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Environmental variation and the evolution of large
brains in birds
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Environmental variability has long been postulated as a major selective force in the evolution

of large brains. However, assembling evidence for this hypothesis has proved difficult. Here,

by combining brain size information for over 1,200 bird species with remote-sensing analyses

to estimate temporal variation in ecosystem productivity, we show that larger brains (relative

to body size) are more likely to occur in species exposed to larger environmental variation

throughout their geographic range. Our reconstructions of evolutionary trajectories are

consistent with the hypothesis that larger brains (relative to body size) evolved when the

species invaded more seasonal regions. However, the alternative—that the species already

possessed larger brains when they invaded more seasonal regions—cannot be completely

ruled out. Regardless of the exact mechanism, our findings provide strong empirical support

for the association between large brains and environmental variability.
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D
espite wide interest in the evolution of the vertebrate
brain, the reasons why some animal lineages—including
humans—have evolved disproportionally large brains

despite substantial energetic and developmental costs remain
contentious. While a variety of selective pressures may have
favoured the evolution of enlarged brains1–3, one that has
repeatedly been invoked in the literature is environmental
variation. This idea is formally developed in the ‘cognitive
buffer’ hypothesis (CBH, hereafter), which postulates that large
brains evolved to facilitate behavioural adjustments to enhance
survival under changing conditions4–6. Cognition can increase
fitness in varying environments by enhancing information
gathering and learning, facilitating for instance shifts between
different feeding sites or food types to alleviate periods of
food scarcity7–9.

Although the CBH was proposed more than 20 years ago4, the
possibility that environmental variation has shaped brain
evolution has garnered only modest empirical support5,7,10,11.
The absence of firm evidence is striking given the ample support
for its main assumption that larger brains (relative to body size)
facilitate coping with environmental changes by constructing
behavioural responses12,13. The current modest support for the
CBH hypothesis has led some authors to suggest that the link
between brain size and environmental variation could be more
complex than often believed7,14,15. For example, if growing and
maintaining the brain during periods of food scarcity is
excessively costly, environmental variability could constrain
rather than favour the evolution of large brains7,14,15. The
complexity of mechanisms linking brain size and environmental
variation would explain why attempts to address the CBH in
primates have generally been inconclusive7,10,14,15, despite its
relevance to the evolution of large brains and enhanced cognition
in humans16–19. However, the absence of clear patterns in
primates may also reflect that they live mostly in relatively benign
tropical environments, where the realized net energy intake
experienced by individuals does not necessarily match
environmental variability7.

An excellent group in which to test for a link between brain
size and environmental variability is birds, a clade containing
species with some of the largest brains, relative to their body
size, of any animal20. Being among the most widespread land
animals, birds experience strikingly different degrees of
environmental variation. Moreover, they have been at the
forefront of the research into the functional role of enlarged
brains in devising behavioural solutions to new challenges21–23.
Surprisingly, however, only a few studies have addressed the
CBH in birds, and the results do not always support it. In parrots,
larger brains are associated with higher seasonality in temperature
and precipitation11. In passerine birds, species that reside
the entire year in highly seasonal regions have brains that
are substantially larger than those that experience lower
environmental variation by migrating to benign areas during
the winter8. However, phylogenetic reconstructions have revealed
that rather than selection for enlarged brains in resident species,
the pattern could reflect costs associated with cognitive functions
that have become less necessary in migratory species24.

Here we test whether larger brains are related to environmental
variability by means of a phylogenetically-based comparative
analysis in birds. We assembled a large database of brain and
body size measures of 4,744 individuals of 1,217 species from five
continents. We then estimated annual variation in plant
productivity (a more direct surrogate of resource variation than
temperature and precipitation) throughout their geographic
ranges and tested whether species exposed to larger environ-
mental fluctuations within and among years also have relatively
larger brains. Having shown this to be the case, we then

conducted phylogenetic reconstructions of ancestral traits to
ask whether the observed differences are consistent with
past selection for enlarged brains in lineages invading regions
with high temporal environmental fluctuations. This is achieved
by testing whether the evolution of brain size fits better to
an adaptive model of phenotypic evolution than a Brownian
motion model25. Although our main focus was on species
residing the entire year in the same region, whose exposure to
environmental variation is easier to characterize, we also
investigated how species that migrate are affected by
environmental variation. In this way, we could reconcile our
findings with previous evidence suggesting selection for smaller
brains in birds that experience lower degrees of environmental
variation by moving to more benign regions during the winter24.

