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Abstract

Post-translational farnesylation or geranylgeranylation at a C-terminal cysteine residue regulates 

localization and function of over 100 proteins, including the Ras isoforms, and is a therapeutic 

target in diseases including cancer and infection. Here we report global and selective profiling of 
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prenylated proteins in living cells enabled by development of isoprenoid analogues YnF and 

YnGG in combination with quantitative chemical proteomics. Eighty prenylated proteins were 

identified in a single human cell line, 64 for the first time at endogenous abundance without 

metabolic perturbation. We further demonstrate that YnF and YnGG enable direct identification of 

post-translationally processed prenylated peptides, proteome-wide quantitative analysis of 

prenylation dynamics and alternative prenylation in response to four different prenyltransferase 

inhibitors, and quantification of defective Rab prenylation in a model of the retinal degenerative 

disease Choroideremia.

Introduction

Protein prenylation is a class of irreversible post-translational modification predicted to 

affect hundreds of proteins in the human proteome1. Farnesyl transferase (FTase) and 

geranylgeranyl transferase type 1 (GGTase-1) catalyze attachment of a single farnesyl or 

geranylgeranyl isoprenoid to a canonical C-terminal CXXX-motif (C = Cys; X = any amino 

acid) on proteins including Ras and Rho GTPases, nuclear lamins and gamma subunits of 

heterotrimeric G-proteins (Figure 1a). RabGGTase (GGTase-2) attaches one or two 

geranylgeranyl chains to members of the Rab family at a variety of cysteine-containing C-

terminal motifs, with the assistance of Rab Escort Proteins, REP1 or REP2. Prenylation 

plays an important role in all normal cells, and in numerous human pathologies including 

cancers2, cardiovascular3 and retinal4 diseases, viral infections5,6 and Hutchinson-Gilford 

progeria syndrome (HGPS)7.

Prenyl transferase inhibitors (PTIs) have been proposed as inhibitors of Ras signaling in 

cancer, but despite extensive clinical trials none of these agents has yet been approved for 

clinical use2. Further development is hampered by limited validation of the cellular targets 

of prenylation, and poor understanding of the dynamic interplay between prenyl transferases 

and their substrates in response to inhibition which can drive certain substrates to ‘switch’ 

between farnesylation and geranylgeranylation, making patient selection highly 

challenging1. Recently, farnesyl transferase inhibitors (FTIs) have shown positive clinical 

results in HGPS7 and chronic hepatitis delta virus (HDV) infection6, diseases in which FTI 

efficacy is thought to occur mainly through a specific prenylated protein. To explain past 

failures and set future directions there is a need to understand the prenylated proteome in 

specific cellular contexts, and to determine which proteins are targeted by inhibition of each 

prenyl transferase2.

Chemical proteomics is a powerful methodology to decipher substrates of post-translational 

modifications (PTMs), particularly for analytically challenging PTMs such as lipidation8–

10. Several useful chemical probes for protein prenylation have been reported11–16, but 

currently-available methodologies provide limited coverage of the prenylated proteome and 

poor selectivity for farnesylation vs. geranylgeranylation pathways. There thus remains a 

need for chemical probes which can enable high-throughput quantification of specific 

changes in prenylation in disease models or in response to PTIs, at the whole proteome level.

Here we report a high-throughput approach for exploration of protein prenylation in living 

cells, exploiting a pair of novel alkyne-tagged prenyl probes coupled with multifunctional 
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capture reagents and a quantitative chemical proteomics workflow (Figure 1b). We 

demonstrate that this methodology can be used to identify novel prenylated proteins at 

proteome-wide scale and at endogenous cellular abundance, and to quantify substrate-

specific inhibition of prenylation upon treatment with different classes of PTIs, enabling 

system level validation and invalidation of widely-used tool inhibitors. We further show the 

broad utility of these probes to quantify “rescue” prenylation induced by treatment with a 

potent FTI, directly identify post-translational processing of prenylated C-termini, and 

quantify the complex effect on geranylgeranylation resulting from REP1 knock-out in a 

model of the X-linked retinal disease Choroideremia. Together, these probes and capture 

reagents significantly extend the existing tools available for metabolic prenyl labeling 

(Supplementary Table 1), enabling new applications in the exploration of protein prenylation 

in living cells.

