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Abstract: Massive amounts of industrial and agricultural water around the world are polluted by
various types of contaminants that harm the environment and affect human health. Alginic acid is a
very versatile green polymer used for heavy metal adsorption due to its availability, biocompatibility,
low cost, and non-toxic characteristics. The aim of this paper was to prepare new low-cost hybrid
composite beads using sodium alginate with treated montmorillonite and kaolin for the adsorption of
copper (Cu) cations. Modified and unmodified clays were investigated by studying their morphology
and elemental composition, functional groups, and mean particle size and particle size distribution.
The characterization of alginate/clay hybrid composite beads was carried out by evaluating surface
morphology (by scanning electron microscopy, SEM), crystallinity (by X-ray diffraction, XRD), and
point of zero charge (pHpzc)(Zeta Potential Analyzer). Batch adsorption experiments of alginate/clay
hybrid composite beads investigated the effect of metal concentration in the range of 1–4 mg L−1 on
Cu(II) removal, adsorption kinetic for maximum 240 min, and Langmuir and Freundlich adsorption
isotherms by using atomic absorption spectrometry. The pseudo-second-order kinetic model best
fitted the adsorption for alginate/montmorillonite beads (R2 = 0.994), while the diffusion process
was predominant for montmorillonite/kaolin beads (R2 = 0.985). The alginate/clay hybrid materials
best fitted the Langmuir isotherm model.

Keywords: activated clay; alginate; copper removal; size distribution; absorption kinetic;
absorption isotherm

1. Introduction

Massive amounts of industrial and agricultural water around the world are polluted
by various types of contaminants that harm the environment and affect human health.
Removing contaminants from effluents with sustainable adsorbent materials made from
abundant and inexpensive cellulose, alginate, starch, chitosan is a feasible approach to deal
with this problem [1–7]. These polysaccharides are advantageous for the adsorption of
heavy metals from aqueous solutions due to their low cost, biodegradability, and reduced
carbon footprint and environmental impact.

Among these molecules, alginic acid is a very versatile green polymer used for heavy
metal adsorption due to its availability, biocompatibility, low cost, and non-toxic character-
istics. Alginates are anionic polysaccharides obtained from seaweed, consisting of a linear
chain of (1–4) β-D-mannuronic acid (M) and residues of α-L-guluronic acid (G) arranged in
irregular blocks, having applications in interdisciplinary fields such as medicine [8], drug
delivery [9], food [10], or heavy metal ion removal [11]. Bacterial alginate was investigated
for copper removal [12]. Data showed that 1 g of alginate can immobilize 1.90 mmol L−1 of
copper. Other authors reported that a solution with a concentration of 1 g L−1 acidified
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alginic acid was able to sequester 54.11% of Cu(II) [5]. Unfortunately, alginic acid in the
adsorption process has not an adequate mechanical stability, and usually crosslinking and
reinforcement with inorganic materials are applied. Binary composite beads based on
alginate and cellulose [13] or starch and nanoclay [14] and ternary green composites con-
taining sodium alginate and chitosan and glass bubble [4] are examples of environmentally
friendly adsorbents fabricated to remove contaminants from aqueous solutions.

Clay is a mixture of aluminosilicates that contains silicon, aluminum, manganese,
titanium, potassium, calcium, and sodium [15–17]. This lamellar structure, with low
cost and worldwide distribution, imparts to clays a great ability to adsorb contaminants,
helping with their removal [18]. Montmorillonite and kaolin, the most representative of
clays, are abundant in nature, low cost, not toxic, water-absorbing and possess an excellent
chemical reactivity with respect to an alginate matrix [19–21]. Sodium montmorillonite
(MTM) is composed of one aluminum octahedral layer between two silicate tetrahedral
layers [22]. Kaolin generally consists of aluminum silicate with the addition of magnesium
and calcium silicate [23,24]. The lamellar structure forms large specific surfaces and
provides the possibility of adsorption of inorganic ions and organic molecules. However,
the heavy metal adsorption capability of kaolin is low due to its low cation exchange
capacity (15–75 mmol/kg) [17,21,25]. To avoid the separation of clay in the adsorption
process, it is incorporated as a filler into alginate/starch compositions to remove the copper
cation [14] or cellulose hydrogels [22]. There are known hybrid clay/alginate composites
for the removal of copper and 4-nitrophenol pollutant from water [26], total organic acid
(TOA) anions as heat-stable salts (HSS) and heavy metal ions (chromium and iron) from the
methyl diethanolamine (MDEA) solvent [27] and paint [28], and pentachlorophenol [18]
and 2,4-dichlorophenol [29] from aqueous media. The improvement of the affinity of clays
for various contaminants is achieved by the addition of chemicals such as sulfuric acid [30]
and cationic surfactants [31] or by physical treatments. The acid treatment of clay is a
preferred method as it increases the surface contact area, maintaining the silanol groups
by augmenting the number of Brönsted sites. It was found that acid-activated natural red
clay from Tunisia reached a maximum adsorption capacity of 23.59 mg g−1 of Cd ions [18].
Besides for the removal of contaminants, the acid treatment of clays was employed for the
decolorization of vegetable, animal, and mineral oils [30] and for the preparation of bio-
based lubricants [32]. In this context, our purpose was to develop new low-cost adsorbents
based on clay powders and Na alginate, as a renewable and biodegradable biopolymer, for
the adsorption of pollutants present in water.