Results
The effect of environmental variation on brain size. Previous
work suggests that selection for larger brains and enhanced
learning abilities should be particularly strong in animals inha-
biting highly seasonal environments, which demand improved
capacity of individuals to track resources that change during the
year9,26. Consequently, we first asked whether birds exposed to
more pronounce seasonal fluctuations in resources are also
characterized by disproportionally larger brains. As a way to
assess seasonal variation in resource availability, we used remote-
sensing analyses to estimate enhanced vegetation indices (EVI)
and snow cover within the geographic range of each studied
species over a 15-year period27,28.

In agreement with the CBH, birds residing the whole year in
places with higher seasonal variation in EVI have significantly
larger brains once accounting for phylogenetic and allometric
effects (Table 1). Much of this seasonal variation is associated
with latitude. Seasonal changes in EVI are more intense at higher
latitudes than at lower latitudes (Supplementary Fig. 1a),
reflecting the drop in plant productivity during the cold winters.
Supporting the importance of latitude on brain evolution, birds
inhabiting regions at higher latitudes tend to have relatively larger
brains compared with birds living at lower latitudes
(Supplementary Fig. 2, Supplementary Table 1).

At higher latitudes, the period of snow cover is longer than at
lower latitudes (Supplementary Fig. 1b). In places with frequent
snow, selection for enlarged brains should be particularly strong
as food must be obtained under difficult conditions and in a
shorter daylight period9. Indeed, relative brain size significantly
increases with the period of snow cover in resident species
(Table 1). High latitude regions do not only experience more
snow and higher seasonal variation in plant productivity, but
variation in EVI among years is also more pronounced
(Supplementary Fig. 1c). This suggests that resources might not
only be difficult to track during periods of food scarcity, but they
could be unpredictable from year to year29,30. Again consistent
with theoretical expectations29,30, brain size (adjusted by body
size) is positively associated with variation in EVI among years
(Table 1).

The principal components of environmental variation. As the
above environmental factors are not entirely independent of each
other (see Supplementary Table 2), we used a Phylogenetic
Principal Component Analysis (PPCA)31 to produce orthogonal
axes describing environmental variation. The first component
explains 79% of the variance and has positive loadings on
seasonal variation, duration of snow cover and among-year
variation (0.97, 0.89 and 0.94 respectively, Supplementary
Fig. 1d). This axis therefore represents general environmental
variation, with higher values at higher latitudes (Supplementary
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Fig. 1e). The second axis explains 16% of environmental variation
and loads positively on variation of EVI among years
and negatively on snow cover (component loadings¼ 0.46,
and � 0.52, respectively). In contrast with the first axis,
this second axis does not describe seasonal variation in EVI
(component loading¼ 0.04) and has higher values at lower
latitudes (Supplementary Fig. 1f). Therefore, the second axis
primarily reflects variation in EVI among years at lower latitudes
(for example, sporadic drought events).

Additional evidence for the cognitive buffer-hypothesis. As
predicted by the CBH, the two axes describing environmental
variation are positively associated with brain size, relative to body
size (Table 1), meaning that species that live in more variable
environments also tend to have larger brains regardless of
the type of variation29. This finding is consistent with the view
that a relatively larger brain is useful not only in harsh regions
(for example, high latitudes with cold winters)32,33, but also in
more benign regions that exhibit substantial year-to-year
variation in environmental conditions11. Although the model
explains over 87% of variation in absolute brain size, only 4% of
this variation can be attributed to the environmental variation
axes. This limited explanatory power is nonetheless unsurprising
considering that body size accounts for the major part of
variation and other environmental factors and constraints may
also influence brain size evolution1,34–36. Yet, it is worth noting
that when the analyses were conducted within particular clades
the variation in brain size explained by environmental variability
is substantial (e.g. ; 19% in Piciformes and 44% in Strigiformes;
see Fig. 2). Thus, although the external environment might exert
strong selection on cognition and brain size, the evolutionary
response is likely to also depend on how the animal interacts with
the environment and the extent to which its phenotype
constraints certain evolutionary trajectories 29.