Results

Novel alkyne-tagged isoprenoid analogues YnF and YnGG enable identification and 
quantification of prenylated proteins

We reasoned that structural similarity of chemical probes to the natural products farnesol 

(FOH) and geranylgeraniol (GGOH) should lead to high fidelity incorporation into cellular 

prenylated targets. Accordingly, we developed two prenyl probes designed to target 

farnesylation and geranylgeranylation selectively, termed YnF and YnGG, respectively 

(Figure 1b, synthetic methodology in Supplementary Information), in which an alkyne 

moiety enables post-incorporation coupling of functional ‘capture reagents’ bearing 

fluorophores and/or affinity tags through copper(I)-catalyzed azide-alkyne cycloaddition 

(CuAAC) (so-called ‘click’) chemistry17,18. The corresponding pyrophosphates of each 

probe (YnFPP and YnGGPP, Supplementary Figure 1) were also synthesized, and their 

incorporation into peptides mimicking prenylated protein substrate C-termini was compared 

against FPP and GGPP, for FTase and GGTase-1 (Supplementary Figure 1), using a 

biochemical enzyme assay (Supplementary Information). In line with the biomimetic design 

of the probes, transfer of each probe was found to exhibit rates of incorporation and Km 

values aligned with those of the canonical native prenyl pyrophosphate for FTase (RHEB) 

and GGTase-1 (RHOA) peptide substrates, with no cross-reactivity with the non-substrate 

peptide/transferase pair (Supplementary Figure 2).

Probe incorporation in cells was first examined in an endothelial cell line (EA.hy92619), 

adding YnF or YnGG at a range of concentrations to cells in culture over 24 hours, followed 

by isolation of protein and ligation by CuAAC to AzTB (Supplementary Figure 8), an azide-

tagged capture reagent bearing a TAMRA fluorophore and a biotin handle18. Analysis by 

in-gel fluorescence showed excellent incorporation of the probes at low micromolar 

concentration, with labeling evident at 1 µM probe, and increasing at 10 µM (Figure 1c). 

Previous studies using prenyl probes have typically pretreated cells with a HMG-CoA 

reductase inhibitor (statin) to deplete endogenous isoprenoids and enhance labeling11,15,16; 

however, statins exert widespread effects on metabolism, including changes in the levels of 

cholesterol metabolites and of prenylated proteins20. In contrast, incorporation of YnF and 

YnGG proceeds with high efficiency without statin treatment, enabling study of prenylation 
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under unperturbed conditions. Both probes showed strong labeling in the 20-25 kDa region 

by in-gel fluorescence, consistent with labeling of small GTPases, but each probe also 

labeled an orthogonal set of bands, suggesting that selective farnesyl and geranylgeranyl 

probes may provide enhanced coverage of the whole complement of prenylated proteins. 

Consistent with selective labeling, probe incorporation was sensitive to competition by the 

respective natural isoprenoid substrate, farnesol (FOH) or geranylgeraniol (GGOH) 

(Supplementary Figure 3).

We next employed a quantitative chemical proteomics strategy to identify and validate 

protein targets labeled by the probes, using competition against natural isoprenoids. 

EA.hy926 cells were treated with 10 µM YnF or YnGG in the presence of increasing 

concentrations of FOH (0, 5, 25 µM) or GGOH (0, 2.5, 10 µM), and cell lysates spiked with 

SILAC lysate dual labeled with 13C6
15N4-Arg and 13C6

15N2-Lys (R10K8) and the relevant 

prenyl probe, providing a mass standard against which competition could be quantified21. 

Following CuAAC ligation, affinity enrichment and on-bead tryptic digest, samples were 

analyzed by nanoLC-MS/MS on a high resolution Orbitrap mass spectrometer 

(Supplementary Data 1 and 2). Although some overlap in protein identification between the 

two probes was evident, 75% of proteins which significantly responded to competition were 

uniquely detected by one probe only (Supplementary Figure 3), underlining the advantages 

of a dual farnesyl and geranylgeranyl probe system. All proteins sensitive to competition by 

natural isoprenoids carried a potential prenylation motif, with the exception of four proteins 

known to interact with Rabs (COPA, CD9, CD151, PODXL), enabling robust identification 

of prenylated proteins over background (Figure 2a and 2b, Supplementary Figure 4, 

Supplementary Data 1 and 2). The probes discriminate with high selectivity between known 

non-prenylated or prenylated proteins, with only the latter showing significant changes in the 

presence of competing canonical substrate (FOH or GGOH). YnF also identified 7 novel 

farnesylated proteins which showed identical competition behavior to the set of known 

farnesylated proteins (Figure 2a), including serine-threonine kinase ULK3, DDB1- and 

