduced sustained release in vivo
[95].

4.3.3. Emulsions

(i) Microemulsions and Nanoemulsions. Microemulsions
(MEs) are optically isotropic systems with special features,
including an average particle size that ranges from 10 to
100 nm; spontaneous formation, that is, without any energy
input; thermodynamic stability; optical transparence or slight
opalescence; and low viscosity and allergenicity. All this
makes them very attractive delivery systems [125].

MEs are constituted by an oil phase, an aqueous phase, a
surfactant, and, probably, a cosurfactant [126]. When there
are similar amounts of oil and water, a bicontinuous ME
is usually formed, in which both phases form continuous
domains separated by surfactant-stabilized interfaces. Other-
wise, when amounts of oil andwater are not similar,MEswith
droplet-like structure are formed, which can be water-in-oil
(w/o) or oil-in-water (o/w) MEs depending on the major
compound.

Like other promising carriers, MEs have been shown to
improve oral delivery of bioactive compound by (i) enhanc-
ing stability and permeability, (ii) allowing a controlled and
sustained release, and (iii) improving GI absorption and oral
bioavailability via the lymphatic transport pathway [1, 127]. In
this respect, it has been found that this absorption pathway
can be significantly favored by w/o MEs as compared to
o/w MEs. In addition, due to their special features, MEs
offer further advantages, such as ease of preparation, high
capacity to solubilize hydrophilic, and lipophilic compounds
and long-term stability.

Despite their numerous advantages, MEs present some
limitations. They are sensitive to changes of environmental

conditions, such as temperature, ionic strength, and com-
position (adding/removing molecules to/from the aqueous
continuous phase), which may compromise their stability. In
addition, MEs formation requires the use of relatively large
amounts of synthetic surfactants to achieve an efficient load-
ing capacity, especially when using triglycerides as dispersed
oil phase [126].

Nanoemulsions (NEs), often also called miniemulsions,
are systems with droplet-like structure. They are formed by
an oil phase, an aqueous phase, and a mixture of surfactants
and cosurfactants stabilizing droplets, whose average size
is significantly (10-fold or so) smaller than that of droplets
present in conventional emulsions [126]. Like MEs, they
are optically transparent and show low viscosity. Moreover,
although NEs do not form spontaneously and have been
shown to be thermodynamically unstable, they show high
kinetic stability, which can be for several years. As compared
to MEs, these systems are much less sensitive to changes of
environmental conditions and require lower amounts of
synthetic surfactants to be formed due to their higher loading
capacity [126].

Application of MEs and NEs as carriers for the efficient
oral administration of Phy is shown in Table 5. Hydroxysaf-
flor yellow A (HSYA) is a flavonoid derived and isolated
from the safflower plant (Carthamus tinctorius L.) that has
been shown to possess antioxidant and anti-inflammatory
actions, antiplatelet aggregation, and antitumor properties as
well as antimyocardial injury effects [128, 129]. Unlike other
flavonoids, water solubility of HSYA is high; however, it has
very poor permeability, which limits its GI absorption, oral
bioavailability, and bioefficacy. Qi et al. [130] developed a
HSYA-loaded ME (w/o), which showed a bioavailability ca.
19-folds higher than that of the unloaded compound. MEs
have been also used to deliver poor water-soluble and sta-
ble Phy, such as elemenes (sesquiterpene). Elemene-loaded
emulsions have been used clinically as antitumor agents.
However, due to their poor stability and water solubility, the
oral bioavailability of these emulsions was only 18.8%. An o/w
elemene-loaded ME was then prepared [131]. This showed
high entrapment efficiency of 99.81% and significantly higher
stability than a normal emulsion, which led to a relative
bioavailability 1.63-fold greater than that of the conventional
emulsion (Table 5).

(ii) Self-Emulsifying Delivery Systems. A further and very suc-
cessful approach to overcome problems associated with poor
water solubility of Phy is self-emulsifying delivery systems
(SEDSs), self-microemulsifying delivery systems (SMEDSs),
and self-nanoemulsifying delivery systems (SNEDSs). These
systems consist in isotropic mixtures, which include a large
variety of liquid or waxy excipients available, ranging
from oils through biological lipids (natural/synthetic oil)
and hydrophobic and hydrophilic surfactants to water-sol-
uble cosolvents, generally regarded as safe (GRAS) status
[132]. Moreover, additives like 𝛼-tocopherol, 𝛽-carotene, and
propyl gallate can be added to prevent the oxidation of
SEDSs-Phy formulations [133].