Copper (Cu) is a heavy metal occurring in geological deposits, sites of volcanic activity,
and following weathering and erosion of rocks and soils [33]. Anthropogenic sources of
copper include mining activities, agriculture, metal and electrical manufacturing [34], as
well as pesticides and building industry. A considerable source of copper is represented
by drinking water due to Cu leaching from plumbing [34]. Copper concentrations that
exceed 1 ppb can be toxic for human and aquatic organisms and ecosystems [35]. The
copper concentration in electroless plating wastewater must not exceed 0.5 ppb [36]. Ac-
cording to the EPA, the maximum level of copper ions in drinking water should not exceed
1.3 mg L−1 [37]. However, Cu is essential for human metabolism, being responsible for
the creation of hemoglobin and hemocyanin and oxygen-managing pigments in the blood
of vertebrates and shellfish, respectively. At a concentration ranging from 1 to 10 µg L−1,
most of the aquatic species are sensitive to the Cu(II) [38]. This highlights the need for
novel materials for the removal of low levels of Cu. Precipitation [39,40], chelation [41],
and electrodeposition methods [42] are successful for Cu removal from wastewater.

The objectives of this study were: (i) to improve by chemical treatment the affinity
of montmorillonite and kaolin for copper cations; (ii) to reinforce sodium alginate with
modified clays, thus obtaining new hybrid composite materials; (iii) to use the new hy-
brid composite materials as potential adsorbents for removing Cu2+ ions from synthetic
waters by batch adsorption. We hypothesized that the carboxyl (–COO–) and hydroxyl
(–OH) functional groups present in alginate and the reactive –OH groups present in min-
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eral clays would act as adsorption sites, facilitating the successful removal of Cu2+ from
synthetic water.

2. Materials and Methods
2.1. Materials

Sodium alginate powder (BioChemica, Billingham, UK), (C6H7O6Na)n, 90.8% pu-
rity, characterized by a molecular mass in the range of 10,000–600,000 g/mol, with max.
Pb content of 0.002%, mass loss at drying of max. 15%, and viscosity (1% at 20 ◦C) of
350–550 mPa·s was used as a polymeric matrix. We prepared a 1% (w/v) sodium alginate
solution by dissolving sodium alginate into 100 mL of distilled water at a temperature of
90 ◦C, stirring at 600 rpm for 2 h.

Montmorillonite and kaolin clays were acquired from Siceram S.A. (Sighisoara, Roma-
nia). In order to increase the cationic exchange capacity, the starting clays were modified
according to procedure described by Taleb et al. [43] with little modifications. Shortly,
50 g of each clay type (montmorillonite and kaolin) were mixed with 500 mL of 2.5 M
HCl at room temperature for 2 h, stirring at a rate of 500 rpm. Afterwards, the mixture
was filtered and washed several times using distilled water and dried in an oven at a
temperature of 90 ◦C for 6 h. Then, 20 g from the dried clay was put into 500 mL of 1 M
NaCl solution and stirred at 500 rpm for 6 h at room temperature. The suspension was
filtered and washed several times with distilled water to remove the Cl− ions (tested with
0.1 M AgNO3 solution). Finally, the samples were dried in an oven at a temperature of
90 ◦C for 6 h and ground before use. A schematic flow chart illustrating the steps for the
chemical modification of clays is shown in Figure 1. Calcium chloride (CaCl2 × 2H2O),
analytical-grade, was used as the crosslinking agent.
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Figure 1. Flow chart showing the chemical treatments of montmorillonite and kaolin, respectively.