CUL4-associated factor 8 (DCAF8/WDR42A), centrosomal protein CEP85, leucine-rich 

repeat protein LRRFIP1, nuclear assembly protein NAP1L4, RhoBTB subfamily member 

RHOBTB3, and protein DPCD. Our approach also enables objective identification of CXXX 

motif proteins which are not substrates for probe incorporation (Figure 2a and 2b). For 

example, ubiquitin C-terminal hydrolase L1 (UCHL1), an abundant deubiquitinase 

previously reported to be farnesylated22, was not identified as a substrate for either probe in 

EA.hy926 cells. A UCHL1 C-terminal peptide was also not a substrate for prenylation in 

biochemical assays with any prenyl pyrophosphate (FPP, YnFPP, GGPP or YnGGPP; 

Supplementary Figure 2). Of the 80 prenylated proteins identified here with high confidence, 

64 are shown to be prenylated at endogenous cellular abundance for the first time, without 

the use of disruptive protein overexpression or treatment with a statin (Supplementary Data 

1), providing the most comprehensive set of prenylated proteins for a single cell type 

determined to date. A further putative 3 farnesylated and 6 geranylgeranylated proteins were 

identified for which competition resulted in non-detection of the protein even at the lowest 

concentration of natural isoprenoid (Supplementary Data 1, ‘low confidence’ substrates).

Competition experiments are widely-used in chemical proteomic analyses to differentiate 

between selective labeling and non-specific pull-down (e.g. due to interaction with the 
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affinity resin)17,23,24; however these data do not differentiate between competition at the 

levels of pyrophosphate biosynthesis or transferase recognition. We therefore further probed 

concentration-dependent probe incorporation into farnesylated and geranylgeranylated 

substrates in cells in the absence of competing FOH or GGOH, comparing incorporation in 

cells treated with 1, 2, 5 or 10 µM YnF or YnGG using a 10-plex tandem mass tag (TMT10) 

methodology to enable relative quantification between all concentrations across both probes, 

and against a vehicle (DMSO) control (Supplementary Data 3). A clear probe- and 

concentration-dependent response was observed for known and novel farnesylated or 

geranylgeranylated substrates identified in competition experiments (Supplementary Figure 

5), with strong selectivity for YnF or YnGG for FTase or GGTase-1 substrates, respectively 

(Supplementary Figure 5). These data mirror the biochemical selectivity of the probes, and 

further support transferase-selective incorporation of each probe in cells.

Validation of known and novel substrates was performed by affinity enrichment of labeled 

proteins followed by immunoblot analysis, and mirrored the results obtained in the 

proteomics analysis. Known farnesylated protein HRAS and novel target ULK3 were 

preferentially labeled by YnF, known geranylgeranylated proteins (RHOA, RAB8A and 

RAB22A) preferentially incorporated YnGG (Figure 2c), and labeling was sensitive to 

competition with the relevant natural isoprenoid. Furthermore, ULK3 and CEP85 mutants in 

which the CXXX cysteine was mutated to serine or alanine (CS and CA mutants) were not 

labeled by YnF, confirming that probe modification is dependent on the predicted site of 

prenylation (Figure 2d).

We next confirmed that the probes are effective in a range of different cell types, including 

cervical cancer (HeLa), breast cancer (MCF7) and monocytes (THP1). In each case and for 

each probe labeling could be readily observed, without addition of statin, at concentrations 

from 1 to 10 µM, although with some variations in apparent efficiency of incorporation 

(Supplementary Figure 6). Selectivity towards farnesylated (ULK3) and geranylgeranylated 

(RHOA) substrates was maintained across all cell types, as demonstrated by affinity 

enrichment and immunoblot analyses (Supplementary Figure 7).

YnF and YnGG enable direct detection of prenylation by mass spectrometry

Direct detection of the site of protein lipidation by mass spectrometry is notoriously 

challenging and a general proteome-wide approach has not been reported for protein 

prenylation, which for many substrates is further complicated by a cascade of post-

translational proteolysis and methylation (Figure 1a). Building on our previous 

demonstration of direct identification of protein myristoylation using multifunctional capture 

reagents17,18,25, we employed AzRB, AzRTB and Az3MRB18 (Supplementary Figure 8) 

to the direct analysis of protein prenylation. Each of these reagents harbors an enzyme-

cleavable sequence to enhance release and detection of modified peptides upon protein 

digestion with trypsin, or lysarginase, a thermophilic proteinase which can enhance 

identification of C-terminal peptides26 (Figure 3a). Analysis of the MS/MS spectra of 

identified YnF- and YnGG-modified peptides revealed characteristic C-S bond scission 

marker ions analogous to canonical prenylated peptides (Supplementary Figures 9 and 
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10)27, and cross-validation against orthogonal marker ions from each capture reagent 

enabled robust sequence assignment (Figure 3b).