Examining possible confound factors. The link between relative
brain size and the axes of environmental variation (PPC1 and
PPC2) in resident birds is not sensitive to phylogenetic
uncertainties or potentially confounding variables. First, the
results are highly consistent when using 100 randomly selected
trees (Supplementary Fig. 3) from the posterior distribution of
trees provided by Jetz et al37. Second, the observed patterns
cannot be attributed to changes in body size as being larger
or smaller does not co-vary with PPC1 or PPC2 (PGLS: P40.12
in all cases; see also refs 38,39). Third, although previous work has
suggested that species may be more or less vulnerable to seasonal
changes depending on their diet type (for example, frugivoury or
insectivoury) and preference for buffered habitats (for example,

Table 1 | Brain size (dependent variable) in relation to environmental variables in resident birds.

Factor Estimate SE t value Pr (4|t|)

Model 1 (N¼ 835, P valueo0.001, R2¼0.87(0.02), l¼ 0.92)
Intercept � 2.53 0.12 � 19.86 o0.001
Log(body size) 0.59 0.01 73.24 o0.001
CV (EVI) within the year 2.45 0.01 4.12 o0.001

Model 2 (N¼ 835, P valueo0.001, R2¼ 0.86(0.02), l¼ 0.92)
Intercept � 2.50 0.13 � 19.51 o0.001
Log(body size) 0.59 0.01 72.47 o0.001
Log (weeks of snowþ 1) 0.04 0.01 3.47 0.001

Model 3 (N¼ 835, P valueo0.001, R2¼0.87(0.04), l¼ 0.90)
Intercept � 2.61 0.13 � 20.44 o0.001
Log(body size) 0.59 0.01 72.60 o0.001
CV (EVI) among years 11.18 1.97 5.67 o0.001

Model 4 (N¼ 835, P valueo0.001, R2¼0.87(0.04), l¼ 0.92)
Intercept � 2.47 0.13 � 19.62 o0.001
Log(body size) 0.59 0.01 73.24 o0.001
Environmental variation PPC1 0.04 0.01 5.69 o0.001
Environmental variation PPC2 0.02 0.01 3.04 0.002

CV, coefficient of variation; EVI, enhanced vegetation index (proxy for resource availability); PPC1 and PPC2, two first axes of a phylogenetic principal component analysis with the environmental
variables.
We use a phylogenetic general least square model (PGLS) while controlling for body size and phylogeny. For each model, l and R2 is shown. In brackets, we also show the R2 of the models once the effect
of body size has been removed (see Methods section).
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Figure 1 | Importance of each factor in a model selection approach based

on AICc. A model selection process using PGLS models with Log(Brain

size) as a response variable and environmental variation axes (PPC1 and

PPC2) and all factors included in the full model (See Supplementary

Table 7) as explanatory variables in resident species (N¼ 242). Here we

show the importance of each factor in terms of AICc weights integrated

over all possible combinations of models (see Supplementary Table 8 for

the best models).
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forests)24, including these factors in the models does not
alter the conclusions (Supplementary Table 3). Fourth, the
association between environmental variation and relative brain
size is not indirectly caused by differences in diet generalism
(Supplementary Table 4), despite generalists tending to have
relatively larger brains and a higher propensity for behavioural
innovation40,41. Fifth, the effect of environmental variation
on relative brain size remains significant even when considering
life history traits (particularly developmental periods2,3,35) that
may constrain brain size evolution (Supplementary Table 5).
Sixth, although according to the social intelligence hypothesis
the demands of social living might have selected for enlarged
brains1,36, including factors that represent social behaviour
(ie, social mating system1, coloniality42 and social foraging36)
does not alter the patterns we report in the present study
(Supplementary Table 6). Finally, the axes defining environ-
mental variation are not only significantly associated with brain
size even when simultaneously accounting for all the suggested
confounds (Supplementary Table 7), but both also consistently
appear in all the best models resulting from a model selection
procedure (see Supplementary Table 8 for the best models
and Fig. 1 for the weight importance of each factor). Although
the paucity of information for some traits notably reduced
sample size, the model selection and the full model confirmed
some previous findings. Thus, larger brains, relative to
body size, are also associated with longer incubation periods
(see also Supplementary Table 5) and broad diet requirements
(Supplementary Table 4).

The brain-environment association within avian orders. While
the positive association between environmental variation

and brain size holds for the majority of avian orders with
representatives in regions with highest environmental variation, a
notable exception is Galliformes (Fig. 2). The reasons of such
discrepancy are unclear, but could reflect that these species thrive
in seasonal regions by means of specialized adaptations rather
than plastic behavioural responses. Possible adaptations include
a reduced metabolism and specialization on low-quality foods
(for example, coniferous needles) that are available the whole
year43. These specializations would not only constrain the
evolution of larger brains, which are energetically costly44, but
also would make exploration and learning less critical for
survival41,45.

