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The dysfunction of the DNA mismatch repair system results in microsatellite instability (MSI). MSI plays a central role in the
development of multiple human cancers. In colon cancer, despite being associated with resistance to 5-fluorouracil treatment, MSI
is a favourable prognostic marker. In gastric and endometrial cancers, its prognostic value is not so well established. Nevertheless,
recognising the MSI tumours may be important for predicting the therapeutic effect of immune checkpoint inhibitors. Several
gene expression signatures were trained onmicroarray data sets to understand the regulatorymechanisms underlyingmicrosatellite
instability in colorectal cancer. A wealth of expression data already exists in the form ofmicroarray data sets. However, the RNA-seq
has become a routine for transcriptome analysis. A newMSI gene expression signature presented here is the first to be valid across
two different platforms, microarrays and RNA-seq. In the case of colon cancer, its estimated performance was (i) AUC = 0.94, 95%
CI = (0.90 – 0.97) on RNA-seq and (ii) AUC = 0.95, 95% CI = (0.92 – 0.97) on microarray. The 25-gene expression signature was
also validated in two independent microarray colon cancer data sets. Despite being derived from colorectal cancer, the signature
maintained good performance on RNA-seq and microarray gastric cancer data sets (AUC = 0.90, 95% CI = (0.85 – 0.94) and AUC
= 0.83, 95% CI = (0.69 – 0.97), respectively). Furthermore, this classifier retained high concordance even when classifying RNA-seq
endometrial cancers (AUC = 0.71, 95% CI = (0.62 – 0.81). These results indicate that the new signature was able to remove the
platform-specific differences while preserving the underlying biological differences between MSI/MSS phenotypes in colon cancer
samples.

1. Introduction

Microsatellite instability (MSI) refers to a genetic abnormality
found in many human cancers. Microsatellites are short
tandem repeats of 1-6 base pairs per unit. Spontaneous
mismatches or indels in microsatellites may occur during
DNA replication. Such abnormalities can be recognised and
repaired by the mismatch repair (MMR) genes. Cells with
defective MMR gene function exhibit an abnormal length
of microsatellite repeats resulting in microsatellite instable
phenotype.

Traditional approach to identify patients with MSI is
using a recommended panel of fivemarkers also known as the
Bethesda Panel [1]. However, a variety of other marker panels

were developed to assess MSI [2, 3]. Instability detected in
≥ 30% tested markers is designated as microsatellite-high
(MSI-H). Instability detected in < 30% tested is termed
microsatellite-low (MSI-L), and the absence of instability is
termed microsatellite stability (MSS). Although microsatel-
lite instable (MSI) phenotype has been reported in diverse
human cancers (e.g., colon, gastric, and endometrial), it is the
most frequently associated with colon cancer. Approximately
15% sporadic colon cancers manifest the MSI phenotype
[4]. The MSI colon tumours have characteristic molecular
biomarkers such as silencing of the MLH1 promoter by
hypermethylation [5]. Other well-known contributors toMSI
instability in colon cancer areMSH2,MSH6,MLH3, or PMS2
[6, 7].
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Table 1: Summary of all data sets used in the analysis.MSI microsatellite instability; MSS microsatellite stability; HG-U133AHuman Genome
U133A 2.0 platform; HG-U133Plus Human Genome U133 Plus 2.0 platform.

Cohort Tissue Platform MSS MSI Source
A1 development colon RNA-seq 140 35 TCGA
A2 development colon microarray (HG-U133 Plus) 318 59 GSE39582
B1 validation colon microarray (HG-U133 Plus) 77 10 GSE39582
B2 validation colon microarray (HG-U133 A) 107 29 GSE41258
C1 gastric RNA-seq 281 54 TCGA
C2 gastric microarray (HG-U133 Plus) 18 16 GSE13911
D1 endometrial RNA-seq 64 52 TCGA

In colon cancer, despite being associated with resistance
to 5-fluorouracil treatment [8], MSI is a favourable prognosis
marker [9, 10]. In gastric and endometrial cancer, its prognos-
tic value is not so well established. Nevertheless, recognising
the MSI tumours is of clear clinical importance and may be
important for predicting the therapeutic effect of immune
checkpoint inhibitors.

