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The gut microbiota is a newly identified contributor to the development of non-alcoholic
fatty liver disease (NAFLD). Previous studies of Bifidobacterium adolescentis
(B. adolescentis), a species of Bifidobacterium that is common in the human intestinal
tract, have demonstrated that it can alleviate liver steatosis and steatohepatitis. Fibroblast
growth factor 21 (FGF21) has long been considered as a biomarker of NAFLD, and recent
studies have shown the protective effect of FGF21 analogs on NAFLD. We wondered
whether B. adolescentis treatment would alleviate NAFLD via the interaction with FGF21.
To this end, male C57BL/6J mice on a choline-deficient high-fat diet (CDHFD) were
treated with drinking water supplemented with B. adolescentis for 8 weeks, followed by
the acute administration of recombinant mouse FGF21 protein (rmFGF21) to conduct the
FGF21 response test. Consistent with previous studies, B. adolescentis supplementation
reversed the CDHFD-induced liver steatosis and steatohepatitis. This was evaluated on
the NAFLD activity score (NAS), reduced liver enzymes, and lipid accumulation. Further
studies demonstrated that B. adolescentis supplementation preserved the gut barrier,
reduced the gut microbiota-derived lipopolysaccharide (LPS), and inhibited the hepatic
TLR4/NF-kB pathway. This was accompanied by the elevated expressions of the
receptors of FGF21, fibroblast growth factor receptor 1 (FGFR1) and b-klotho (KLB), in
the liver and the decreased expression of FGF21. The results of FGF21 response test
showed that B. adolescentis supplementation alleviated the CDHFD-induced FGF21
resistance. In vivo experiments suggested that LPS could suppress the expression of
FGF21 and KLB in a dose-dependent manner. Collectively, this study showed that
B. adolescentis supplementation could alleviate NAFLD by increasing FGF21 sensitivity.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has emerged as an
escalating public health problem, with about 1/4 of the world’s
population being affected (1), resulting in increased risks of not
only liver damage but also extrahepatic diseases (2, 3). The high
prevalence has aroused the curiosity of many researchers, but the
mechanism of which is still not fully understood. The role of the
gut microbiota in the occurrence and development of NAFLD
pathogenesis and development has been demonstrated in both
animal and human studies. People with NAFLD show different
gut microbiota signatures compared to those of healthy people
(4–6). Moreover, germfree mice on high-fat diet exhibit much
less lipid accumulation in liver than control mice, suggesting the
indispensable role of the gut microbiota in this disease (7). Fecal
transplantation also confirmed that hepatic steatosis could be
passed on from donors to germfree mice by the gut microbiota
(6). Due to the important role of the gut microbiota in the
development of NAFLD, multiple interventions targeting on the
gut microbiota have been studied in NAFLD. Prebiotics,
antibiotics, and probiotics have been shown to reduce NAFLD
development (8). Bifidobacterium adolescentis (B. adolescentis),
one of the common microbiota colonizing human intestinal, has
shown its protective effects against the diet-induced hepatic
steatosis and nonalcoholic steatohepatitis (NASH) (9, 10). The
mechanism by which the gut microbiota act on NAFLD is
thought to involve bile acid regulation, short chain fatty acid
release, gut barrier preservation, and gut-derived toxin
reduction. However, the underlying mechanisms have not been
fully elucidated.

Due to the complexity of NAFLD, there is still no
recommended medication for the treatment of this disease. At
present, the most effective treatment for NAFLD is weight loss.
Fibroblast growth factor 21 (FGF21) is an endocrine cytokine
belonging to the FGF19 superfamily and is primarily produced
by the liver. It serves as a regulator of many processes, such as
energy homeostasis, glucose and lipid metabolism, and insulin
sensitivity (11). Physiologically, FGF21 can be induced by a
variety of cellular stressors and is thus characterized as a
stress-responsive cytokine. Unlike most of the other FGF
family members, FGF21 has a poor affinity for heparin-binding
domain sulfate, which enables it to act in an endocrine way. At
the same time, due to the poor affinity for heparin sulfate, FGF21
could not directly bind to the classic FGF receptors. The
formation of a complex with FGF receptor and b-Klotho
(KLB) is indispensable for FGF21 to exert its physiological
effect (12). FGF receptor 1 (FGFR1) is the main receptor of
FGF21, which is wildly distributed. But the expression of the co-
receptor KLB is limited to the liver, adipose tissues, pancreases,
and possibly muscles, which restrict the target tissues of FGF21
(13). As a regulator of lipid metabolism, FGF21 is closely related
to NAFLD. It has been regarded as a biomarker of NAFLD since
its circulating level are significantly higher in patients with
NAFLD (14–16). Moreover, several clinical trials have shown
that FGF21 analogs might be a promising therapeutic strategy for
NAFLD. A phase IIa clinical study from The Lancet showed the
effectiveness of pegbelfermin, a PEGylated human FGF21, in the
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treatment of NASH. Specifically, liver fat fraction, serum
aminotransferases, and biomarkers of fibrosis were significantly
reduced after of daily or weekly injection of pegbelfermin
injections (17).