Unlike all the previously described lipid formulations,
these systems have a unique property: they remain in
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a preformulation state until ingestion. Upon dilution in
aqueous physiological fluids of GI tract and with the gentle
agitation provided by peristaltic movements, SEDSs are able
to spread readily and self-emulsify spontaneously, forming
fine o/w emulsions (50 nm > droplet size > 250 nm), that
keep the active agent in solubilized form [134–136]. SEDDS
formulations (oil, 40–80% (HLB < 12), 20–60%) commonly
give rise to opaque dispersions with particle sizes >250 nm,
while SMEDS formulations (oil, 40–80% (HLB> 11), 20–40%;
hydrophilic cosolvents, 0–40%) disperse into smaller droplets
with particle sizes between 50 and 250 nm, leading to opti-
cally clear or slightly opalescent microemulsions. SNEDS
formulations (oil, <20% (HLB > 11), 20–50%; hydrophilic
cosolvents, 20–50%) further disperse in GI fluids, giving rise
to nanoemulsions with a droplet size less than 50 nm and
completely transparent [9, 62].

The reduction in emulsion particle size of these formu-
lations once in the GI tract increases the surface area of
particles, which, in turn, provides higher interfacial surface
area and a very low interfacial tension. This provides SEDSs
with a high capacity to solubilize the loaded Phy in the GI
tract and to enhance its release and absorption and oral
bioavailability [136–138]. It should be noted that droplet size
of o/w emulsions formed after self-emulsification inside the
body and, hence, capacity of SEDSs to act as efficient Phy
carriers is highly determined by the excipient combination
used in the formulation of these systems.Therefore, selection
of excipients is a quite challenging task that should be
considered.

Besides improving oral bioavailability of poor water-
soluble Phy, SEDSs show multiple advantages. Among them
are the following:

(i) Formulation surfactants increasing the intestinal per-
meability, which decreases surface tension and facili-
tates formulation contact with intestinal mucus [139]

(ii) SEDSs protecting loaded Phy against enzymatic
degradation and avoid its first-pass hepatic metabo-
lism

(iii) SEDSs providing higher loading capacity than con-
ventional lipid solutions

(iv) Thermodynamic stability
(v) Ease of manufacture and scale-up. These advantages

make SEDS unique when compared to other drug
delivery systems like solid dispersions, liposomes,
nanoparticles, and so forth [140–142]

(vi) Ease of administration and versatility of dosage form,
in either liquid or solid form. Liquid dosage forms
can be administered in soft or hard gelatin capsules
but these have shown some drawbacks, such as high
production costs, low drug compatibility and stability,
drug leakage and precipitation, capsule ageing, and
need of a large quantity of surfactants (30–60%),
which can induce GI irritation. These disadvantages
are overcome by formulating SEDS as solid forms by
extrusion/spheronization methods [72].

The delivery of poorly water-soluble Phy using SEDSs has
been extensively studied during the past decade and many of

these studies are summarized in Table 5. Thus, for instance,
the self-double emulsifying formulation of Hydroxysafflor
yellow A (HSYA) was developed using phospholipid dis-
solved in Labrafac�, Lipophile WL1349, Tween 80, and oleic
acid. The formulation results in 20-fold increase in 𝐶max and
35-fold rise in AUC value of Phy as compared to the aqueous
solution [143, 144].The SMEDSof gentiopicrin obtained from
the roots of gentians was formulated using phospholipids
in Labrasol as oil phase and Cremophor EL and Transcutol
P as other excipients. The SMEDS of gentiopicrin with
phospholipids enhanced the relative bioavailability of Phy
to 703.62% as compared to gentiopicrin alone. Similarly,
the phospholipid complex of morin (MPC) was developed
as SNEDS using Labrafil M1944 CS, Cremophor RH 40,
and Transcutol P as excipients which exhibited a significant
increase in 𝐶max, 𝑇max, and relative oral bioavailability (6.23-
fold) as compared to the morin suspension [145]. Likewise,
lutein formulated as SNEDDS demonstrated having imme-
diate dissolution (within 5min) as compared to commercial
product of lutein (Eyelac�) where there is no dissolution
within specific time [146]. Many other studies have been car-
ried out to enhance oral bioavailability and therapeutic effect
of other plant active compounds, including apigenin, berber-
ine hydrochloride (BBH), puerarin, hesperidin, quercetin,
curcumin, baicalin, oleanolic acid, vinpocetine, nobiletin,
oridonin, and silymarin.