The 26 distinct prenylated peptides identified in our analysis (Figure 3c, Supplementary 

Data 4) mapped to the C-terminal CXXX motif of one of 18 distinct proteins, including both 

well-established prenylated substrates (e.g. nuclear lamins, Rho, and Ras protein family 

members) and novel prenylated proteins ULK3, DCAF8 and NAP1L4. 12 peptides had 

undergone C-terminal hydrolytic cleavage generating a prenylated C-terminal cysteine, a 

further 4 peptides were cleaved and methylated, and the remaining 10 featured unprocessed 

C-termini (Supplementary Data 4). These findings demonstrate that YnF and YnGG labeling 

is compatible with endogenous post-prenylation processing by Ras-converting enzyme 1 

(RCE1) and Isoprenylcysteine carboxyl methyltransferase (ICMT)28. Interestingly, we also 

found strong evidence for novel C-terminal processing of geranylgeranylated RAB3B, 

RAB3D, and RAB7A, in which the two terminal amino acids of the canonical XCXC motif 

have been removed (Supplementary Figure 10). Taken together, these data provide the first 

example of direct identification of numerous prenylated and processed prenylation sites at 

endogenous abundance, at the whole proteome level.

Chemical proteomics enables proteome-wide quantification of protein prenylation in 
response to prenyl transferase inhibition

As noted above, intense effort has been put into the development of inhibitors of 

prenyltransferases and enzymes involved in biosynthesis or processing steps up- or 

downstream of protein prenylation1,2. However, inconsistent efficacy in clinical trials2 

suggests that the mode of action of PTIs is more complex than initially supposed, and the 

selectivity and impact of these inhibitors on prenylation has not been explored at the whole 

proteome level. We used YnF and YnGG to compare and quantify changes in prenylation in 

response to perturbation by four tool compounds widely used in cell and animal studies: 

FTI-277 (a FTase inhibitor)29 and GGTI-2133 (a GGTase-I inhibitor); the natural product 

Manumycin A (reported to be an inhibitor of FTase)30; and the drug Tipifarnib31, which is 

representative of sub-nM potency FTIs that have entered over 30 clinical trials2. EA.hy926 

cells were labeled with probe in the presence of increasing concentrations of PTI, and 

analyzed and quantified using spike-in SILAC methodology.

Consistent with their known potencies, the FTase inhibitors Tipifarnib and FTI-277 

exhibited low nanomolar and micromolar mean in-cell IC50 responses, respectively (Figure 

4a and 4b). Quantitative chemical proteomics enabled dose-response relationships to be 

determined for each individual FTase substrate in the cell, revealing a wide range in 

estimated IC50. Notably, all novel farnesylated proteins identified above responded to 

farnesyltransferase inhibitors, further validating them as bona fide FTase substrates (Figure 

4b, Supplementary Data 1 and 5), and immunoblot analysis of HRAS, ULK3 and DCAF8 

confirmed that YnF labeling of all three proteins is sensitive to Tipifarnib (Supplementary 

Figure 11). In contrast, there was no evidence that Manumycin A impacted farnesylation up 

to the highest concentration tested (10 µM, Figure 4c, Supplementary Data 5); acute cell 

toxicity was evident above this concentration (data not shown), strongly suggesting that 

phenotypes previously observed with this compound are unlikely to be directly related to 
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prenylation and may be due to off-target effects and/or cytotoxicity. YnGG was similarly 

used to interrogate the effect of GGTase-1 inhibitor GGTI-2133 (Figure 4d, Supplementary 

Data 6), providing an in-cell dose-response for 14 known geranylgeranylated proteins.

YnF and YnGG describe dynamic response of prenylation to inhibition in living cells

Some proteins are thought to be substrates for both FTase and GGTase-1 under physiological 

conditions, or to switch to GGTase-1 upon inhibition of FTase1 (Figure 5a). We used our 

two-probe system to explore the balance between farnesylation and geranylgeranylation in 

the unperturbed cellular environment, and in response to FTI treatment. Spiking lysates with 

a reference sample labeled with R10K8 and both prenyl probes enabled relative 

quantification of probe preference, confirming strong preferential incorporation of YnF or 

YnGG into farnesylated and geranylgeranylated substrates, respectively (Figure 5b, 

Supplementary Figure 12). Interestingly, RRAS2 was found to be prenylated by both probes, 

consistent with the observation that recombinant RRAS2 is a FTase and GGTase-1 substrate 

in vitro32.