The effect of the environment on migratory birds. Unlike
species that reside the entire year in the same region, migratory
birds avoid the drop in resources during the winter by moving
to more benign regions (Fig. 3, Supplementary Table 9). Moving
also allows them to mitigate variation in productivity across years,
as at the wintering areas fluctuations in EVI among years
are highly reduced compared with those observed at higher lati-
tudes (Supplementary Fig. 4). Consistent with the lower exposure
to environmental variation, in migratory birds the relative size of
the brain does not covary with seasonal or among year variation
in EVI (Supplementary Table 10). However, the strategy of
avoiding the harshest season by moving away is costly, requiring
substantial amount of energy to travel between breeding and
wintering areas46. Interestingly, relative brain size is not only
smaller in migrants compared with tropical and temperate
residents, in agreement with previous studies24, but brain
size also decreases with travelling distance (Supplementary
Table 11). This effect remains robust to the influence of
confounding variables (Supplementary Tables 12 and 13,
see also Supplementary Fig. 5 for differences within orders).
The relationship between migratory distance and relative brain
size thus agrees with the energy trade-off hypothesis, which
predicts that the brain should be smaller if more energy needs to
be allocated to other tissues (for example, pectoral muscle to fly
longer distances34).

Evolutionary reconstructions of the evolution of brain size. To
more formally investigate the adaptive nature of the links between
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brain size and environmental variation, we used a character
stochastic mapping approach to reconstruct transitions across the
phylogeny among tropical and temperate regions and, within
the latter, between resident and migratory strategies (Fig. 4a).
These reconstructions were then used to test whether
the subsequent evolutionary trajectories in relative brain
size better fit either adaptive (Ornstein–Uhlenbeck—OU) or

random (Brownian motion—BM) models of evolution25,47,48.
Evolutionary reconstructions based on stochastic character
mapping49,50 reveal several independent transitions between
tropical and temperate regions and between resident and
migratory strategies (Fig. 4b). The best supported evolutionary
model is an adaptive model, called OUMV model51, that assumes
the existence of different optima for each selective regime
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and differences in the amount of phenotypic variation (s2)
around each optimum (Supplementary Table 14). The estimates
of brain size optima from this model are consistent with the
hypothesis that species evolved towards larger brains (relative to
body size) when moving from tropical to temperate regions
(Fig. 4c, Supplementary Table 15). In addition, long distance
migrants have a smaller brain optimum compared with residents,
further confirming previous evidence24,33, and exhibit lower
variation around this optimum perhaps reflecting a trade-off
between brain size and the costs of locomotion44.

Discussion
Our results are consistent with the long-held hypothesis that
environmental variation may have been an important selective
force in the evolution of enlarged brains4–6. However,
encephalization is a multifaceted process and other selective
pressures are likely to have played a role in brain size
evolution1,2,52. The fact that the explanatory power of
environmental variation is low for some avian lineages is
indeed consistent with the existence of alternative factors
influencing brain size evolution. One factor particularly
important according to our analyses is a generalist ecology,
which may favour larger brains by frequently exposing
individuals to novel or unusual conditions that require
behavioural adjustments40,41,45. Other factors may also be
important despite not being identified in our analyses. For
instance, although none of our three measures of sociality was
associated with relative brain size, in clear contrast with previous
analyses36,53, this may simply reflect that our metrics do not fully
capture key aspects of bird sociality. Finally, our analyses
highlight that brain size evolution may also be influenced by
constraints2,3,35, such as the need of a long developmental period
to grow a disproportionally larger brain, and selective pressures
favouring smaller brains, such as those associated with long-
distance movements in migratory birds.

Our approach, however, does not reveal whether species
evolved larger brains when they invaded more seasonal regions or
instead their ancestors already possessed larger brains when those
regions were colonized. Yet given the high metabolic and
developmental costs of a large brain34,54, in highly variable
environments the maintenance of a large brain through
stabilizing selection seems unlikely unless it provides some sort
of benefit that compensates for the costs. If so, the alternative that
the ancestors already possessed larger brains when colonized
highly variable environments would still be consistent with
the CBH. In fact, the two explanations are not mutually exclusive.
If a large brain is an important adaptation to cope with
environmental variation, highly variable environments should
both prevent the establishment of species with small brains
and select for larger brains in those that are able to persist there
by means of plastic behaviours.