5. Other Approaches to Increase Bioefficacy of
Antitumor Phytochemicals

5.1. Oral Codelivery of Phytochemicals and Chemotherapeutic
Drugs. Combined cancer therapy consisting in (i) the com-
bined application of some of the most common types of can-
cer treatment, including surgery, radiotherapy, chemother-
apy, targeted therapy, and immunotherapy or (ii) the coad-
ministration of different chemotherapy drugs, is often more
effective. The rationale for combination chemotherapy is
to use drugs that work by different mechanisms, thereby
decreasing the likelihood that resistant cancer cells will
develop. Moreover, when drugs with different effects are
combined, each drug can be used at its optimal dose, without
intolerable side effects [147].

Following the same rationale, it is believed that codelivery
of antitumor drugs and plant bioactive compounds could
improve therapeutic effects by targeting diverse molecular
targets, reducing toxicity, overcoming drug resistance, and
facilitating the use of lower and safer doses [1]. Thus, as
observed in Table 3, there aremany in vitro and in vivo studies
as well as some clinical trials focused on demonstrating the
potential synergistic effect when codelivering phytochem-
icals, mainly polyphenols, and first line chemotherapeutic
agents [148, 149].

Codelivery strategy is, however, usually limited by low
water solubility, poor oral bioavailability, undesirable phar-
macokinetic characteristics, and side effects [1]. In this sense,
incorporation of two or more molecules (Phy + Phy or
Phy + drug) in one nanocarrier seems to be a promising
way to increase the bioefficacy of codelivery method. It
has demonstrated to (i) improve water solubility and oral
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Table 4: Overview of nonlipid formulations, which have been designed to administer phytochemicals by oral route.

Active ingredient Lipid-based formulation Effect of formulation Ref.
Type Subcategory

Curcumin

PBDS

PLGAa-NPs
Overcome multidrug resistance and increased

oral bioavailability in vivo. [320]

Silymarin In vitro sustained release and enhanced
cytotoxicity. [321]

Curcumin Hydroxypropyl cellulose NPs Temperature-dependent release in vitro. [322]
Puerarin

Dendrimers Increased in vitro oral bioavailability and reduced
side effects.

[323,
324]

Curcumin
Resveratrol
Genistein
Podophyllotoxin

Curcumin
Hyaluronic acid conjugate Improved water solubility, stability, and

antitumoral activity in vitro. [325]

Alginate conjugate Higher water solubility, stability, and cytotoxicity
in vitro. [326]

Rutin CD inclusion
complexes

𝛼-CD, 𝛽-CD, HP-𝛽-CD, and
DM-𝛽-CDb

Improved water solubility and stability, increasing
the oral bioavailability and bioefficacy.

[327]
3-EGCG [328]
Silymarin (Silybum
marianum) Inorganic

nanocarriers Porous silica nanoparticles (PSN) Sustained release and enhanced oral
bioavailability in vivo.

[321]

Silybin meglumine [329]

Resveratrol

Hybrid nanocarriers

TCCc- liposomes Improved absorption and oral bioavailability and
reduced side effects in vivo In vitro controlled
release and in vivo enhanced targeting and

reduced side effects
Overcome multidrug resistance.

Enhanced in vitro and in vivo antitumor activity.

[330]
DQA-PEG1930-DSPE

a liposomes [153]

Vincristine Dextran-sulfate-SLNs [331]
PLGA-PEG-R7a NPs [332]

Tripterine CPPa-NLCs [118]
Silymarin

Other novel
nanocarriers

Liquid crystalline nanocarrier Sustained release.
Improved water solubility, oral bioavailability, and
biological activity (active targeting-liver) in vivo.