Considering the protective effect of FGF21 on NAFLD, and
the fact that the liver is the first target of gut-derived metabolites
and toxins, we wonder if the treatment with probiotics would
alleviate NAFLD by the interaction with FGF21. Herein, we
treated a NAFLD mice model with B. adolescentis with the
attempt to test whether there is any crosstalk between B.
adolescentis and the hepatic FGF21 pathway.
MATERIALS AND METHODS

Animals and Treatments
8-week-old male C57BL/6J mice purchased from the
GemPharmatech Company (Nanjing, China) were housed in a
12-h light-dark cycle in specific pathogen-free (SPF) facilities.
The mice were subjected to normal chow diet (Research Diets,
containing 10% of total calories from fat) or choline-deficient
high fat diet (CDHFD; Research Diets, containing 45% of total
calories from fat) and water for 16 weeks. From the start of the
17th week, the mice were divided into four groups as follows: a
normal chow diet control group (Control), choline-deficient high
fat diet group (CDHFD-water), CDHFD + live B. adolescentis
group (CDHFD-B.a), and CDHFD + heat-killed B. adolescentis
group (CDHFD-hk B.a). Drinking water supplemented with B.
adolescentis (DSMZ 20086) was administered to mice in the
CDHFD-B.a group, and the same amount of heat-killed B.
adolescentis (121°C under 225-kPa pressure for 15 min) was
added in water administered to mice in the CDHFD-hk B.a
group. According to the preliminary experiments, effective dose
of B. adolescentis was 4×1010 CFU/day and mice would drink
8 ml water per day. The concentration of B. adolescentis in
drinking bottles was 5×109CFU/mL to ensure a dose of 4×1010

CFU/day to each mouse. Bottles were changed once a day to
assure the activity of bacteria as reported (10). Water was
supplied to mice in bottles with leak prevention to accurately
measure the consumption of water and bacteria. The treatment
lasted for 8 weeks. At the end of the treatment period, all mice
were sacrificed after 6 h of fasting. Heart blood and tissue
samples were obtained. Part of the tissues were fixed for
histological analysis, and the remaining tissues were
immediately snap-frozen and stored at -80°C for further
investigations. All animal experimental protocols were
approved by the Animal Ethics Committee of the Shanghai
Jiao Tong University Affiliated Sixth People’s Hospital.

Plasma and Tissue Analysis
Blood samples were allowed to stand for 1 h at room temperature
and centrifuged at 4000 rpm for 20 min to separate the upper
serum. Serum lipopolysaccharide (LPS) was measured by the
Limulus Amebocyte Lysate assay (Hycult Biotech). Serum levels
of triglyceride (TG), alanine aminotransferase (ALT), and
aspartate aminotransferase (AST) were measured by commercial
December 2021 | Volume 12 | Article 773340
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assay kits (Nanjing Jiancheng). All measurements were performed
in accordance with the manufacturer’s instructions.

Hepatic TGs were quantified using Folch extraction (18).
Liver samples frommice were sectioned to chloroform-methanol
(2:1) to extract lipids. The organic extract was then dried and
reconstituted in isopropanol. The hepatic TG levels were
determined using the assay used for determining the serum TG
levels. The concentration of hepatic FGF21 was measured using a
Mouse FGF-21 ELISA Kit (Immunodiagnostics Limited). All
measurements were performed in accordance with the
manufacturer’s instructions.