Nowadays, RNA-seq represents the technology of choice
for gene expression analysis. Despite the benefits of RNA-
seq, a wealth of expression data already exist in the form of
microarray data sets. Moreover, microarray data sets were
used in several studies to obtain gene expression signa-
tures to understand the regulatory mechanisms underlying
microsatellite instability in colorectal cancer [11–15]. There-
fore, having a MSI gene expression signature able to remove
the platform-specific differences while preserving the under-
lying biological differences between MSI/MSS phenotypes
would be beneficial. Although MSI testing exists, it is not
routinely performed on all cases. Hence a transcriptional
signature may complement available clinical features with
information on MSI status.

We performed a binary classification between MSI and
MSS cases. Since MSS andMSI-L tumours share similar clin-
icopathologic features [16, 17], MSS and MSI-L populations
were pooled in a single class. A new MSI gene expression
signature presented here is the first to be valid across two
different platforms, microarrays and RNA-seq. A simple
nearest-centroid classifier was built, and its performance in
terms of area under the ROC curve estimated using a 10-fold
cross-validation procedure. The final classifier was validated
on independent data sets representing colon, gastric, and
endometrial cancers. Pathway analysis was performed for
identifying enriched pathways fromMSigDB.

2. Materials and Methods

2.1. Patients and Samples. The discovery set consisted of n
= 552 colon cancer samples of which n = 175 were from
TCGA RNA-seq [18] (discovery cohort A1) and n = 377
from Affymetrix gene expression (GEO accession number
GSE39582 [19]) (discovery cohort A2).

The GSE39582 data set consists of two independent
data sets. The second data set from GSE39582 (n = 87)
was used as an independent validation cohort B1. Another
independent validation colon cancer cohort B2 (n = 136) is

from Affymetrix gene expression (GSE41258 data set from
GEO database [19]).

The gastric cancer set consisted of n = 369 samples of
which n = 335 were from TCGA RNA-seq [18] (cohort C1)
and n = 34 from Affymetrix gene expression (GEO accession
number GSE13911 [19]) (cohort C2). The endometrial cancer
set consisted of n = 116 samples from TCGA RNA-seq [18]
(cohort D1).

A brief summary of all data sets can be found in Table 1.

2.2. RNA-Seq and Microarray Data Analysis. Gene expres-
sion data were processed following standard practices in the
field as follows.

In RNA-seq data sets, genes with low counts across all
libraries were filtered out prior to further analysis. Read
counts were normalised using Trimmed Mean of M-values
normalisation procedure [25]. Differential gene expression
analysis was performed using edgeR [26] generalised lin-
ear model (batch effects included in the generalised lin-
ear model). Only genes with the absolute value of log2
fold change >1 were considered as differentially expressed
(adjusted p value < 0.05, Benjamini-Hochberg procedure
[21]).

Outlier microarrays were filtered out using (i) 2D images
for spatial bias diagnostic and (ii) NUSE (Normalised
Unscaled Standard Errors, median (NUSE) ≤ 1.035) (affy-
PLM Bioconductor package [27]). Gene expression measure-
ments were normalised using Robust Multiarray Average
procedure [28] and quantile normalisation.

Two types of Affymetrix human gene expression arrays
were used in this study: Human Genome U133A 2.0 (HG-
U133A) and Human Genome U133 Plus 2.0 (HG-U133Plus).
HG-U133A and HG-U133Plus differ from the number of
probe sets presented in the chip (HG-U133A comprises more
than 22,000 probe sets; HG-U133Plus comprises more than
54,000 probe sets).

2.3. Construction of the Gene Expression Signature for MSI
Status. For the analysis, MSI-low and MSS (microsatellite
stable) populations were pooled in a single class. Using
four published gene expression signatures of MSI trained
exclusively on microarray data sets [11–14], we identified
a core MSI gene list. First, we filtered genes common to
both platforms and then found differentially expressed genes
(DEGs) between MSI/MSS in RNA-seq development cohort
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A1. A new gene expression signature was defined as the
intersection of these DEGs and the core MSI gene list. To
minimise redundancy of the gene expression signature, genes
with the absolute value of Pearson’s correlation coefficient
> 0.75 either in the cohort A1 or in the cohort A2 were
excluded from the final gene expression signature (if expres-
sion levels of two genes were highly correlated, only one
randomly selected representative from these two genes was
included in the signature). The gene expression signature
was used to construct a nearest (cosine similarity) centroid-
based classifier. For each sample, a score was computed as
the difference between cosine distances from the sample
and the centroids of the MSI and MSS classes and used
for the prediction of MSI status. If the score exceeded an
optimised threshold, a sample was classified as MSI. We did
not construct more sophisticated classifiers to allow direct
comparison with published signatures trained exclusively on
microarray data sets.