[333]

Quercetin Folate-modified lipid
nanocapsules [334]

Tetrandrine Lipid nanocapsules [335]
aPLGA: poly(lactic-co-glycolic acid); PEG: polyethylene glycol; R7 is a cell-penetrating peptide; DQA: dequalinium; DSPE: polyethylene glycol-
distearoylphosphatidylethanolamine; R7 is a cell-penetrating peptide (CPP).
b𝛼/𝛽-CD: alpha/beta-cyclodextrin; HP-𝛽-CD: hydroxypropyl-𝛽-cyclodextrin; DM-𝛽-CD: dimethyl-𝛽-cyclodextrin.
cTCC: N-trimethyl chitosan chloride-coated.

bioavailability; (ii) suppress drug resistance, by inhibiting
transporter mediated efflux; (iii) delay adaptation processes;
(iv) retard cellsmutations; (v) produce synergistic therapeutic
effect through the simultaneous delivery of multiple agents to
the action site; and (vi) minimize side effects [1, 150].

In this sense, few Phy described in Table 3 have been
coencapsulated or coloaded in one oral nanocarrier. Querce-
tin + tamoxifen was administrated through PLGAnanoparti-
cles, while quercetin + paclitaxel was administrated through
CQ-PM and curcumin + genistein through NLC.

5.2. Parenteral and Topical Administration of Phytochemicals
as Alternative to the Oral Route. To overcome limitations in
the oral administration of poor water-soluble Phy, parental
(intravenous and intraperitoneal) and topical (transdermal,
nasal, and ocular) administration routes can be used to
increase dose precision and clinical efficacy.

Likewise, in recent years, topical delivery of bioactive
compounds has also drawn great attention owing to its
advantages over other administration routes and outstanding
contribution in improving local action [151] or systemic
absorption, which can minimize the first-pass effect [152].
Nevertheless, this application also shows several barriers that
limit its use, including low skin permeation, short biological
half-life, presystemic metabolism, or systemic toxicity [1].

On the other hand, and to get over limitations of
parenteral and topical administration routes, application of
nanocarriers has demonstrated to be also an efficient formu-
lation strategy. Table 6 shows and overviews the lipid and
nonlipid formulations specifically designed to parenteral and
topical Phy administration. In case of the parenteral route,
most of the investigations have focused on utilizing carriers
to enhance antitumor efficiency through passive targeting
or active targeting [153, 154], controlling drug release at the
tumor site to minimize side effects [155, 156], or overcoming
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Table 5: Overview of lipid-based delivery systems to administer phytochemicals by oral route.

Active ingredient Lipid-based formulation Effect of formulation Ref.

Vinorelbine

Liposomes

Reduced side effects and increased circulation half-life. [94]
Improved therapeutic effect in vivo.

Gypenoside Activated in vitro immune response in macrophages. [335]
Curcumin Improved pharmacokinetics and oral bioavailability in vivo. [329, 336]
3-EGCG Enhanced in vitro antitumor activity. [337]

Brucine Improved absorption and oral bioavailability, enhanced
targeting, and reduced side effects in vivo. [338, 339]

Quercetin

Phytosome
Enhanced membrane permeability, sustained and controlled

release.
Enhanced absorption, oral bioavailability, and bioefficacy.

Kaempferol [101]
Isorhamnetin
Silybin [98, 99]
3-EGCG [102]
Quercetin [100]
𝛽-Elemene

Microemulsions Increased water solubility and permeability and improved oral
bioavailability.

[131]
Hydroxysafflor yellow A [130]
Puerarin [127, 340]

Baicalin SEDS Enhanced stability, oral bioavailability, and targeting effects in
vitro and in vivo. [134]

Curcumin

SMEDS Enhanced stability, oral bioavailability, and targeting effects in
vitro and in vivo.

[341]
Indirubin [88]
Hydroxysafflor yellow A [143, 144]
Gentiopicrin [341]
Lutein [342]
Apigenin [343]
Nobiletin [137]
Oridonin [139]
Silymarin [140]
Puerarin [344]
Hesperidin [345]
Berberine hydrochloride
(BBH) [346]

Morin

SNEDS Enhanced stability, oral bioavailability, and targeting effects in
vitro and in vivo.

[145]
Curcumin [347]
Lutein [146]
Oleanolic acid [348]
Vinpocetine [349]
Puerarin

SLNs Improved absorption and oral bioavailability and reduced side
effects (irritation of GI mucous membrane) in vivo.

[120, 121]
Triptolide [350]
Cantharidin [351]
Resveratrol [352]
Silymarin

NLCs Increased absorption and oral bioavailability in vivo.
Enhanced in vitro and in vivo antitumor activity.