2.2. Preparation of Calcium Alginate/Clay Hybrid Composite Beads

Modified montmorillonite and kaolin, respectively, 2% w/v, were added into the
calcium alginate solution under magnetic agitation at a temperature of 90 ◦C, stirring
at 600 rpm for 1 h. In order to eliminate the air bubbles, the obtained solution was
sonicated in an ultrasonic bath for 30 min. Calcium alginate/montmorillonite and calcium
alginate/kaolin hybrid composite beads were obtained by pouring the previously obtained
solutions dropwise into a 1 M CaCl2 solution under stirring at 200 rpm, by means of a
peristaltic pump. The obtained beads were collected and washed with distilled water and
dried in an oven at a temperature of 30 ◦C for 72 h. Calcium alginate microbeads were
prepared in the same conditions, as a reference material. Weight reductions about 7 times
and 10 times for alginate/clays beads and calcium alginate beads, respectively, compared
with the wet beads, were recorded after drying.

2.3. Structural Characterization

Modified and unmodified clays were investigated by studying their morphology and
elemental composition, functional groups, and particle size distribution.

The characterization of alginate/clay hybrid composite beads was carried out by evalu-
ating their surface morphology, chemical structure, mean size and particle size distribution,
and crystallinity.
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A scanning electron microscopy (SEM) with field emission using a QUANTA 450 FEG
model (FEI, Eindhoven, The Netherlands) coupled with an energy dispersive X-Ray analy-
sis detector (EDX) and a gun at a 1.2 nm resolution, with a resolution of 133 eV was used
to characterize the morphology of the materials. Microscopy analysis was performed in
low-vacuum mode with a vacuum of 50 Pa. Attenuated total reflectance–Fourier transform
infrared spectroscopy (ATR–FT-IR) was performed with an Interspec 200-X Spectropho-
tometer (Interspectrum, Tartumaa, Estonia) in the spectral region of 4000–750 cm−1. Twenty
scans were collected for each sample before and after Cu ions adsorption at a spectral
resolution of 2 cm−1. Point of zero charge (pHpzc) measurements for clays particles in
suspension were carried out by help of a Zetasizer Nano (Malvern Instruments, Malvern,
UK), at the pH values ranging from 2 to 13 adjusted with 1 mM NaCl or 1 mM HCl.
The pHpzc value was determined from a plot of initial pH versus the pH of the samples.
X-ray diffraction (XRD) analysis was performed using a PANalytical X’Pert PRO MPD
spectrometer (Almelo, The Netherlands) with a Cu anode.

2.4. Batch Adsorption Experiments

The batch adsorption experiments of alginate/clay hybrid composite beads were
performed to evaluate the Cu(II)removal, adsorption kinetics for maximum 240 min, and
Langmuir and Freundlich adsorption isotherms with the help of ContrAA 800 atomic
absorption spectrometer (Analytik Jena, Jena, Germany) with the flame technique, using
solutions with metal concentrations in the range of 1–4 mg L−1. A solution of copper
in HNO3 at a concentration of 1000 mg L−1, the ICP multielement standard solution IV
(Merck, KGaA, Darmstadt, Germany), was used as the calibration standard.

Cu(II) adsorption and the equilibrium adsorption capacity were calculated using
Equations (1) and (2).

Removal Efficiency (%) =
(C0 − Ce)

C0
× 100 (1)

where C0 is the initial adsorbate concentration (mg L−1)and Ce is the adsorbate concentra-
tion (mg L−1) at the liquid–phase equilibrium.

The equilibrium adsorption capacity of the hybrid composite beads (qe) was calculated
using Equation (2):

qe

(
mg × g−1

)
=

(C0 − Ce)× V
m

(2)

where V represents the volume of adsorbate (L), and m is the mass of the adsorbent used (g).

3. Results and Discussion
3.1. Characterization of Modified Clays

The surface morphology of the clays before and after treatment with HCl and NaCl
was studied by SEM analysis and is illustrated in Figure 2A–F.