2.4. Performance Evaluation of the Gene Expression Sig-
nature for MSI Status. The performance of the classifier
was estimated using 10-fold cross-validation. As the main
performance index was used in an area under the receiver
operating characteristic curve (AUC) and 95% confidence
intervals (CI) were computed using the DeLong’s method
[20] (implemented in pROC R-package [29]). The gene
expression signature was validated on two independent colon
cancer data sets: cohort B1 and cohort B2.

Only the independent microarray data sets were used for
validation due to the lack of an independent publicly available
colon cancer RNA-seq data set (with present MSI status).

Besides the validation on an independent colon cancer
samples, we evaluated the performance of the gene expression
signature on gastric and endometrial cancer samples (cohorts
C1, C2, and D1).

2.5. Comparisonwith Published Signatures Trained Exclusively
on Microarray Data Sets. The gene expression signature
performance was also compared with published MSI gene
expression signatures trained exclusively on microarray data
sets.

Giacomini et al. [11] developed a 7-gene expression signa-
ture using a custommicroarray.The signature was trained on
colon cancer cell lines and included one probe for noncoding
RNA.

Kruhøffer et al. [12] constructed a 9-gene expression
signature capable of separating the MSI and MSS samples
using both sporadic and hereditary nonpolyposis tumours.
The Human Genome U133A 2.0 (Affymetrix) was used to
measure the level of gene expression.

Lanza et al. [13] identified a signature consisting of 27
differentially expressed genes including eight miRNAs (19-
gene expression signature used in comparison with a new
gene expression signature; miRNAs were excluded from the
analysis). Hybridisation was performed to the human 18.5k
Expression Bioarray.

Tian et al. [14] developed a 64-gene expression signature
for the detection of MSI phenotypes using Agilent 44K

oligonucleotide array.The signature included probes without
mapping to a known gene or multiple mapping probes.

The classification of samples was carried out in the same
way as before (genes of the new signaturewere replaced by the
genes from previously mentioned published gene expression
signatures). DeLong’s test [20]was used to compare theAUCs
of the gene expression signature and published MSI gene
signatures trained exclusively on microarray data sets. The
correlation analysis was performed in RNA-seq development
cohort A1 to detect potential multicollinearity among the
genes from signatures trained exclusively on microarray data
sets. The correlation was measured as the absolute value of
Pearson’s correlation coefficient.

2.6. Functional Interpretation and Pathway Enrichment Anal-
ysis of the Gene Expression Signature. A functional and bio-
logical interpretation of the 25-gene expression signature was
obtained from the Database for Annotation, Visualization
and Integrated Discovery (DAVID) version 6.8 [30].

To identify pathways enriched in the gene expression sig-
nature, pathway enrichment analysis was performed against
MSigDB gene collections [31] using pathEnrich R function
[32] (adjusted p value < 0.05, Benjamini- Hochberg proce-
dure [21]).

2.7. Statistical and Survival Analysis. All statistical analyses
and survival analysis were performed in R (version 3.3.1;
[33]).

The prognostic value of the gene expression signature was
assessed by fitting the Cox regression model in stage II and
stage III cohortA1/A2 subpopulation (adjusted p value< 0.05,
Benjamini-Hochberg procedure [21]).

3. Results

3.1. Construction and Performance Evaluation of the Gene
Expression Signature for MSI Status. We identified a new 25-
gene expression signature (see Methods) (Table 2; Figure 1).
In 10-fold cross-validation, the classifier performance was
AUC = 0.94, 95% CI = (0.90 – 0.97) on RNA-seq cohort A1
and an AUC = 0.95, 95% CI = (0.92 – 0.97) on microarray
cohort A2 (Table 3). The 25-gene expression signature was
also validated in two independent microarray data sets:
cohort B1 with an AUC = 0.92, 95% CI = (0.81 – 1.00)
and cohort B2 with an AUC = 0.80, 95% CI = (0.70 –
0.90). Only 17 genes from the gene expression signature
were used in cohort B2 (probes for eight genes were not
available). We used validation cohort B2 on purpose of
showing that the classifier works well also with older versions
of Affymetrix microarrays. Microsatellite instable phenotype
is observed in many cancers. Therefore a valid question was
whether the signature could identify MSI cases also in gastric
and endometrial cancer samples. The 25-gene expression
signature yields good performance in gastric cancer patients
both on RNA-seq data set and microarray platforms (AUC =
0.90, 95%CI = (0.85 – 0.94) andAUC=0.83, 95%CI = (0.69 –
0.97), respectively). Furthermore, this classifier retained high
concordance even when classifying RNA-seq endometrial
cancer samples (AUC = 0.71, 95% CI = (0.62 – 0.81)(Table 3).
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Table 2: List of genes in the 25-gene expression signature.