[123]
Tripterine [124]
Curcumin

multidrug resistance [157]. Parenteral nanocarriers include
either lipid formulations (liposomes, SLNs, and NCLs) or
polymer formulations (polymericNPs andpolymer-bioactive
conjugates). For topical application, the incorporation of

active compounds into nanocarriers aims to enhance skin
permeation and stability, lengthen systemic circulating time,
and minimize metabolic degradation and systemic toxic-
ity. Thus, for instance, MEs provide a safe, effective, and
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Table 6: Overview of lipid and nonlipid formulations, which have been designed to administer phytochemicals by parental and topical routes.

Phytochemical Lipid-based formulation Effect of formulation Admin. route Ref.
Type Subcategory

Curcumin LBDS NLCs Enhanced stability and brain targeting in
vivo.

Intraperitoneal [353]
Baicalein

LBDS

Tocol-NLCs [354]

𝛽-Elemene NLCs

Less irritating and toxic and enhanced
bioavailability and antitumor efficacy in

vivo.
[355]

Bufadienolides Reduced toxicity and improved
pharmacokinetic profile in vivo. Intravenous [356]

Breviscapine Ionic-complex-based
NLCs

Sustained-release and protection against
liver enzyme degradation in vivo. [357]

Berberine DQA-PEG2000-DSPE
a

liposomes Overcome multidrug resistance in vivo. [358]

Quercetin

LBDS

MEs

Transdermal

[158]
Genistein Increased permeation and skin retention. [159]
Chlorogenic acid Efficient systemic distribution in vivo. [160]

Resveratrol

Curcumin PEGa liposomes Increased stability and anti-inflammatory
effects in vivo [359]

Bufadienolides Poloxamer-liposomes Reduced toxicity and enhanced
antitumor efficacy in vivo. [360]

Ligustrazine phosp.
Ethosomes

Enhanced skin permeation in vitro and
bioactivity in vivo. [152]

Apigenin Enhanced anti-inflammatory effects in
vivo. [361]

Curcumin NLCs Enhanced antitumor activity and brain
targeting in vitro. Intranasal [362]

Tetrandrine Charged SLNs Reduced irritation of eye mucous
membrane in vivo. Ocular [363]

3-ECGC Inorganic
carriers Gold NPs Enhanced efficacy and reduced toxicity in

vivo.
Intratumoral
injection [155]

Curcumin

PBDS

Dextran
sulfate-chitosan NPs

Controlled release and targeted effect
against tumor cells in vitro.

Intravenous

[364]

Curcumin Chitosan/PBCAb NPs In vivo anticancer effect on hepatic tumor
cells. [365]

Trans-resveratrol Chitosan-NPs Higher in vivo liver targeting effect and in
vitro cytotoxicity on hepatic cancer cells. [366–368]

Oridonin Galactosylated
chitosan NPs

Enhanced targeting and binding to the
specific site of action (liver).

Artemisinin

PBDS

Polymeric micelles
Targeted polymeric

micelles

Achieving site-specific cell targeting and
enhancing intracellular drug

accumulation.

Intraperitoneal

[369]

Resveratrol Transferrin modified
PEG-PLAc conjugate

Cellular uptake, in vivo biodistribution,
and antitumor activity. Targeted therapy

of glioma.
[370]

Bufalin Biotinylated chitosan
NPs

Enhanced targeting and binding to the
specific site of action breast carcinoma. [371]

Quercetin PBDS Lecithin-chitosan NPs In vitro and in vivo enhanced skin
permeation. Topical [371]

aPEG: polyethylene glycol; DQA: dequalinium; DSPE: polyethylene glycol-distearoylphosphatidylethanolamine.
bPBCA: poly(butyl cyanoacrylate).
cPLA: polylactic acid.
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noninvasive means to topically deliver Phy such as quercetin
[158], genistein [159], and chlorogenic acid and resveratrol
[160]. Other nanocarriers used for the topical delivery of Phy
include liposomes, ethosomes, NLCs, polymeric NPs, and
polymer-bioactive conjugates (Table 6).

6. Conclusions

Phy are molecules obtained from natural plant species and in
the last decades have shown their positive benefits in human
health, in prevention and treatment.

In the framework of cancer, polyphenols are the most
studied group of phytochemicals, in both the in vitro/in vivo
studies and clinical trials, with promising expectative, includ-
ing the lack of side effects. Regarding terpenes, phytosterols,
and organosulfur phytochemicals, they show hopeful results
in breast, colon, and prostate models, although there are few
clinical trials that started to confirm their effects in human
models, compared with polyphenols.