The possibility that a large brain functions, and hence may
have evolved, to cope with environmental variation is relevant
to understand how animals will be threatened by human-induced
rapid environmental changes, notably climate change55. If
large brains have evolved in slow-lived species to cope with
environmental changes, the same species should also be better
prepared to cope with climate change and habitat loss. While
evidence is accumulating in support of this possibility21,56,57,
it still remains an open question whether adaptive strategies
that have been selected in past environments are necessarily
appropriate to cope with current environmental challenges55.
Given the increased concern over how climate change and habitat
loss will impact on biodiversity, we anticipate that addressing
this issue will be an important avenue for future research.

Methods
Brain measurements. We estimated brain volumes for 4,744 museum specimens
from 1,217 species using the endocranial volume technique. This method consists
in filling each skull via the foramen magnum with a 50:50 mixture of sizes 10 and
11 lead shot. Once the endocranial cavity was filled, the lead shot was decanted into
modified syringes to determine brain volume. This method is highly repeatable and
yields a reliable estimate of true brain size58. As a way to improve the precision of
the measures, we only measured museum specimens of known body size and
sex. When more than one specimen per species was examined, we first estimated
the average brain volume for each sex and then we estimated the species value
as the mean brain volume of the two sexes. Despite the heterogeneous functional
organization of the brain, the pallial areas associated with general-domain
cognition represent a large fraction of the entire brain, are disproportionally
larger in large brained birds and accurately predict variation in the whole brain
when allometric effects are appropriately accounted for59,60.

Species data collection. For each species, we also extracted information of
the geographical range from BirdLife International (Supplementary Fig. 6 and
Supplementary Methods for more details) and used it to (1) assess their breeding
latitude (centroid of the breeding range), (2) classify each species as migratory
or resident, and (3) estimate migratory distance (difference between breeding and
wintering centroids, see Supplementary Fig. 7). In addition, we overlapped each
distribution map with layers of the Enhanced Vegetation Index (EVI) over 15 years
produced by the Moderate Resolution Imaging Spectroradiometer (MODIS)27

sensor from NASA. We used the 16 day resolution product from the MODIS
sensor to calculate mean and standard deviation values for 23 days of the year.
With these data we were able to calculate mean productivity as well as variation
among and between years (see Supplementary Methods for details). EVI measures
the degree of greenness and provides a proxy to quantify plant productivity at large
scales61,62. For resident birds, we also obtained data on the persistence of snow
cover in winter from MODIS sensor 28. With the snow cover data, and the CV of
EVI among years and along the year, we calculated the First and Second
Component of a PCA using the ‘phyl.pca’ function from ‘phytools’ R package 63.
Finally we extracted data from the literature for (i) dietary type consumptions,
(ii) forest/open habitat type, (iii) incubation and fledging periods,
(iv) developmental modes, (v) social mating system and (vi) colonial breeding and
(vii) social foraging and complemented the information with the Handbook of the
Birds of the World Alive64. Diet breadth was then estimated using the frequency of
use of distinct dietary types while taking into account that different food items
have different degrees of similarity among each other (Supplementary Fig. 8).
Snow cover, fledging, incubation and migratory distance were log-transformed and
the two PCAs axis were standardized to provide normality. Further details on data
acquisition, sources and metric estimations are provided in the Supplementary
Methods.

Phylogenetic hypotheses. We randomly extracted 100 fully resolved trees
from the Bird Tree project65 for all our species (n¼ 1,217). With the 100 trees,
we built the maximum clade credibility tree (summary tree) using TreeAnnotator
(a program included in the software BEAST v1.8.0)66. Trees from the Bird Tree
project include species for which no genetic information is available. Removing the
146 species with no genetic information in our sample does not alter the
conclusions.

Phylogenetic-based approach. We modelled brain size (log-transformed) as a
function of environmental variability and additional covariates by means of
Phylogenetic Generalized Least Squares (PGLS) approach67. We used the pgls
function in the R-package ‘caper’68, which implements GLS models accounting for
phylogeny through maximum likelihood estimations of Pagel’s l69. We used the
consensus phylogenetic tree for all the PGLS analysis, but we re-ran the key
analyses with the 100 different trees to account for phylogenetic uncertainty. In
birds, enhanced learning abilities are not indicated by absolute brain size, but by
the extent to which the brain is either larger or smaller than expected for a given
body size23,59,70. Consequently, we always included body size (log-transformed and
extracted from the same specimens for which brains were measured) as a co-variate
when we modeled brain size as a response. However, we also re-ran the analysis
with relative brain size, estimated as the residuals of a log-log PGLS of brain against
body size (Supplementary Fig. 9), to assess partial R2.