Having established a method to quantify relative levels of probe incorporation we 

interrogated the dynamics of prenylation in response to PTI treatment. The failure in the 

clinic of FTIs as anticancer agents has been attributed in part to “rescue prenylation” by 

GGTase-1 of substrates such as KRAS and NRAS1,2. However, the prevalence of alternative 

prenylation of proteins other than the Ras isoforms remains largely unexplored, despite its 

potentially important impact on the clinical efficacy and tolerability of FTIs. We compared 

proteome-wide changes in the ratio of YnF/YnGG incorporation to inhibition of YnF 

labeling in response to treatment with the clinically relevant FTI Tipifarnib over a range of 

inhibitor concentrations (Figure 5c, Supplementary Figure 12, Supplementary Data 7). 

KRAS, NRAS and RRAS2 displayed robust dose-dependent increases in YnGG labeling, 

with a maximum effect evident at 10, 5 and 1 nM Tipifarnib, respectively. The increase in 

YnGG incorporation mirrored the dose-dependent decrease in YnF labeling over the same 

concentration range (Figure 5c), indicating switch-like behavior for these three proteins on 

treatment with an FTI. The previously identified robust response of RRAS2 YnGG labeling 

to GGTI-2133 (Figure 4d) further suggests that this protein is prenylated by both FTase and 

GGTase-1 in cells, and it appears that inhibition of FTase can shift this balance towards 

geranylgeranylation. Remarkably, no other farnesylated protein showed a significant or 

robust response to inhibition (Supplementary Figure 12, Supplementary Data 7), showing 

for the first time that rescue prenylation is restricted to a small set of specific proteins at the 

whole proteome level.

YnGG quantifies reduced geranylgeranylation of a specific subset of Rab proteins in a 
REP-1 knock-out model of Choroideremia

Choroideremia is an X-linked genetic disease caused by loss-of-function mutations in the 

CHM gene, which encodes Rab Escort Protein 1 (REP-1)4,33. Loss of REP-1 function 

affects approximately 1 in 50,000 people, and causes degeneration of the choroid, retinal 

pigment epithelium and photoreceptors, leading to gradual loss of vision in affected 

patients34. REP-2 is apparently unable to compensate for loss of REP-1 in the eye35, and 

ongoing gene therapy trials aim to prevent loss of vision by adding functional CHM 
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cDNA36,37. REP proteins are required for prenylation by RabGGTase, and loss of REP-1 

results in accumulation of non-prenylated Rab proteins (Figure 6a); however, the 

quantitative impact on Rab protein prenylation at the whole proteome level in a disease-

relevant model remains unknown.

To interrogate which Rab substrates are most dependent on REP-1 for efficient prenylation, 

we applied YnGG to quantify differences in Rab geranylgeranylation levels in mouse 

embryonic fibroblasts (MEFs) derived from the conditional mouse Rep-1 knock-out model 

of Choroideremia38. Note that here as elsewhere, by convention gene/protein names are in 

lowercase for mouse (e.g. Rep-1), and uppercase for human (REP-1). Rep-1 knock-out 

(FLOX TM) or control (FLOX) MEFs were incubated with YnGG (10 µM, 24 hours), the 

resultant lysate was spiked with a heavy standard generated from MEF cell line NIH 3T3 

labeled with both R10K8 and YnGG, and processed for quantitative proteomic analysis as 

described above to generate relative quantification of changes in prenylation across 29 Rab 

proteins in Rep-1 knockout cells vs. wild type control (Figure 6b, Supplementary Figure 13, 

Supplementary Data 8). The prenylation of 10 Rab proteins was significantly reduced upon 

Rep-1 knock-out, with prenylation of Rab12 and 27b reduced to 10% and 24%, respectively, 

of the level observed in Rep-1 functional cells. As expected, YnGG incorporation into 

GGTase-1 substrates was largely unaffected by Rep-1 knock-out (Supplementary Figure 13). 

Protein levels in whole cell lysates were further quantified by proteomics (Supplementary 

Figure 14), demonstrating no significant changes in the expression of Rabs or CXXX 

substrate proteins, including Rab7a, 5c and 21, each of which showed significantly reduced 

levels of prenylation in Rep-1 knockout cells. Immunoblot analysis of Rab22a, Rab7 and a 

GGTase-1 substrate (RhoA) recapitulated the results obtained through quantitative 

proteomics, confirming that only Rab7 YnGG labeling is affected by Rep-1 knockout, with 

no changes in overall expression (Figure 6c and Supplementary Figure 13).