Histological Examination
Liver and ileum tissues were acquired when mice were sacrificed
and using 4% paraformaldehyde to fix. After at least 48 h, these
tissues were subsequently embedded in paraffin and then
sectioned for further hematoxylin-eosin (HE) staining, Masson
staining, immunofluorescent staining, or immunohistochemistry
staining. For immunofluorescent staining, nonspecific protein
binding was blocked by 5% normal goat serum. Ileum sections
were incubated with anti–zona occuldens protein-1 (ZO-1,
Abcam) or occludin (Abcam) antibodies. Then, samples were
incubated for 1 hour with FITC-conjugated secondary antibodies
(Life Technologies) and counterstained with 4,6-diamidino-2-
phenylindole for visualization of cell nuclei. For immunohistochemistry
staining, after the endogenous peroxidase activity had been
inhibited by hydrogen peroxide (H2O2) for 20 min, sections
were incubated overnight with anti-E. coli LPS antibody
(Abcam), followed by staining with horseradish peroxidase–
conjugated secondary antibody.

Three to six regions from each slide with immunofluorescent
staining or immunohistochemistry staining were selected and
scanned using the 10x objective by the Vectra imaging system
(Perkin Elmer). The images acquired were analyzed with inForm
software (v2.4.8, Akoya) for the calculation of histochemistry
score (H-score).

NAFLD Activity Score (NAS) (19) of liver sections with HE
staining were evaluated by two experienced pathologists
independently, based on 4 semi-quantitatively histological
features: steatosis (0-3), lobular inflammation (0-2), hepatocellular
ballooning (0-2), and fibrosis (0-4). NAS from each pathologist was
acquired by summing the steatosis, lobular inflammation, and
hepatocellular ballooning scores unweighted. Final NAS of a
mouse was acquired by averaging two scores from the pathologists.

Calorie Measurement of Stool by
Bomb Calorimetry
Stoolwas lyophilizedwithaFreezemobile12XL instrument (VirTis)
at −77 °C. Following this, the caloric content of stool samples was
measured by an isoperibol calorimeter instrument (HWR-15E,
Shanghai Institute of Measurement and Testing Technology).

In Vivo Gut Permeability Assays
The intestinal barrier function was measured using in vivo gut
permeability assays as previously described (20). Mice were
fasted for 6 h, then FITC-labeled dextran (DX-4000-FITC,
Sigma-Aldrich) were administered by gavage with a dose of
Frontiers in Endocrinology | www.frontiersin.org 3
500 mg/kg body weight. 1 h later, blood samples were collected
through tail vein. The measurement of serum concentration
of DX-4000-FITC was conducted by a fluorescence
spectrophotometer (SpectraMax i3x, Molecular Devices) with
an excitation wavelength of 485 nm and an emission wavelength
of 535 nm.

Mucosa-Adhered Microorganism
Measurement
As described previously (21, 22), the following steps were
performed to collect the mucosa-adhered microorganisms: the
gut (from jejunum to rectum) was first separated from mice, and
the feces in lumina was removed by squeezing. Then, intestine
was sectioned longitudinally and the material adhered to the
superficial layer was obtained by scraping the superficial layer of
the with a sterile cotton swab. The content was transferred to
sterile microtubes with DNA stabilizer and then stored at −80°C
before DNA extraction.

Bacteria DNA Extraction
About 1 g of stool sample was collected in sterile tubes and frozen
at −80°C before further experiments. DNA from the fecal samples
or mucosa samples was isolated using the PSP Spin Stool DNA Kit
(STRATEC Molecular) according to the manufacturer’s
instructions. A microvolume spectrophotometer (NanoDrop,
Thermo Fisher Scientific Life Sciences) was used for the
measurement of nucleic acids concentration.

Cell Culture and Treatment
The hep1-6 cell line was used to measure whether LPS treatment
would change the expression level of FGFR1 and KLB. The cells
were cultured in DMEM medium with 10% FBS, 100 U/ml
penicillin, and 100 mg/ml streptomycin at 37°C in a 5% CO2

humidified incubator. The cells were plated in six-well tissue
culture dishes. When cultured to 70–80% confluency, cells were
then treated by different concentration of LPS (0ng/mL,10ng/
mL, 20ng/mL,50ng/mL, and 100ng/mL) for 12h, and harvested
for the subsequent measurement of the mRNA level of FGFR1
and KLB.