The bioavailability of these compounds still adheres to
measure urine levels as a routine parameter, butmany authors
defend the use of carriers to improve their availability in
plasma and in targeted organs. This need is reflected in the
development of new delivery mechanisms, where lipid-based
delivery systems are part of a strategy to increase the water
solubility and stability, prevent the rapid systemic clearance,
prevent the intestinal and hepatic metabolism, enhance the
bioavailability, and enhance the cancer cell targeting. The
importance ofmeasuring tissue levels of the chemopreventive
agents would help to better understand the mode of action of
the nanoparticles and phytochemicals and to avoid toxicity of
both.
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Casado, and A. Ramı́rez de Molina, “Dietary phytochemicals
in cancer prevention and therapy: a complementary approach
with promising perspectives,” Nutrition Reviews, vol. 71, no. 9,
pp. 585–599, 2013.

[3] K. W. Lee, A. M. Bode, and Z. Dong, “Molecular targets of
phytochemicals for cancer prevention,” Nature Reviews Cancer,
vol. 11, no. 3, pp. 211–218, 2011.

[4] R. H. Liu, “Potential synergy of phytochemicals in cancer
prevention: mechanism of action,”The Journal of Nutrition, vol.
134, no. 12, pp. 3479S–3485S, 2004.

[5] A. R. Bilia, B. Isacchi, C. Righeschi, C. Guccione, and M. C.
Bergonzi, “Flavonoids loaded in nanocarriers: an opportunity
to increase oral bioavailability and bioefficacy,” Food and Nutri-
tion Sciences, vol. 5, no. 13, pp. 1212–1327, 2014.

[6] C. J. H. Porter andW. N. Charman, “In vitro assessment of oral
lipid based formulations,”Advanced Drug Delivery Reviews, vol.
50, supplement 1, pp. S127–S147, 2001.

[7] F. Aqil, R. Munagala, J. Jeyabalan, and M. V. Vadhanam,
“Bioavailability of phytochemicals and its enhancement by drug
delivery systems,” Cancer Letters, vol. 334, no. 1, pp. 133–141,
2013.

[8] S. Kalepu,M.Manthina, andV. Padavala, “Oral lipid-based drug
delivery systems—an overview,” Acta Pharmaceutica Sinica B,
vol. 3, no. 6, pp. 361–372, 2013.

[9] H. Shrestha, R. Bala, and S. Arora, “Lipid-based drug delivery
systems,” Journal of Pharmaceutics, vol. 2014, Article ID 801820,
10 pages, 2014.

[10] T. M. Gibson, L. M. Ferrucci, J. A. Tangrea, and A. Schatzkin,
“Epidemiological and clinical studies of nutrition,” in Anony-
mous Seminars in Oncology, pp. 282–296, Elsevier, Amsterdam,
Netherlands, 2010.

[11] T. Norat, C. Scoccianti, M.-C. Boutron-Ruault et al., “European
code against cancer 4th edition: diet and cancer,” Cancer
Epidemiology, vol. 39, supplement 1, pp. S56–S66, 2015.

[12] A. Umar, B. K. Dunn, and P. Greenwald, “Future directions in
cancer prevention,” Nature Reviews Cancer, vol. 12, no. 12, pp.
835–848, 2012.

[13] S. Ramos, “Cancer chemoprevention and chemotherapy:
dietary polyphenols and signalling pathways,”Molecular Nutri-
tion and Food Research, vol. 52, no. 5, pp. 507–526, 2008.

[14] W.-Y. Huang, Y.-Z. Cai, and Y. Zhang, “Natural phenolic
compounds from medicinal herbs and dietary plants: potential
use for cancer prevention,” Nutrition and Cancer, vol. 62, no. 1,
pp. 1–20, 2010.

[15] T. Iwashina, “The structure and distribution of the flavonoids in
plants,” Journal of Plant Research, vol. 113, no. 1111, pp. 287–299,
2000.

[16] V.Nandakumar, T. Singh, and S. K. Katiyar, “Multi-targeted pre-
vention and therapy of cancer by proanthocyanidins,” Cancer
Letters, vol. 269, no. 2, pp. 378–387, 2008.

[17] City of Hope Medical Center and National Cancer Institute,
IH636 Grape Seed Extract in Preventing Breast Cancer in
Postmenopausal Women at Risk of Developing Breast Cancer,
NCT00100893, 2015.