From the images presented in Figure 2A,B, compact aggregates of clumped particles in
the µm size , with lamellar surfaces are visible; kaolin showed surfaces smaller than those
of montmorillonite. A similar structure with aggregates was observed on the surface of
hydrous aluminum silicate clay mineraloid, an adsorbent used for the removal of Ba(II) [44].
After chemical treatment, the fragmented clays particles with interlamellar spacing and
reduced surfaces (smaller surfaces in the case of kaolin) could be seen (Figure 2C,D). The
measuring of pore size at the surface revealed a wide size distribution between 1237 µm
and 4835 µm in the case of treated montmorillonite (Figure 2E) and between 362 µm and
1803 µm in the case of treated kaolin (Figure 2F). The lamellar structure and the presence
of pores in the treated clays formed large specific surfaces, making ion adsorption possible.
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Figure 2. Scanning optical microscope (SEM) images of (A) untreated montmorillonite 1200×;
(B) untreated kaolin 1200×; (C) treated montmorillonite 1200×; (D) treated kaolin 1200×; (E) treated
montmorillonite 2400×; (F) treated kaolin 5000×. EDS detector with Silicon Drift (SDD) technology,
EDAX Octane Plus.

Figure 3A–D shows the intensity of chemical elements in treated montmorillonite and
kaolin evaluated by X-Ray energy-dispersive spectrometry (EDS).
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Table 1 shows the elemental composition of untreated and treated clays.
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Table 1. Elemental composition (weight %) of untreated montmorillonite, treated montmorillonite, untreated kaolin, and
treated kaolin.

Element Untreated
Montmorillonite Untreated Kaolin Treated

Montmorillonite Treated Kaolin

Carbon (C) 12.45 N.D. N.D. 59.42
Oxygen (O) 48.84 60.15 52.62 N.D.

Natrium (Na) N.D. N.D. 1.19 0.40
Magnesium (Mg) 1.53 0.44 1.60 0.53
Aluminum (Al) 8.08 15.83 10.20 18.57

Silicon (Si) 16.05 21.81 27.89 19.96
Phosphorus (P) N.D. 0.03 N.D. 0.04
Potassium (K) 2.60 1.03 2.36 0.46
Calcium (Ca) 4.61 N.D. N.D. N.D.
Titanium (Ti) 0.66 0.17 0.52 0.14

Iron (Fe) 4.29 0.55 3.64 0.48

N.D., nondetectable.

Data in Table 1 show the presence of Si, Al, Mg, K, Ti, and Fe chemical elements in the
structure of the two types of clays. These clays consist of two tetrahedral [MO4]4− layers
in which M is Si4+, Al3+, or Fe3+ interconnected by an octahedral layer in which the main
cations are Al3+, Fe3+, Mg2+, and Fe2+. Na is found in the structure of the treated clays
(1.19% in the case of montmorillonite and 0.4% in the case of kaolin).

The size distribution of the clay particles versus the relative intensity of light scattered
by the particles is shown in Figure 4, and the intensity-weighted mean diameter (Z-Average)
and polydispersity index (PdI), as a measure of the broadness of the size distribution and
the size of the peaks, are presented in Table 2.

Materials 2021, 14, x FOR PEER REVIEW 7 of 17 
 

 

Table 1. Elemental composition (weight %) of untreated montmorillonite, treated montmorillonite, 

untreated kaolin, and treated kaolin. 

Element 
Untreated  

Montmorillonite 
Untreated Kaolin 

Treated  

Montmorillonite 
Treated Kaolin 

Carbon (C) 12.45 N.D. N.D. 59.42 

Oxygen (O) 48.84 60.15 52.62 N.D. 

Natrium (Na) N.D. N.D. 1.19 0.40 

Magnesium (Mg) 1.53 0.44 1.60 0.53 

Aluminum (Al) 8.08 15.83 10.20 18.57 

Silicon (Si) 16.05 21.81 27.89 19.96 

Phosphorus (P) N.D. 0.03 N.D. 0.04 

Potassium (K) 2.60 1.03 2.36 0.46 

Calcium (Ca) 4.61 N.D. N.D. N.D. 

Titanium (Ti) 0.66 0.17 0.52 0.14 

Iron (Fe) 4.29 0.55 3.64 0.48 

N.D., nondetectable. 