RNA Isolation and cDNA Synthesis
Total RNA was extracted with the TRIzol method using standard
TRIzol RNA extraction protocol. TRIzol reagent (Thermo Fisher
Scientific Life Sciences) was used to homogenized liver samples to
isolated total RNA. A microvolume spectrophotometer
(NanoDrop, Thermo Fisher Scientific Life Sciences) was used to
determin RNA purity and concentration. RNA (1 mg) was reverse
transcribed to generate cDNA using the PrimeScript RT reagent
Kit (Takara) in accordance with the manufacturer’s protocol.

Real-Time PCR Analysis
The gene transcript levels and bacterial DNA quantification were
assessed using real-time polymerase chain reaction (RT-PCR).
Sequence-specific primers used in the study were shown in
Table 1. SYBR Green PCR Master Mix (Roche) was used for
amplification reactions. RT-PCR were performed in a Light
Cycler 480 system (Roche) following the manufacturer’s
December 2021 | Volume 12 | Article 773340
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instructions. The cycle threshold (Ct) values of the target genes
determined by the system were normalized to the Ct value of the
endogenous control gene glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), and whereas those of B. adolescentis
DNA were normalized to those of total bacterial DNA. Relative
changes were calculated using the 2−DDCt method.

Western Blotting
Liver tissue proteins were extracted using lysis buffer containing
protease inhibitors (ST505, Beyotime Biotechnology) and
phosphatase inhibitors (P1082, Beyotime Biotechnology). Protein
was loaded onto sodium dodecyl sulfate polyacrylamide gel (SDS-
PAGE) to separate by electrophoresis. After the target protein was
separated, the protein would be transferred onto polyvinylidene
fluoride (PVDF) membrane (Millipore) and blocking in 5% bovine
serum albumin (BSA), followed by incubation with primary
antibodies at 4°C overnight. On the next day, secondary antibodies
would be incubated with the membrane. Immunoreactivity was
detected using enhanced chemiluminescent autoradiography
(Millipore). Chemiluminescence was determined using ChemiDoc
Imageing System (BIO-RAD) or Optimax X-ray Film Processor
(Protec GmbH&Co. KG). The Image J software (National Institutes
of Health, USA) was used for band quantification. The primary
antibodies used for western blotting were against Phospho-NF-
kBp65 (Ser536) (3033, Cell Signaling Technology), NF-kBp65
(8242, Cell Signaling Technology), KLB (AF2619, R&D), FGFR1
(12511, Cell Signaling Technology), extracellular signal−regulated
protein kinase 1/2 (Erk1/2, 9102, Cell Signaling Technology),
phosphorylated (p)- Erk1/2 (Thr202/Tyr204) (9101, Cell Signaling
Technology), and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH,5174, Cell Signaling Technology).

FGF21 Response Test
After 8-week intervention, mice were conducted theFGF21
response test (Figure 4G). Under a general anesthetic, left lobe
liver of mice was ligated and part of it were sectioned and flash
frozen with liquid nitrogen. Then 2 mg/kg recombinant mouse
FGF21 (rmFGF21) or vehicle was injected to mice through
inferior vena cava. 15min later, part of liver from right lobe
were collected. Protein from these liver samples would be used to
detect the level of Erk1/2 phosphorylation.
Frontiers in Endocrinology | www.frontiersin.org 4
Statistical Analysis
All statistical analyses were performed using GraphPad Prism
(GraphPad Software). Results were presented as mean ± S.E.M.
(standard error of the mean). One-way analysis of variance
with the consequent post hoc test of Fisher’s LSD was applied.
A p-values of <0.05 was considered statistically significant.