[18] J. Chong, A. Poutaraud, and P. Hugueney, “Metabolism and
roles of stilbenes in plants,” Plant Science, vol. 177, no. 3, pp. 143–
155, 2009.

[19] E. Portes, C. Gardrat, and A. Castellan, “A comparative study
on the antioxidant properties of tetrahydrocurcuminoids and
curcuminoids,”Tetrahedron, vol. 63, no. 37, pp. 9092–9099, 2007.



Journal of Oncology 23

[20] B. K. Tiwari, N. P. Brunton, and C. Brennan,Handbook of Plant
Food Phytochemicals: Sources, Stability and Extraction, John
Wiley & Sons, 2013.

[21] T. Rabi and A. Bishayee, “Terpenoids and breast cancer chemo-
prevention,” Breast Cancer Research and Treatment, vol. 115, no.
2, pp. 223–239, 2009.

[22] M.Huang, J.-J. Lu,M.-Q. Huang, J.-L. Bao, X.-P. Chen, and Y.-T.
Wang, “Terpenoids: natural products for cancer therapy,”Expert
Opinion on Investigational Drugs, vol. 21, no. 12, pp. 1801–1818,
2012.

[23] E. Breitmaier,Terpenes, Flavors, Fragrances, Pharmaca, Pherom-
ones, John Wiley & Sons, New York, NY, USA, 2006.

[24] A. K. Patra and J. Saxena, “Dietary phytochemicals as rumen
modifiers: a review of the effects on microbial populations,”
International Journal of General and Molecular Microbiology,
vol. 96, no. 4, pp. 363–375, 2009.

[25] P. M. Dewick, Medicinal Natural Products: A Biosynthetic
Approach, John Wiley & Sons, 2002.

[26] B. Holst and G. Williamson, “A critical review of the bioavail-
ability of glucosinolates and related compounds,” Natural Prod-
uct Reports, vol. 21, no. 3, pp. 425–447, 2004.

[27] J. V. Higdon, B. Delage, D. E. Williams, and R. H. Dashwood,
“Cruciferous vegetables and human cancer risk: epidemiologic
evidence andmechanistic basis,” Pharmacological Research, vol.
55, no. 3, pp. 224–236, 2007.

[28] F. Fuentes, X. Paredes-Gonzalez, and A. T. Kong, “Dietary
glucosinolates sulforaphane, phenethyl isothiocyanate, Indole-
3-Carbinol/3,3-Diindolylmethane: antioxidative stress/inflam-
mation, Nrf2, epigenetics/epigenomics and in vivo cancer
chemopreventive efficacy,” Current Pharmacology Reports, vol.
1, no. 3, pp. 179–196, 2015.

[29] R. A. Moreau, B. D. Whitaker, and K. B. Hicks, “Phytosterols,
phytostanols, and their conjugates in foods: structural diversity,
quantitative analysis, and health-promoting uses,” Progress in
Lipid Research, vol. 41, no. 6, pp. 457–500, 2002.

[30] J. Smith and E. Charter, Functional Food Product Development,
John Wiley & Sons, 2011.

[31] K. A. Varady, A. H. Houweling, and P. J. H. Jones, “Effect of
plant sterols and exercise training on cholesterol absorption
and synthesis in previously sedentary hypercholesterolemic
subjects,” Translational Research, vol. 149, no. 1, pp. 22–30, 2007.

[32] A. Downie, C. Fink, and A. B. Awad, “Effect of phytosterols
onMDA-MB-231 human breast cancer cell growth,”The FASEB
Journal, vol. 13, article A333, 1999.

[33] X.-J. Yan, L.-H. Gong, F.-Y. Zheng, K.-J. Cheng, Z.-S. Chen,
and Z. Shi, “Triterpenoids as reversal agents for anticancer drug
resistance treatment,” Drug Discovery Today, vol. 19, no. 4, pp.
482–488, 2014.

[34] A. Bishayee, S. Ahmed, N. Brankov, and M. Perloff, “Triter-
penoids as potential agents for the chemoprevention and
therapy of breast cancer,” Frontiers in Bioscience, vol. 16, no. 3,
pp. 980–996, 2011.

[35] K. T. Liby, M. M. Yore, and M. B. Sporn, “Triterpenoids and
rexinoids as multifunctional agents for the prevention and
treatment of cancer,” Nature Reviews Cancer, vol. 7, no. 5, pp.
357–369, 2007.