Data in Table 1 show the presence of Si, Al, Mg, K, Ti, and Fe chemical elements in 

the structure of the two types of clays. These clays consist of two tetrahedral [MO4]4− layers 

in which M is Si4+, Al3+, or Fe3+ interconnected by an octahedral layer in which the main 

cations are Al3+, Fe3+, Mg2+, and Fe2+. Na is found in the structure of the treated clays (1.19% 

in the case of montmorillonite and 0.4% in the case of kaolin). 

The size distribution of the clay particles versus the relative intensity of light scat-

tered by the particles is shown in Figure 4, and the intensity-weighted mean diameter (Z-

Average) and polydispersity index (PdI), as a measure of the broadness of the size distri-

bution and the size of the peaks, are presented in Table 2. 

 

Figure 4. Size distribution of the treated clays by intensity. Test conditions: temperature 25 °C, dis-

persant solution 1 mM NaCl, equilibrium time 120 s. 

Table 2. Particle size and polydispersity index of the treated clays. 

Clay Z-Average (nm) PdI 
Size for Peak 1 

(nm) 

Size for Peak 2 

(nm) 

Treated montmorillonite  899.5 ± 4.738 0.697 ± 0.33 515.1 ± 104 71.15 ± 20 

Treated kaolin  667 ± 13.08 0.614 ± 0.054 369.0 ± 33.8 - 

As shown in Table 2, the kaolin particles had smaller size than the montmorillonite 

particles, and all samples were polydispersed. These characteristics, correlated with the 

morphology determined by SEM, should be beneficial for the adsorption of pollutants 

from water. 

The FTIR spectra of the original and treated clays are shown in Figure 5. 

Figure 4. Size distribution of the treated clays by intensity. Test conditions: temperature 25 ◦C,
dispersant solution 1 mM NaCl, equilibrium time 120 s.

Table 2. Particle size and polydispersity index of the treated clays.

Clay Z-Average (nm) PdI Size for Peak 1 (nm) Size for Peak 2 (nm)

Treated
montmorillonite 899.5 ± 4.738 0.697 ± 0.33 515.1 ± 104 71.15 ± 20

Treated kaolin 667 ± 13.08 0.614 ± 0.054 369.0 ± 33.8 -

As shown in Table 2, the kaolin particles had smaller size than the montmorillonite
particles, and all samples were polydispersed. These characteristics, correlated with the
morphology determined by SEM, should be beneficial for the adsorption of pollutants
from water.

The FTIR spectra of the original and treated clays are shown in Figure 5.
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Figure 5. FT-IR spectra of (A) montmorillonite and (B) kaolin, modified and unmodified.

All spectra exhibited a main band located at 1035 cm−1, attributed to the Si–O stretch-
ing of montmorillonite. The band located about 915 cm−1 was ascribed to the presence of
Al2OH species that are characteristic of dioctahedral smectites [36], while the band located
at 790 cm−1 was attributed to the Si2OH bending mode. The band located at 840 cm−1 was
assigned to the AlMgOH bending mode. All absorption spectra shown in Figure 4 show
a main absorption band located at approx. 1020 cm−1, attributed to the tensile vibration
of the Si–O bond. The absorption peak at 910 cm−1 in the kaolin structure was due to the
presence of Al2OH, while the absorption band at 788 cm−1 occurred due to the bending
vibration of the Si2OH group. The absorption spectrum of kaolin after treatment showed
two localized peaks at 3689 cm−1 and 3619 cm−1 attributed to the stretching vibration
of Al(OH)Al [32]. This contribution slightly increased after the acid treatment, which
seems to indicate the formation of a small proportion of amorphous silica. The absorption
band located at approx. 1640 cm−1 in the case of montmorillonite was attributed to the
bending vibration of the H–O–H group. After treating the clays, the absorption bands of
the functional groups increased in intensity.

The characterization of clays performed by SEM/EDAX and FT-IR analyses revealed
that the treatment of clays with HCl and NaCl improved the surface properties, allowing
the clays to retain heavy metal pollutants.

3.2. Characterization of Alginate/Clay Hybrid Composite Beads

The surface morphology of alginate/clay composite beads was studied by SEM analy-
sis, which is illustrated in Figure 6A–F.