RESULTS

B. adolescentis Supplementation
Attenuated the Diet-Induced Liver
Steatosis and Steatohepatitis in Mice
With Diet-Induced NASH
Eight-week-old male C57BL/6J mice on control diet or CDHFD
were allocated to treatment of drinking water (control; CDHFD-
water), water with B. adolescentis (CDHFD-B.a), or water with heat-
kill B. adolescentis for 8 weeks (Figure 1A), followed by further
assessments. The supplementation of B. adolescentis in drinking
water did not alter food intake nor body weight, as well as the water
consumption (Supplementary Figures 1A, B; Figure 1B). And we
measured the energy content in feces to investigate whether the
absorption of the nutrients was affected. No significant difference
was found among the four groups (Supplementary Figure 1C).
Hepatic pathology showed that compared to control diet, CDHFD-
induced massive accumulation of fat and mild fibrosis in mice
(Figures 1C, D). Supplementation with living B. adolescentis
attenuated these lesions and reduced the NAS (Figures 1C, D).
In accordance with the histology findings, B. adolescentis abrogated
the increase of circulating and hepatic levels of TGs induced by
CDHFD (Figures 1E, F). The lower levels of AST and ALT in
CDHFD-B.a group indicated a reversal of diet-induced liver damage
(Figures 1G, H). The heat-killed B. adolescentis also show some
benefits on NAS, hepatic TG, and serum AST. But it’s effect is
weaker than live B. adolescentis (Figures 1D, E, G).

Supplementation of B. adolescentis
Decreased Intestinal Permeability and
Lipopolysaccharide (LPS) Infiltration
The B. adolescentis content in fecal and gut mucosa after
treatment was measured by the real-time PCR analysis.
TABLE 1 | Primers for RT-qPCR.

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

GAPDH (mouse) CTCATGACCACAGTCCATGC CACATTGGGGGTAGGAACAC
Total bacteria ACTCCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG
B. adolescentis ATAGTGGACGCGAGCAAGAGA TTGAAGAGTTTGGCGAAATCG
A. muciniphila CAGCACGTGAAGGTGGGGAC CCTTGCGGTTGGCTTCAGAT
M. schaedleri CGAGCGTTGTTCGGAGTGACTG CCAGCCAGATTGCCGCCTTC
TLR4 (mouse) AAGTTATTGTGGTGGTGTCTAG GAGGTAGGTGTTTCTGCTAAG
CD14 (mouse) GAAGCAGATCTGGGGCAGTT CGCAGGGCTCCGAATAGAAT
FGF21(mouse) GCCCAGCAGACAGAAGCCCAC CAGCTGCAGGAGACT TTCGGGG
FGFR1(mouse) GCCAGACAACTTGCCGTATG ATTTCCTTGTCGGTGGTATTAACTC
b-Klotho (mouse) TGGTTCGCCAACCCCATCCA TGGGCCCGAAGGAAAAGGCA
Decembe
A. muciniphila, Akkermansia muciniphila; B. adolescentis, Bifidobacterium adolescentis; CD14, cluster of differentiation 14; GAPDH, glyceraldehyde-3-phosphate dehydrogenase;
M. schaedleri, Mucispirillum schaedleri; RT-qPCR, real-time quantitative polymerase chain reaction; TLR4, toll-like receptor 4; ZO-1, zonula occludens-1.
r 2021 | Volume 12 | Article 773340
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4.01*1010 CFU/day of B. adolescentis intake from drinking water
increased its amount both in feces and in gut mucosa
(Figures 2A, B). Another two prominent microbes were not
changed (Supplementary Figures 1D, E). Changes in gut
permeability have been associated with NAFLD development.
In particular, the increase in gut permeability lead to the entry of
gut-derived metabolites into circulation, such as ethanol and
LPS, which affect NAFLD development (23). To investigate
Frontiers in Endocrinology | www.frontiersin.org 5
whether B. adolescentis administration could decrease intestinal
permeability, an in vivo gut permeability assay was performed. 1
hour after gavage of fluorescent-labeled dextran (DX-4000-
FITC), its serum level in CDHFD-water group was twice as
high as that in control group, indicating an increase in intestinal
permeability (Figure 2C). Such an increase in intestinal
permeability was significantly abolished by supplementation
with live B. adolescentis (Figure 2C). The gut permeability was
A B