[36] V. R. Yadav, S. Prasad, B. Sung, R. Kannappan, and B. B. Aggar-
wal, “Targeting inflammatory pathways by triterpenoids for
prevention and treatment of cancer,” Toxins, vol. 2, no. 10, pp.
2428–2466, 2010.

[37] C. L. Stoner, A. Cleton, K. Johnson et al., “Integrated oral
bioavailability projection using in vitro screening data as a
selection tool in drug discovery,” International Journal of Phar-
maceutics, vol. 269, no. 1, pp. 241–249, 2004.

[38] C. Lee-Chang, M. Bodogai, A. Martin-Montalvo et al., “Inhi-
bition of breast cancer metastasis by resveratrol-mediated
inactivation of tumor-evoked regulatory B cells,” Journal of
Immunology, vol. 191, no. 8, pp. 4141–4151, 2013.

[39] L. Tan, W. Wang, G. He et al., “Resveratrol inhibits ovarian
tumor growth in an in vivo mouse model,” Cancer, vol. 122, no.
5, pp. 722–729, 2016.

[40] Y. G. Lin, A. B. Kunnumakkara, A. Nair et al., “Curcumin
inhibits tumor growth and angiogenesis in ovarian carcinoma
by targeting the nuclear factor-𝜅B pathway,” Clinical Cancer
Research, vol. 13, no. 11, pp. 3423–3430, 2007.

[41] J. Odot, P. Albert, A. Carlier, M. Tarpin, J. Devy, and C.
Madoulet, “In vitro and in vivo anti-tumoral effect of curcumin
againstmelanoma cells,” International Journal of Cancer, vol. 111,
no. 3, pp. 381–387, 2004.

[42] N. P. Castro, C.M. Rangel, D. Salomon, K. Saylor, and Y. S. Kim,
“Sulforaphane suppresses the growth of triple-negative breast
cancer stem-like cells in vitro and in vivo,” Cancer Research, vol.
75, no. 15, article 912, 2015.

[43] H. Tang, Y. Kong, J. Guo et al., “Diallyl disulfide suppresses
proliferation and induces apoptosis in human gastric cancer
throughWnt-1 signaling pathway by up-regulation ofmiR-200b
and miR-22,” Cancer Letters, vol. 340, no. 1, pp. 72–81, 2013.

[44] H. Nakagawa, K. Tsuta, K. Kiuchi et al., “Growth inhibitory
effects of diallyl disulfide on human breast cancer cell lines,”
Carcinogenesis, vol. 22, no. 6, pp. 891–897, 2001.

[45] S. S. Jambhekar, W. Foye, T. Lemke, and D. Williams, “Physico-
chemical and biopharmaceutical properties of drug substnaces
and pharmacokinetics,” Foyes Principles ofMedicinal Chemistry,
pp. 61–105, 2008.

[46] B. Holst and G. Williamson, “Nutrients and phytochemicals:
from bioavailability to bioefficacy beyond antioxidants,” Cur-
rent Opinion in Biotechnology, vol. 19, no. 2, pp. 73–82, 2008.

[47] C. A. Lipinski, “Drug-like properties and the causes of poor
solubility and poor permeability,” Journal of Pharmacological
and Toxicological Methods, vol. 44, no. 1, pp. 235–249, 2000.

[48] S. Prabhu, M. Ortega, and C. Ma, “Novel lipid-based formula-
tions enhancing the in vitro dissolution and permeability char-
acteristics of a poorly water-soluble model drug, piroxicam,”
International Journal of Pharmaceutics, vol. 301, no. 1-2, pp. 209–
216, 2005.

[49] J. Robinson, “Introduction: semi-solid formulations of oral drug
delivery,” Bulletin Technique-Gattefosse, pp. 11–14, 1996.

[50] M. D’Archivio, C. Filesi, R. Var̀ı, B. Scazzocchio, and R.Masella,
“Bioavailability of the polyphenols: status and controversies,”
International Journal of Molecular Sciences, vol. 11, no. 4, pp.
1321–1342, 2010.

[51] A. Scalbert and G. Williamson, “Dietary intake and bioavail-
ability of polyphenols,” The Journal of Nutrition, vol. 130, no. 8,
pp. 2073S–2085S, 2000.

[52] C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez,
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