SEM analysis revealed that the Ca alginate beads had a smoot surface, while the
alginate loaded with montmorillonite/kaolin beads presented irregularities that allow
more effective contact with the environment to which they are exposed due to their specific
surface (Figure 6). This led to the improvement of the adsorption capacity of the material.
The beads displayed a wilted form, which was due to the drying process and the internal
vacuum of the SEM equipment, which removed moisture from the samples. It is clearly
observable that, although submitted to severe dehydration, the integrity of the samples
was maintained, without any cracks forming on the samples’ surface. This is a good
indicator of the stability of the materials in the environment, even when subjected to
rapidly varying conditions.
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The crystallinity of the prepared beads in comparison with that of the original and
treated clays is presented in Figure 7.
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The XRD analysis of the samples showed differences in peak intensities for each
processing step which the materials underwent. In the case of montmorillonite, the specific
peaks for SiO2 and sodium calcium aluminum silicate, which are the main components
of the base material, could be observed at their specific 2θ angles and Miller indices of
26.62 ((0 1 1) for SiO2 and (−1 1 4) for the aluminosilicate); 50.1 ((1 1 2) for SiO2 and (0 −4 6)
for the aluminosilicate), and 20.84 ((1 0 0) for SiO2). Kaolin showed specific peaks for SiO2
at 26.62 (0 1 1), 20.84 (1 0 0), and 50.1 (1 1 2), for Al2Na2O6Si at 27.77 (0 4 0), 22.01 (2 0 −2),
and 28.07 (0 0 −4), and for TiO2 at 24.95 (1 0 1), 47.17 (2 0 0), and 38.01 (0 0 4). By comparing
the results in visible peak intensity between the various stages of processing that the base
material went through, it is clearly visible that by modifying montmorillonite and kaolin, a
more refined structure emerged that displayed clearer crystallinity, which can be associated
with a more homogeneous structure of the material.

The addition of alginate, however, reduced the peak intensity due to its organic nature,
as it covered the base materials and diluted the X-ray intensity during the analysis. This
is also an indicator that the two materials were combined efficiently, which increased the
homogeneity of the final product.

Figure 8 shows the alginate/clay particles zeta potential dispersion as a function of
pH in range between 2 and 12.
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The alginate/montmorillonite and alginate/kaolin particles found in suspension in
an NaCl solution exhibited almost similar zeta potentials and point of zero charge at
pH 2.7 ± 0.01 for the alginate/montmorillonite beads and 2.4 ± 0.01 for the alginate/kaolin
beads. At pH values greater than the pHpzc value, the surface of the hybrid composites
became negative, which facilitated the adsorption of positive ions [45]. The adsorption
experiments were performed at a pH in the range of 3–4 in order to avoid the protona-
tion/deprotonation of the surface functional ≡Al–OH and ≡Si–OH groups of the clays [44].
In Figure 8, it can be observed that the prepared adsorbents were stable.

The effect of Cu(II) concentration on time was assessed at 1 mg L−1, 2 mg L−1,
3 mg L−1, and 4 mg L−1 pollutant concentrations using an amount of 250 mg of adsorbent.

Figure 9 shows that, by increasing the pollutant concentration from 1 mg L−1 to 4 mg
L−1, the percentage of removed Cu(II) decreased from 76.1 ± 1.6% to 52.4 ± 0.7% in the
case of the alginate/montmorillonite beads (Figure 9A) and from 43,1 ± 0,4% to 30.3 ± 1.5%
in the case of the alginate/kaolin beads (Figure 9B). This behavior can be explained by the
decreasing number of available adsorption sites as the concentration of adsorbate increased.
The adsorbable sites became occupied by Cu(II). A similar percent efficiency was reported
for ionic liquids that extracted 65% Cu(II) after 60 min from aqueous solutions [46]. In
another study, an innovative adsorbent based on cow bones, coconut shells, and zeolite
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showed 69% and 79% adsorption capacity for Cd(II) and Pb(II), respectively, in the follow-
ing experimental conditions: 24 h of contact, particle size of 1 mm, and concentration of
adsorbent of 12.5 g L−1 [45]. As it is also observed in Figure 9, the alginate/montmorillonite
beads allowed a significant removal of Cu(II) from the aqueous solution, being more ef-
fective than the alginate/kaolin beads. The adsorption capacity at equilibrium of Cu(II)
was recorded with a contact time of 210 min for the alginate/montmorillonite beads and
of 135 min for the alginate/kaolin beads. The decrease of Cu(II) adsorption in the case
of the alginate/kaolin beads as compared with the alginate/montmorillonite beads can
be explained by the limited access of Cu(II) ions to the free binding sites, maybe due to
repulsive forces between adsorbate and adsorbent.
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Figure 9. Adsorption tests for alginate/montmorillonite beads (A) and alginate/kaolin beads (B) in-
vestigated at four concentrations of pollutant (1–4 mg L−1), using 50 mL adsorbate, with a maximum
contact time 240 min and 250 mg of adsorbent.