Discussion

In this study we present a methodological approach to identify and quantify protein 

prenylation using a combination of alkyne-tagged prenylation probes and quantitative 

proteomics. Novel prenyl probes YnF and YnGG show preferential incorporation into 

farnesylated and geranylgeranylated proteins, respectively, maintaining selectivity for each 

transferase by mimicking overall chain length and hydrophobicity. Previous studies using 

prenyl analogues which depart significantly from the native lipid structure (for example by 

direct integration of a fluorophore or branching in the isoprenoid chain) have variously 

reported negligible13 or significant39 impact on the biochemical efficiency of transfer to 

specific peptide or protein substrates, although these studies did not explore incorporation in 

a cellular setting. Here we have presented multiple lines of evidence supporting transferase 

selectivity and substrate fidelity of YnF and YnGG, including enzyme kinetics, whole-

proteome competition and concentration-dependent incorporation in cells for known and 

predicted farnesylated or geranylgeranylated proteins, cross-confirmation for known and 

novel substrates by immunoblot analyses in a range of cell lines, dose-dependent responses 

to selective FTase and GGTase-1 inhibitors including recapitulation of known prenyl switch 

responses, and direct mass spectrometric detection of specific probe incorporation into sites 
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of prenylation, compatible with downstream processing. Taken together, these data strongly 

support YnF and YnGG as useful probes for exploring protein prenylation in cells.

The large proportion of substrates detected uniquely by either YnF or YnGG highlights the 

advantages of a two-probe system to maximize discovery of the prenylated proteome and 

provides substantially greater coverage than studies using previous probes, which vary probe 

chain length, introduce hydrophilic linkers, and rely on pretreatment with statins in order to 

achieve probe incorporation (see Supplementary Table 1 for a comparison with previous 

probes and studies). These probes cause no overt cytotoxicity and the degree of 

incorporation is probably modest as a proportion of total prenylated protein, which is likely 

to minimize phenotypic effects of probe incorporation; nevertheless, all metabolic labeling 

approaches involve a perturbation of the biological system. Several of the seven novel 

farnesylated proteins identified in this study are known to have important biological roles. 

CEP85 plays a role in controlling centriole duplication40, whilst ULK3 regulates cytokinetic 

abscission41, autophagy and Gli signaling42. LRRFIP1, a cytosolic nucleic acid binding 

protein, is a key mediator of Wnt/β-catenin signalling43. Prenylation data compare 

favorably with bioinformatic predictions using PrePS44, a widely used predictor of non-Rab 

prenylation motifs, with the majority of experimentally determined substrates predicted to be 

prenylated by at least one of the prenyl transferase enzymes (Supplementary Data 1). 

Conversely, CXXX proteins that did not respond to competition are not predicted substrates, 

nor do they respond to inhibition by any PTI tested, further suggesting that these proteins 

(including previously hypothesized substrates UCHL1 and annexin ANXA1) are not 

prenylated45.

The present study is the first proteome-scale analysis to identify a large number of 

prenylated and processed peptides from substrates at endogenous abundance (i.e. without 

substrate overexpression), and the first to demonstrate the compatibility of prenyl probes 

with the cascade of post-prenylation processing in cells. Furthermore, the novel discovery of 

C-terminal processing of Rab proteins which normally carry a double geranylgeranyl CXCX 

motif (RAB3B, RAB3D, and RAB7A) may indicate the existence of a previously unknown 

mechanism to control prenylation stoichiometry of Rab family members, a phenomenon 

which merits further investigation. Identification of prenylated peptides is technically 

challenging for multiple reasons; the high frequency of Arg/Lys-rich stretches proximal to 

the prenylation site coupled with post-prenylation processing results in short peptides which 

have sub-optimal chromatographic separation and can be difficult to assign, and this is 

further compounded by the generally poor ionization of C-terminal tryptic peptides46. 

Identification of an even greater range of modified peptides might be achieved in future 

through adaptation of the analytical approach to enhance detection of short C-terminal 

tryptic peptides, partially addressed here by the application of lysarginase. We note that 

discovery of intact CXXX peptides may be due to detection of substrates prior to cleavage or 

native retention of the XXX motif, since recent studies demonstrate that not all prenylated 

proteins are subject to quantitative processing47. Recent reports using protein 

overexpression and peptide biochemical assays suggest that CXXXX motif proteins may 

also be substrates for FTase48; we have undertaken careful and detailed inspection of our 

data in search of CXXXX motif proteins, including both proteomic analyses and direct site 
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identification, but could not find evidence for this non-canonical prenylation motif in this 

mammalian cell line.