D

FE G H

C

FIGURE 1 | B. adolescentis supplementation alleviated the diet-induced liver steatosis and steatohepatitis in mice. (A) The overall design of the animal experiment.
C57BL/6J mice on CDHFD were given drinking water (CDHFD-water), water with live B. adolescentis (CDHFD-B.a), or heat-killed (CDHFD-hk B.a) for 8 weeks. The
experiment schematic was created using BioRender.com. (B) Body weight in each group after intervention (n = 6 in each group). (C) Histology of liver with HE and
Masson staining. (D) NAS (n = 6 in each group). (E) TG level in liver (n = 6 in each group). (F) The level of serum TG (n = 6 in each group). (G) The level of serum
AST (n = 6 in each group). (H) The levels of serum ALT (n = 6 in each group). ALT, alanine aminotransferase; AST, aspartate aminotransferase; CDHFD, choline-
deficiency high fat diet. HE, hematoxylin- Eosin; NAS, NAFLD activity score; TG, triglyceride. Data are presented as mean ± SEM. Significance was determined by
one-way ANOVA with Fisher’s LSD multiple-comparison analysis. *p < 0.05; **p < 0.01; ***p < 0.001.
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largely regulated by the tight junctions between epithelial cells of
intestine, which form a physical barrier defending the intrusion
of pathogens and bacterial products. Therefore, we wonder
whether B. adolescentis could affect the level of epithelial tight
junction protein ZO-1 and occludin. As immunofluorescent
staining of ileum sections showed (Figures 2D, E), mice on
CDHFD have lower ZO-1 than their counterparts on control
diet, whereas those with B. adolescentis have similar level with
control mice. The level of occludin showed the same trend as
ZO-1 although not statistically different (Figure 2F). In line with
Frontiers in Endocrinology | www.frontiersin.org 6
the change in gut permeability, serum LPS concentration was
higher in mice on CDHFD, whereas B. adolescentis treatment
could decreased the diet induced elevation of LPS (Figure 2G).
The LPS/Toll-Like Receptor 4 (TLR4)/
Nuclear Factor-kB (NF-kB) Axis Was
Suppressed by B. adolescentis
To investigate whether the change in circulation LPS would affect
liver, we measured the localization of gut-derived LPS in liver
A B

D

C

E F G

FIGURE 2 | Effect of B. adolescentis on intestinal permeability. Mice were grouped and treated as in Figure 1. (A, B) Abundance of B.adolescentis in feces and
mucosa after intervention determined by qPCR (n = 6 in each group). (C) Serum concentrations of DX-4000-FITC at 1 hour after oral gavage (n = 6 in each group).
(D) ZO-1and occludin and in ileum detected by immunofluorescent staining. (E, F) H-score of ZO-1 and occludin measured in ileum section with immunofluorescent
staining. (G) The level of serum LPS (n = 6 in each group). DX-4000-FITC, fluorescent-labeled dextran; H-score, histochemistry score; LPS, lipopolysaccharide;
ZO-1, zonula occludens-1. Data are presented as mean ± SEM. Significance was determined by one-way ANOVA with Fisher’s LSD multiple-comparison analysis.
*p < 0.05; **p < 0.01; ***p < 0.001.
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and by quantifying the H-score of LPS we discovered a similar
trend with serum LPS (Figures 3A, B). LPS infiltration in liver
has been shown to increase liver damage through a TLR4-
mediated pathway (24). As the main receptor of LPS, the levels
of TLR4 and CD14 were upregulated in the CDHFD-water group
compared to those of control group (Figures 3C, D). The
activation of TLR4/NF-kB signaling pathway in CDHFD mice
was confirmed by the increased phosphorylation level of a NF-
kB subunit p65 (Figures 3E, F). However, supplementation
with live B. adolescentis abolished the CDHFD-induced
upregulation of the TLR4 and CD14 (Figures 3C, D). And
the phosphorylation level of NF-kB was also decreased by
B. adolescentis treatment (Figures 3E, F). Collectively, a
suppression of LPS/TLR4/NF-kB pathway was discovered in
mice supplemented with B. adolescentis.

B. adolescentis Supplementation
Alleviated FGF21 Resistance
LPS injection has been shown to suppress FGF21 signaling in mice
(25). To investigate if circulating LPS can alter the signaling of the
hepatic FGF21 pathway, we examined the expression of FGF21, as
well as FGFR1 and KLB in the liver. In accordance with previous
findings, compared to control diet, CDHFD induced a higher
expression of FGF21(Figures 4A, B). Despite that CDHFD
increased the level of FGF21, the expression of FGF21 receptors
wasdownregulated (Figures4C–G),which indicateapotentFGF21
resistant state in these mice. By supplementation with B.
adolescentis, the CDHFD induced FGF21 elevation was reduced
(Figures 4A, B), accompanied by the upregulation of receptors
(Figures4C–G).Tomeasure the response toFGF21 inCDHFD-B.a
group, we administered recombinant mouse FGF21 (rmFGF21) or
vehicle to mice (Figure 4H), and detected the change of Erk1/2
phosphorylation. As shown in Supplementary Figures 1F, G,
the technique itself could not produce the downstream
phosphorylation of Erk1/2. And the level of Erk1/2
phosphorylation was significantly higher in CDHFD-B.a group
than CDHFD-water group or CDHFD-hk B.a group in response to
FGF21 (Figures 4I, J). It confirmed that treatment with live B.
adolescentis increase the liver FGF21 sensitivity in mice. To testify
that B. adolescentis increased liver FGF21 sensitivity by reducing
LPS, we treated the hep1-6 cells with different concentration of LPS.
Correspondently, the expression of FGFR1 and KLB was
suppressed by LPS in a dose-dependent manner (Figures 4K, L).
DISCUSSION