The dynamic of the adsorption process was investigated by using pseudo-first-order,
pseudo-second-order, and Weber’s intraparticle diffusion kinetic models, according to the
Equations (3)–(5):

Log(qe − qt) = log(qe) − k1t/2.303 (3)

t
qt

=
1

K2 q2
e
+

t
qe

(4)

qt = Kit0.5 + Ci (5)

where qe and qt are the adsorption capacities at equilibrium and time t (mg g−1), and
k1, K2, and Ki are the rate of pseudo-first-order adsorption (l min−1), pseudo-second-
order adsorption (g/mg min), and intradiffusion, respectively; Ci is an arbitrary constant
representing the boundary layer thickness.

The pseudo-first-order kinetic model is based on the hypothesis that the rate of
change of solute uptake with time is directly proportional to the difference in saturation
concentration and the amount of solid uptake with time. The pseudo-second-order kinetic
model states that the rate-limiting step is the chemical sorption or chemisorption and
predicts the behavior over the whole range of adsorption. The intraparticle diffusion model
assumes that the diffusion of the adsorbate controls the adsorption process.

A plot of Log(qe–qt) versus contact time, t/qt versus contact time, and adsorbate uptake
versus the square root of time (t0.5) calculated according to Equations (3)–(5), respectively,
are shown in Figure 10A–C, and some calculated parameters are listed in Table 3. The
rate constants (K) and qe (mg/g) were evaluated from the slope and intercept of the
regression lines.
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Table 3. Kinetic parameters obtained for alginate/clay beads according to the three pseudo-kinetic models.

Adsorbent Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model Intraparticle Diffusion Model

K1
(L/min)

qmax
(mg g−1) R2

K2
(g/mg
min)

qmax
(mg g−1) R2 Ki

(mg/g min0.5) Ci R2

Alginate/Montmorillonite 0.0175 0.440 ± 0.030 0.9892 0.0253 0.540 ± 0.040 0.99435 0.027 ± 0.0014 0.008 ± 0.016 0.95709
Alginate/Kaolin 0.0230 ± 0.0011 0.270 ± 0.080 0.9268 0.0308 0.341 ± 0.023 0.95532 0.016 ± 0.0006 0.02 ± 0.005 0.98567

The adsorption kinetic for alginate/clay beads is shown in Figure 10, and the Lager-
gren pseudo-first order and pseudo-second order adsorption kinetic models are shown
in Table 3.

The results in Table 3 indicated that the pseudo-second-order kinetic model best
fitted the adsorption of alginate/montmorillonite (R2 = 0.994). A diffusion process was
predominant for montmorillonite/kaolin beads (R2 = 0.985). It was also observed that the
rate constant for montmorillonite beads was in the order diffusion > pseudo-second-order
model > pseudo-first-order model. In the case of the intraparticle diffusion model, the adsor-
bate faster diffused through the solution into the pores of alginate/montmorillonite beads
(Ki = 0.027 ± 0.0014 mg/g min0.5). This behavior was correlated with the pore dimensions
of montmorillonite powder (Figure 2). For the alginate/kaolin beads, the adsorption rate
was in the order pseudo-second-order model > pseudo-first-order model > diffusion model.
However, the high value of the regression coefficient R2 suggested the applicability of intra-
particle diffusion and the pseudo-second-order model to the kinetic data of alginate/kaolin
beads. The theoretical adsorption capacity (qmax) did not significantly differ when using
pseudo-first-order and pseudo-second-order models. The qmax was 0.54 ± 0.040 mg g−1