Quantitative analysis of prenylation in response to PTIs demonstrates a range of sensitivity 

across substrates, which may correspond to differential efficiency of prenylation at each 

substrate in the complex environment of the cell. Similar nuances have been observed in 
vitro using peptide substrates (e.g. Tipifarnib IC50 of 0.86 nM and 7.9 nM for farnesylation 

of peptide substrates based on lamin B and KRasB, respectively31), and may influence the 

mode of action of these compounds in a given disease context. Probes selective towards each 

transferase enabled the first quantitative whole-proteome analysis of the phenomenon of 

dynamic switching of FTase substrates to prenylation by GGTase-1 in response to FTI 

treatment, uncovering the novel and intriguing finding that the large majority of substrates 

show no change in geranylgeranylation at concentrations of Tipifarnib sufficient to eliminate 

FTase activity. The switching propensity of a given protein cannot be reliably predicted 

based on sequence, and further studies will be required to understand the regulatory 

mechanisms leading to this surprising result. Whilst FTI-277 and particularly Tipifarnib 

were confirmed as potent tool inhibitors with excellent selectivity at the whole proteome 

level, our data provide compelling system-level evidence that any effects on prenylation 

observed with Manumycin A are likely to be due to off-target cytotoxic effects, leading to 

the conclusion that this compound is ineffective as a chemical probe. Although Manumycin 

A is a weak FTI (IC50 5 µM) and less widely applied than FTI-277 or Tipifarnib, it has been 

used as a tool inhibitor in over 100 previously published studies; we suggest that previous 

conclusions drawn using Manumycin A as an FTI should be treated with caution, unless 

cross-validated with complementary approaches or more selective tool compounds.

In summary, the novel probes YnF and YnGG provide a unique window on the prenylated 

proteome, providing enhanced coverage and selectivity in metabolically active model 

systems, and complementing in vitro ‘re-prenylation’ approaches13. In combination with 

optimized capture reagents and quantitative proteomic workflows, this method offers a new 

perspective on prenylation dynamics, prenylated protein processing, and inhibitor selectivity, 

and will be useful for identifying potential novel therapeutic uses for PTIs and for 

understanding the role and regulation of prenylation in health and disease.

Methods

Full materials and methods and details for the synthesis and characterization of all 

compounds are provided in Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table of content summary

Chemical probes YnF and YnGG in combination with quantitative chemical proteomics 

technologies enable global analysis of protein prenylation, identification of prenylated 

peptides, interrogation of prenylation dynamics in response to pharmacological inhibition 

of prenyl transferase enzymes and quantification of defective Rab prenylation in a model 

of the retinal degenerative disease Choroideremia.
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Figure 1. Global labeling of prenylated proteins using novel alkyne-tagged isoprenoid analogues.
(a) Prenylation, the covalent attachment of a farnesyl or geranylgeranyl isoprenoid to a 

cysteine near the protein C-terminus, is catalyzed by FTase or GGTase-1 on proteins bearing 

a C-terminal CXXX motif (C = Cys; X = any amino acid), or by RabGGTase at the C-

terminus of Rab proteins. Some CXXX proteins undergo further processing by RCE-1 

(cleavage of the C-terminal -XXX residues) and ICMT (carboxyl methylation). (b) 

Schematic of metabolic labeling workflow by novel alkyne-tagged prenyl probes YnF and 

YnGG. Probe-labeled proteins can be processed by Cu(I)-catalyzed click chemistry to attach 

capture reagents with various functionality such as affinity tags or fluorophores to enable 
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enrichment for mass spectrometric analysis or (c) visualization by in-gel fluorescence in 

EA.hy926 cells.
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Figure 2. Prenylated protein discovery in EA.hy926 cells using prenyl probes YnF and YnGG.
(a) YnF and (b) YnGG labeling of prenylated CXXX substrates (Known F, Novel F and 

Known GG) and Rab proteins show dose-dependent sensitivity to competition with natural 

isoprenoid substrates farnesol (FOH) or geranylgeraniol (GGOH), quantified by spike-in 