As the research on the gut microbiota progress, the close
relationship between gut microbiota and NAFLD has been
discovered. Herein, we provide an evidence that a kind of
probiotics B. adolescentis could markedly reduce diet-induced
NAFLD in mice, and that this protective effect may be related
with the hepatic FGF21 pathway via LPS. Both exogenous and
endogenous LPS have been reported to play a pivotal role in the
development in NAFLD through TLR4 pathway (24, 26, 27).
Consistent with our in vitro study, previous study has suggested
Frontiers in Endocrinology | www.frontiersin.org 7
that LPS injection could repress the KLB expression in vivo (25).
By activating TLR4 pathway, LPS can induce the release of
inflammatory cytokines, such as interleukin 6 (IL-6), tumour
necrosis factor a (TNFa), and IL-1b. Administration of TNFa in
adipose cells represses KLB expression and impairs FGF21-
mediated glucose transporter 1 expression and glucose uptake
(28). Furthermore, studies have shown that these three
inflammatory cytokines could also repress KLB expression in a
dose-dependent manner in hepatocytes (25, 29).

FGF21 resistance is mainly based on the fact that high
endogenous levels of FGF21 appear to be ineffective or not as
expected in metabolic regulation, but high pharmacological doses
of FGF21 can induce the expected results. This was first proposed
by Fisher et al. (30). They discovered that obese mice exhibited
marked deficits in the ability of the peptide to initiate signals
through the ras-raf-MAPK cascade in response to FGF21,
accompanied by decreased expression of KLB and FGF
receptors (30). The decreased FGF21 receptor complex is
deemed to be an important mechanism leading to FGF21 signal
impairment. KLB expression in fatty livers improves FGF21
signalling (31). However, using adipose-specific KLB transgenic
mice to maintain the KLB levels in adipose tissue did not increase
FGF21 sensitivity (32). More physiological and pharmacological
studies are needed to elucidate the mechanisms underlying
FGF21 resistance.

Although the benefit of FGF21 on NAFLD have been testified
in many studier, it is still controversial whether the liver is a
direct target organ for FGF21 action or indirect target via the
adipose tissue or central nervous system (11). Expression of
FGFR1c in adipose tissue is higher than liver making it the main
target tissue of FGF21. However, it can also act independent of
adipose (33). Studies have shown that FGF21 could inhibit
mTORC1 in hepatocytes to control hepatic insulin action and
maintain glucose homeostasis (34), while acute FGF21 treatment
could induce hepatic expression of key regulators of
gluconeogenesis, lipid metabolism, and ketogenesis (35). More
recently, FGF21 was found to be dispensable in the regulation of
lysosomal function, which is related to lipophagy (31, 36). Fgf21
deficiency impairs hepatic lysosomal function by blocking
transcription factor EB (TFEB), a master regulator of lysosome
biogenesis and autophagy (36), resulting increased lipid droplet
accumulation in liver. Thus, lipophagy might be another direct
mechanism by which FGF21 alleviates NAFLD. Besides, study
have suggested that FGF21 could reduce the expression of TNF-
a, IL-1b, IL-6 and IFN-g and increased the level of IL-10 in a
dose-dependent manner in LPS-stimulated RAW 264.7,
indicating an anti-inflammatory effect (37). Apart from
macrophages, FGF21 could also regulate the activation of
hepatic stellate cells (38) which is important during the
development of liver fibrosis. Also, treatment with FGF21
could reduce apoptosis and the level of oxidative stress during
liver injury, thereby contribute to the repairment of liver
function (39). The mechanism by which FGF21 alleviates
NAFLD needs more studies to be further confirmed.