for the alginate/montmorillonite beads and 0.341 ± 0.023 mg g−1 for the alginate/kaolin
beads. The experimental adsorption capacity of the alginate/montmorillonite and algi-
nate/kaolin beads was 0.398 mg g−1 and 0.202 mg g−1, respectively. The adsorption kinetic
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parameters obtained by the pseudo-second-order model best provided a correlation with
the experimental data. A similar heterogeneous process was reported for the removal
of aqueous Ba2+ by natural and Fe(III) oxide-modified allophane, beidellite, and zeolite
adsorbents [44]. The pseudo-second-order kinetic model best described the removal of
Cu(II) and Pb(II) from wastewater in the case of Mxene/alginate composites [47], and of
Pb(II) from an aqueous solution with activated carbon produced from palm fiber with
treated oil [48].

Langmuir and Freundlich adsorption models were used to obtain the adsorption
isotherms. The isotherms were obtained at 3 mg L−1 copper ion concentration. The
Langmuir adsorption isotherm quantitatively describes the formation of a monolayer
of adsorbate on the outer surface of the adsorbent, after which, no further adsorption
takes place.

The parameters of the Langmuir and Freundlich adsorption isotherms are reported
in Table 4.

Table 4. Parameters of the Langmuir and Freundlich adsorption isotherms.

Adsorbent
Langmuir Parameters Freundlich

Parameters
qmax

(mg g−1) KL RL R2 KF 1/n R2

Alginate/Montmorillonite 0.6802 ± 0.02 1.225 0.7655 0.9799 2.864 0.505 0.8593
Alginate/Kaolin 0.3389 ± 0.03 0.665 0.8572 0.9400 7.433 0.472 0.8426

The equilibrium adsorption process was favorable for both adsorbents, because the di-
mensionless separation factor (RL) was between 0 and 1. For the alginate/montmorillonite
and alginate/kaolin beads, the maximum monolayer adsorption capacity (qmax) was close
to the experimental value (qe) for Cu(II) removal, indicating values of 0.6802 ± 0.02 mg g−1

and 0.3389 ± 0.03 mg g−1, respectively. The Langmuir model showed higher R2 than that
the Freundlich model for all prepared alginate/clay beads, indicating the monolayer ad-
sorption capacity of the alginate/clay hybrid composite materials. All alginate/clay beads
showed a value of inverse adsorption intensity of the process (1/n) below 1, which indicates
large Cu(II) adsorption. The KF values for alginate/montmorillonite and alginate/kaolin
beads were higher (2.864 and 7.433, respectively), indicating a great removal capacity for
Cu(II) as a pollutant from synthetic waters. The phenomenon is in accordance with other
studies regarding heavy metals adsorption on different activated adsorbents [49–52].

In order to evidentiate the interactions between Cu(II) retained on the alginate/clay
hybrid beads, FTIR analysis was performed (Figure 11).
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before and after the adsorption process.
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As it is observed in Figure 11, two significant bands located in the range of 3373–3375 cm−1

(-OH) and 2928–2850 cm−1 (C-H groups) decreased in intensity, indicating the formation of
hydrogen bonds between the pollutant and the hydroxyl groups of alginate and clay. Similar
chemical interactions were found in the case of a cellulose/clay composite hydrogel developed
for the adsorption of dye [22].

4. Conclusions

Alginate/montmorillonite and alginate/kaolin beads were prepared by the ionic
gelation method. Activated clays showed improved surface properties, nanometric size,
and polydispersity, and were able to retain heavy metal pollutants. The SEM and FTIR
results highlighted the interactions between the alginate and the clays, leading to the
formation of hybrid composite beads with better adsorption properties for Cu(II) than the
original clays.

The optimal contact time for Cu(II) removal from an aqueous solution was 210 min for
the alginate/montmorillonite beads and 135 min for the alginate/kaolin beads. The adsorp-
tion processes followed a pseudo-second-order kinetic for the alginate/montmorillonite
beads and an intraparticle diffusion model for the alginate/kaolin beads. The algi-
nate/montmorillonite and alginate/kaolin beads well fitted the Langmuir isotherm model
and exhibited an adsorption capacity between 0.33 and 0.68 mg g−1 for Cu(II) removal.
This study demonstrates that the low-cost hybrid material beads based on alginate, mont-
morillonite, and kaolin can be recommended as promising adsorbents for Cu(II) removal
from wastewaters, with improved adsorption properties.
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