SILAC. Proteins lacking a CXXX motif (No motif) and non-substrate CXXX proteins 

(Other CXXX) do not respond to isoprenoid competition. Kruskal-Wallis test with Dunn’s 

post-test (***p<0.01). Box and whisker plots represent median values (center lines) and 25th 

and 75th percentiles (box limits) with Tukey whiskers. (c) Immunoblot analysis validates 
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selective labeling of known (HRAS) and novel (ULK3) farnesylated proteins and 

geranylgeranylated proteins (RHOA, RAB8A and RAB22A). (d) Transient expression of 

wild-type (WT) or cysteine mutant (CA and CS) proteins validate dependence of YnF-

labeling on the C-terminal cysteine of novel farnesylated CXXX motif substrates ULK3 and 

CEP85. PD, pulldown; SN, supernatant; TL, total lysate. Note that addition of capture 

reagent AzTB alters the electrophoretic mobility of some probe-labeled substrates, 

accounting for the double band pattern apparent in some TL blots.
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Figure 3. Direct detection of post-translational processing of prenylated peptides by LC-MS/MS.
(a) Enzyme-cleavable capture reagents allow release of YnF- and YnGG-labelled peptides 

after enrichment on NeutrAvidin beads, and subsequent identification by LC-MS/MS 

analysis. Note: Upon digest with lysarginase the arginine linker residue remains bound on 

the beads. (b) MS/MS spectrum of cleaved and methylated C-terminal tryptic peptide 

belonging to prelamin-A/C (LMNA) in EA.hy926 cells, modified by YnF and capture 

reagent AzRB. (c) List of proteins for which modified peptides were detected in EA.hy926 

cells, grouped according to their apparent post-prenylation processing. Modification and 

Storck et al. Page 19

Nat Chem. Author manuscript; available in PMC 2019 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



number of unique peptides detected for each protein is indicated in brackets (Supplementary 

Data 3). *Peptides identified for proteins under more than one grouping.
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Figure 4. Global in-cell characterization of prenyl transferase inhibitors by quantitative chemical 
proteomics in EA.hy926 cells.
Dose-response curves for YnF labeling of (a) all farnesylated substrates and (b) novel 

farnesylated substrates, in response to treatment with FTase inhibitors FTI-277 or Tipifarnib. 

(c) YnF-labeling of selected known and novel farnesylated substrates is insensitive to 

treatment with Manumycin A. (d) Dose-response curves of YnGG labeling in response to 

treatment with GGTase-1 inhibitor GGTI-2133. NI, no inhibitor. All data sets are presented 

as mean (n=3); error bars in (b) and (c) represent standard deviation. For visual clarity 
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individual data points and error bars were omitted in (a) and (d); this data is available in 

Supplementary Data 5 and 6.
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Figure 5. Interrogation of alternative prenylation in response to PTI treatment in EA.hy926 cells.
(a) Upon pharmacological inhibition of FTase some farnesylated substrate proteins undergo 

alternative prenylation by GGTase-1 and are thought to retain biological function. (b) 

CXXX substrates that are farnesylated under physiological conditions, including DNAJA1, 

KRAS and NRAS show preferential incorporation of YnF, whereas geranylgeranylated 

CXXX substrates and Rab proteins preferentially incorporate YnGG. RRAS2, which is a 

substrate of both FTase and GGTase-1, shows a balanced probe preference. Data are 

presented mean (n=3) ± standard deviation. (c) Upon inhibition of FTase by Tipifarnib 

treatment, only KRAS, NRAS and RRAS2, but not DNAJA1, show a sustained dose-

dependent increase in YnGG labeling, concomitant with loss of YnF labeling. Data points 

represent mean (n=3) ± standard deviation.
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Figure 6. Rep-1 knockout reduces geranylgeranylation of a subset of Rab proteins in mouse 
embryonic fibroblasts.
(a) Schematic of REP-1/2 mediated geranylgeranylation of Rab proteins by RabGGTase. 

Loss of REP-1 is only partially rescued by REP-2, resulting in accumulation of unprenylated 

Rab substrates. (b) Relative quantification of YnGG labeling in Rep-1 knockout mouse 

fibroblasts (FLOX TM) versus control (FLOX) shows that a sub-set of Rab proteins display 

reduced prenylation upon Rep-1 loss. Data are presented as mean (n=3) ± standard 

deviation. ANOVA analysis (Permutation-based FDR=1%, S0=1); N.S., not significant. (c) 

Immunoblot analysis confirms that loss of Rep 1 affects geranylgeranylation of Rab7, but 

not Rab22a, without significantly altering overall expression. Note that convention has been 

followed whereby mouse genes are given lower case names (e.g. Rep), whilst human 

proteins are in capitals (REP).
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