Entrez gene ID Gene symbol Gene description
7138 TNNT1 troponin T1, slow skeletal type
8875 VNN2 vanin 2
81786 TRIM7 tripartite motif containing 7
8744 TNFSF9 tumor necrosis factor superfamily member 9
10551 AGR2 anterior gradient 2, protein disulphide isomerase family member
200916 RPL22L1 ribosomal protein L22 like 1
2786 GNG4 G protein subunit gamma 4
25984 KRT23 keratin 23
23305 ACSL6 acyl-CoA synthetase long-chain family member 6
7125 TNNC2 troponin C2, fast skeletal type
357 SHROOM2 shroom family member 2
54749 EPDR1 ependymin related 1
1820 ARID3A AT-rich interaction domain 3A
10656 KHDRBS3 KH RNA binding domain containing, signal transduction associated 3
2686 GGT7 gamma-glutamyltransferase 7
57477 SHROOM4 shroom family member 4
4292 MLH1 mutL homolog 1
85407 NKD1 naked cuticle homolog 1
29842 TFCP2L1 transcription factor CP2 like 1
10451 VAV3 vav guanine nucleotide exchange factor 3
80183 RUBCNL RUN and cysteine rich domain containing beclin 1 interacting protein like
430 ASCL2 achaete-scute family bHLH transcription factor 2
8313 AXIN2 axin 2
5326 PLAGL2 PLAG1 like zinc finger 2
222171 PRR15 proline rich 15
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Figure 1:The 25-gene expression signature profile. (a) RNA-seq development cohort A1 (n = 175), (b) microarray development cohort A2 (n
= 377). MSI microsatellite instability; MSS microsatellite stability.
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Table 3: Performance of the 25-gene expression signature and the published signatures trained exclusively on microarray data sets. As the main
performance index was used the AUC and 95% CIs were computed using the DeLong’s method [20]. DeLong’s test [20] was used to compare
the AUCs of the published signatures and the 25-gene expression signature on a given cohort (adjusted p-value < 0.05, Benjamini-Hochberg
procedure [21]). ∗ significantly better performance of the signature in comparison with the 25-gene expression signature; ∗∗ significantly
worse performance of the signature in comparison with the 25-gene expression signature; 25-gene expr.sig. the proposed 25-gene expression
signature; AUC area under the receiver operating characteristic curve; CI confidence interval.

Colon Gastric Endometrial
A1 development A2 development B1 validation B2 validation C1 C2 D1

RNA-seq Microarray Microarray Microarray RNA-seq Microarray RNA-seq

25-gene expr.sig. 0.94 0.95 0.92 0.80 0.90 0.83 0.71
CI (0.90 – 0.97) CI (0.92 – 0.97) CI (0.81 – 1.00) CI (0.70 – 0.90) CI (0.85 – 0.94) CI (0.69 – 0.97) CI (0.62 – 0.81)

Giacomini et al. [11] 0.67∗∗ 0.56∗∗ 0.55∗∗ 0.69 0.63∗∗ 0.53∗∗ 0.47∗∗
CI (0.58 – 0.76) CI (0.49 – 0.64) CI (0.35 – 0.75) CI (0.59 – 0.79) CI (0.56 – 0.71) CI (0.33 – 0.73) CI (0.36 – 0.58)

Kruhøffer et al. [12] 0.88 0.99∗ 0.92 0.81 0.74∗∗ 0.85 0.62
CI (0.82 – 0.95) CI (0.98 – 1.00) CI (0.75 – 1.00) CI (0.70 – 0.92) CI (0.67 – 0.81) CI (0.70 – 1.00) CI (0.52 – 0.72)

Lanza et al. [13] 0.96 0.92∗∗ 0.90 0.78 0.82∗∗ 0.70 0.63
CI (0.92 – 0.99) CI (0.89 – 0.95) CI (0.82 – 0.99) CI (0.70 – 0.87) CI (0.76 – 0.87) CI (0.52 – 0.89) CI (0.53 – 0.73)

Tian et al. [14] 0.97∗ 0.96∗ 0.95 0.82 0.89 0.88 0.71
CI (0.95 – 1.00) CI (0.94 – 0.98) CI (0.86 – 1.00) CI (0.72 – 0.92) CI (0.84 – 0.95) CI (0.75 – 1.00) CI (0.61 – 0.80)