Phylogenetic reconstructions. To assess whether historical expansions to
more seasonal regions can explain differences in brain size, we used the geographic
range of the species to reconstruct transitions between tropical and temperate
regions (that is, low-, medium- and high-latitude regions) using stochastic
character mapping (SCM)63. These latitude categories (see main text and
Supplementary Fig. 1) integrate several measures of environmental variation and
harshness, such as inter-year and seasonal variation and snow cover. Because
migration can reduce environmental variation, evolutionary transitions between
residency and migration (short and long distance) were also considered. The
combination of these two factors leads to the existence of 5 categories (ie, resident
high-latitude, resident medium-latitude, and resident low-latitude, migrant short-
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distance and migrant long-distance). Evolutionary transitions among these five
selective regimes were reconstructed across a phylogeny encompassing all studied
species. This was done using the SCM procedure implemented in the ‘simmap’
function from R package ‘phytools’63, which estimates the location of evolutionary
transitions between categories on a phylogenetic tree. The SCM method allows
changes to take place along the tree branches rather than exclusively at the tree
nodes71. To minimize the potential effects of uncertainty in both tree topologies
and phylogenetic reconstructions from the SCM, we used the 100 phylogenies with
10 simulations for each one, resulting in 1,000 phylogenetic trees. To estimate the
amount and direction of evolutionary transitions between selective regimes, we
used the ‘describe.simmap’ function over the 1,000 trees and estimated mean and
confidence interval for each possible transition (for instance, between Residents
medium-latitude and Migrants short-distance).

Fitting evolutionary models of brain size evolution. We used the results of
the SCM to test if brain size differences between selective regimes are associated
with random rates of phenotypic evolution47 or they are a consequence divergent
selective optima for each category25. For this purpose, a random set of 100
stochastic character maps were analysed using the R package ‘OUwie’72 to
test which evolutionary model best explains the evolution of brain size under
the different selective regimes. In this case, we also dealt with allometric effects by
estimating the residuals of a log-log PGLS of brain against body size. We
considered a variety of Ornstein-Uhlenbeck (OU) models25 that test for the
existence of phenotypical optima (y) for relative brain size. OU models test the
hypothesis that the evolution of a phenotypic trait is non-random, but rather
it is the consequence of selective forces pulling this trait towards an optimal
value that is favoured by natural selection. OU models can either include a
single optimum (for example, OU1 model) or consider the possibility that
different categories are pulled by natural selection towards different optima.
For example, in OUM models smaller brains could be favoured in migratory
species while larger brains benefit resident species that experience increased
environmental oscillations throughout the year. In the OUMV models, an
additional parameter is estimated: the rate of stochastic motion around the
optima (s2), representing the amount of brain size variation around the
phenotypic optimum estimated for each group. We fitted the following OU models:
(1) a simple OU model with a single optimum (y) and the same a and s2

parameters for all selective regimes (‘OU1’ model), (2) an ‘OUM’ model with
different optima, and (3) the same OUM model, but with different s2 for each
category (‘OUMV’). In addition, two Brownian motion (BM) models were also
fitted: a single rate ‘BM1’ model and a ‘BMS’ model with different rate parameters
for each state or phylogeny. Brownian motion models can describe drift, drift-
mutation balance and stabilizing selection toward a moving optimum25. To assess
the most supported model we calculated the Akaike weights for each model based
on AICc scores73. In addition, we also calculated the Bayesian Information
Criterion (BIC), which further penalizes for the inclusion of more parameters.
Then, the best evolutionary model was identified from both the AICc and
BIC scores and we estimated the mean values and the 2.5 and 97.5% confidence
intervals for all the parameters. We also tried a more complex model in which
another parameter (a) is included as the strength of selection with which
natural selection pulls towards a given brain size optimum for each group of species
(the so called OUMVA model). However, when using this more complex model,
some of the trees gave evolutionary optima that were some orders of magnitude
outside the range of existing values of brain size among all bird species and
we therefore excluded these models from further analyses.

Data availability. All the data generated or analysed during this study are included
in Supplementary Data 1.
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