Unlike in the mouse intestine, B. adolescentis is the dominant
species in the human intestine. Supplementation with B.
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adolescentis not only increase its content, could also modifies the
gut microbiota (40), which contributes towards reducing LPS
production in gut. Previous studies have found that B.
adolescentis increased serum leptin concentrations and induced
Frontiers in Endocrinology | www.frontiersin.org 8
the expression of thermogenesis- and lipid metabolism-related
genes in brown adipose tissue (40). Furthermore, B. adolescentis
can also specifically induce intestinal Th17 cell accumulation (41,
42), which resembled the effect of FGF21 analogue on liver Th17
A B
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FE

FIGURE 3 | Effects of B. adolescentis on TLR4 pathway. Mice were grouped and treated as in Figure 1. (A) LPS location in liver detected by immunohistochemical
staining. (B) H-score of LPS measured in ileum section with immunofluorescent staining. (C) The transcription of TLR4 in liver (n = 6 in each group). (D) The
transcription of CD14 in liver (n = 6 in each group). (E) Phosphorylation of the p65 NF-kB subunit detected by western blot analysis. (F) Quantification of the relative
phosphorylation of the p65 NF-kB subunit (n = 4). CD14, cluster of differentiation 14; H-score, histochemistry score; LPS, lipopolysaccharide; NF-kB, nuclear
transcription factor-kappa B; TLR4, toll-like receptor 4. Data are presented as mean ± SEM. Significance was determined by one-way ANOVA with Fisher’s LSD
multiple-comparison analysis. *p < 0.05; **p < 0.01.
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FIGURE 4 | B. adolescentis supplementation alleviated FGF21 resistance. Mice were grouped and treated as in Figure 1. (A) The serum level of FGF21 (n = 6 in
each group). (B) FGF21 levels in liver measured by ELISA (n = 6 in each group). (C) The transcription of FGFR1 in liver (n = 6 in each group). (D) The transcription of
KLB in liver (n = 6 in each group). (E) The expression of FGFR1 and b-Klotho in liver detected by western blot analysis. (F) Quantification of the FGFR1 expression
normalized to GAPDH (n = 3). (G) Quantification of the KLB expression normalized to GAPDH (n = 3). (H) Experiment schematics for FGF21 response test. The
experiment schematic was created using BioRender.com. (I) Phosphorylation of Erk1/2 (Thr202/Tyr204) before and after rmFGF21 administration (2mg/kg) detected
by western blot analysis. (J) Quantification analysis of the fold change of Erk1/2 phosphorylation (n = 4-6). FGF21, fibroblast growth factor; FGFR1, Fibroblast growth
factor receptor 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; KLB, b-klotho; rmFGF21, recombinant mouse fibroblast growth factor 21. (K) The
transcription of FGFR1 in hep1-6 after the treatment with LPS. (L) The transcription of KLB in hep1-6 after the treatment with LPS. Data are presented as mean ±
SEM. Significance was determined by one-way ANOVA with Fisher’s LSD multiple-comparison analysis. *p < 0.05; **p < 0.01; ***p < 0.001.
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cells (43). Moreover, B. adolescentis is also a key member of the
human gut microbiota in the production of GABA, highlighting
its potential implication in gut-brain axis interactions (44).
Collectively, supplementation with B. adolescentis seems to
have a profound impact on the health of hosts.

Besides the supplementation with live B. adolescentis, the
supplementation with heat killed B. adolescentis also showed
some benefit on hepatic steatosis and inflammation, although it
is weaker than live B. adolescentis. This indicating that some
content of the bacteria could still work even though the bacteria
itself was inactivated. Similarly, in previous study, another
bifidobacteria (Bifidobacterium breve M-16V) were found to
have immune-modulating effects and affected intestinal
metabolism even though it had been heat-killed (45). Since
heat-killed bacteria have less safety concern, it may in the
future be an alternative treatment to live bacteria.

In conclusion, we have suggested a potent interaction
between the gut microbiota, hepatic endocrine system, and the
development of liver steatosis and steatohepatitis. Live B.
adolescentis supplementation markedly alleviated the diet-
induced NAFLD in mice and increased the sensitivity to
FGF21 by suppressing the LPS/TLR4/NF-kB pathway.
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