3.2. Comparisonwith Published Signatures Trained Exclusively
on Microarray Data Sets. The performance of the 25-gene
expression signaturewas comparedwith published signatures
trained exclusively on microarray data sets (Table 3, Figure
S1). The 25-gene expression signature yields better perfor-
mance in comparison with Giacomini et al. [11] signature on
most cohorts. On RNA-seq cohort C1, the 25-gene expression
signature yields better performance in comparison with
Giacomini et al. [11], Kruhøffer et al. [12], andLanza et al. [13]
signatures. In case of microarray development cohort A2, the
AUCs of Kruhøffer et al. [12] and Tian et al. [14] signatures
were significantly better in comparison with AUC of the 25-
gene expression signature.

On the contrary, the AUCs of Giacomini et al. [11]
and Lanza et al. [13] signatures were significantly worse in
comparisonwith AUCof the 25-gene expression signature on
the same cohort.

In general, the accuracy of Tian et al. [14] signature
was high in all cohorts including RNA-seq development
cohort A1. Therefore, we performed correlation analysis to
detect potential multicollinearity among the genes from the
signature in the RNA-seq development cohort A1. A high
correlation between expression levels indicates the strong
relationship between genes and introduces a great deal of
redundancy in the signature. In the RNA-seq development
cohort A1, 15 genes from the Tian et al. [14] signature had the
absolute value of Pearson’s correlation coefficient higher than
0.75 (Figure 2).These results suggest high redundancy of this
signature in RNA-seq cohort A1.

The intersection of the 25-gene expression signature and
the published signatures is shown in Figure 3.

3.3. Functional Interpretation and Pathway Enrichment Anal-
ysis of the Gene Expression Signature. A functional and
biological interpretation of the 25-gene expression signature
was obtained from the DAVID database. Tumour-suppressor

genes (MLH1 and RUBCNL), protooncogene (AGR2), and
genes reported to be linkedwith colon cancer (EPDR1,MLH1,
AXIN2) were enriched in the signature. The signature also
comprised multiple genes with related oncogenic signaling
pathways such as EGFR (VAV3), AKT (TNFSF9 and GNG4),
or WNT (AXIN2, NKD1) signaling pathway. Genes GNG4
and VAV3 are involved in the chemokine signaling path-
way that activates downstream signaling pathways such as
MAPK.The 25-gene expression signature encompasses genes
associated with cell differentiation, growth, adhesion, and
migration.

We also carried out pathway enrichment analysis against
MSigDB gene collections [31]. Three gene sets from MSigDB
were significantly enriched in the new 25-gene expression
signature (Table 4). The pathway enrichment analysis results
support the 25-gene expression signature association with
colon cancer MSI phenotype. VAV3, ACSL6, GNG4, and
KRT23 were significantly enriched in gene set defined as
“downregulated genes discriminating between MSI and MSS
colon cancers” [22]. Results of Koinuma et al. [23] study
indicate that epigenetic silencing of AXIN2 is specifically
associated with carcinogenesis in MSI colorectal tumours.
This is in concordance with our results.

3.4. Proposed Gene Expression Signature and Prognosis. We
assessed the prognostic value of each gene from the proposed
25-gene expression signature by fitting the Cox regression
model to identify potential drivers of the prognostic effect.
Two endpoints were tested in stage II and III cohort A2
subpopulation: relapse-free survival (RFS, n = 301) and
overall survival (OS, n = 304). Because of the limitation of
TCGA data set, only OS endpoint was tested in stage II and
III cohort A1 subpopulation (n = 115).

It is well known that patients with MSI have a more
favourable prognosis compared with those with MSS. The
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Figure 2: Correlation plot of genes from the Tian et al. [14] signature with highly correlated expression levels (Pearson’s correlation coefficient >
0.75) in RNA-seq development cohort A1.The color key on the right shows the value of Pearson’s correlation coefficient.

prognostic value of the proposed 25-gene expression signa-
ture for MSI colon cancers was not statistically significant.
This suggests rather than being a prognostic gene set the
new 25-gene expression signature captures the underlying
biological differences between MSI/MSS phenotypes.

4. Discussion

Carcinogenesis is a multistep process, during which genetic
and epigenetic alterations determine the malignant transfor-
mation of the cell. The molecular profile of a tumour is a key
determinant of clinical outcome. Therefore, the precise MSI
status detection is needed for guiding the treatment strategies.
Having a single MSI gene expression signature that can be
used without regard to platform allows researchers to take
advantage of all available microarray/RNA-seq data sets.

The main objective of this study was to identify a gene
expression signature for MSI predictions in colon cancer that
could be applied to both microarrays and RNA-seq data sets.
We developed a new 25-gene expression signature that yields
high accuracy in MSI phenotype prediction in colon cancer.

Interestingly, the signature yields good performance also in
gastric and endometrial cancers. From a biologic perspective,
this supports the idea that MSI gene expression pattern is
comparable across various cancers pointing towards similar
regulatory pathways.

The 25-gene expression signature performance was also
compared with published MSI gene expression signatures
trained exclusively onmicroarray data sets.The proposed 25-
gene expression signature yields better performance in com-
parison with Giacomini et al.’s [11] signature onmost cohorts.
Even if Lanza et al.’s [13] signature originally consisted of both
mRNAs and miRNAs, we showed that using only mRNAs
from the signature can be used to distinguishMSI/MSS colon
cancer phenotypes.The accuracy of Tian et al.’s [14] signature
was high in all cohorts including RNA-seq development
cohort A1. However, the correlation analysis revealed high
redundancy of this signature in RNA-seq cohort. Therefore,
we propose the new 25-gene expression signature as a core
cross-platform pattern that may form the basis for a MSI
phenotype classifier across multiple cancers.

The functional annotation and the pathway enrichment
analysis of the 25 genes from the new gene expression
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Table 4: Pathway enrichment analysis of the proposed 25-gene expression signature against MSigDB gene collections. MSigDB molecular
signatures database.

MsigDB gene set name adj. p-value Genes in overlap
Watanabe colon cancer MSI vs MSS down [22] 0.005 VAV3, ACSL6, GNG4, KRT23
Koinuma colon cancer MSI down [23] 0.045 AXIN2, MLH1
SansomWNT pathway require MYC [24] 0.045 AXIN2, NKD1, ASCL2
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Kruhøffer et al. [12]

7

1

1

1

4

2

5

12

20

34

Figure 3: Intersection of the 25-gene expression signature and published microarray gene expression signatures used to construct the core MSI
(microsatellite instability) gene list. 25-gene expr.sig.: the proposed 25-gene expression signature.

signature support the association with colon cancer MSI
phenotype.

Two tumour-suppressor genes and one protooncogene
were enriched in the signature. AXIN2 gene is associatedwith
the WNT signaling pathway, and it is a direct repressor of
the MYC protooncogene [34]. AXIN2 was silenced in MSI
subgroup, possibly as a result of methylation of its promoter
region frequently observed in MSI colon cancer patients.
Interestingly, AXIN2was also identified as one of the 36 genes
that contribute to the distinction between MSI-L and MSI-H
samples [35]. RPL22L1 gene was previously identified as MSI
specific in gastric cancer [36] and identified as colon cancer
CIMP-H subtype (characterised as enrichment forMSI, right
side and mucinous histology) specific gene [37].

It should also be mentioned that MLH1 gene was previ-
ously identified as part of a gene list able to differentiate defi-
cient/nondeficient mismatch repair phenotype in colorectal
cancer samples [15].

In the microarray development cohort A2, MSI colon
cancer samples with downregulated MLH1 gene expression
form a compact cluster. On the contrary, MSI colon cancer
samples without silencing of the MLH1 gene expression are
clustered together with some MSS colon cancer samples (see
dendrograms in Figure 1). Most of these MSS samples were
misclassified as MSI by the proposed 25-gene expression

signature. A similar pattern was observed in the RNA-seq
development cohort A1. Even if these samples were predicted
to be microsatellite stable, we might hypothesize they have
disrupted the DNA mismatch repair system in a similar
way to MSI samples without silencing of the MLH1 gene
expression.

5. Conclusion

We present a new 25-gene expression signature able to iden-
tifyMSI cases in colon cancer with consistently strong perfor-
mance across microarray and RNA-seq platforms.Therefore,
the new MSI gene expression signature is able to remove the
platform-specific differences while preserving the underlying
biological differences betweenMSI/MSS phenotypes in colon
cancer samples. The performance of the signature on the
RNA-seq data set was compared with published MSI gene
signatures trained exclusively on microarray data sets. The
pathway enrichment analysis results support the 25-gene
expression signature association with colon cancer MSI
phenotype. Moreover, the new signature is able to capture
common gene activation patterns in the colon, gastric, and
endometrial cancers, suggesting that the development of a
common expression-based cross-platform test is feasible.
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