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Abstract

Background: African Americans (AAs) in the United States are known to have a

higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemi-

ological disparity are multifactorial, including socioeconomic factors leading to life-

style and dietary issues, healthcare access problems, and potentially tumor biology.

Recent findings: Although recent evidence suggests once access is equal, AA men

have equal outcomes to Caucasian American (CA) men, differences in PCa incidence

remain, and there is much to do to reverse disparities in mortality across the USA. A

deeper understanding of these issues, both at the clinical and molecular level, can facili-

tate improved outcomes in the AA population. This review first discusses PCa onco-

genesis in the context of its diverse hallmarks before benchmarking key molecular and

genomic differences for PCa in AA men that have emerged in the recent literature.

Studies have emphasized the importance of tumor microenvironment that contributes

to both the unequal cancer burden and differences in clinical outcome between the

races. Management of comorbidities like obesity, hypertension, and diabetes will pro-

vide an essential means of reducing prostate cancer incidence in AA men. Although

requiring further AA specific research, several new treatment strategies such as

immune checkpoint inhibitors used in combination PARP inhibitors and other emerging

vaccines, including Sipuleucel-T, have demonstrated some proven efficacy.

Conclusion: Genomic profiling to integrate clinical and genomic data for diagnosis,

prognosis, and treatment will allow physicians to plan a “Precision Medicine”
approach to AA men. There is a pressing need for further research for risk stratifica-

tion, which may allow early identification of AA men with higher risk disease based

on their unique clinical, genomic, and immunological profiles, which can then be

mapped to appropriate clinical trials. Treatment options are outlined, with a concise

description of recent work in AA specific populations, detailing several targeted ther-

apies, including immunotherapy. Also, a summary of current clinical trials involving

AA men is presented, and it is important that policies are adopted to ensure that AA

men are actively recruited. Although it is encouraging that many of these explore the

lifestyle and educational initiatives and therapeutic interventions, there is much still
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work to be done to reduce incidence and mortality in AA men and equalize current

racial disparities.

K E YWORD S

actionable ideas, biomarkers, genomic differences, immunotherapy, molecular differences, racial
disparity, socioeconomic issues

1 | INTRODUCTION

African Americans (AAs) in the United States have higher incidences

and mortality for a number of cancers.1 Their lifetime risk of prostate

cancer (PCa) is 1 in 6, with a lifetime risk of PCa specific mortality of

1 in 23.1 For non-Hispanic Whites their risk of PCa is lower with inci-

dence of 1 in 8, and mortality of 1 in 42.1 The drivers of this epidemi-

ological disparity in incidence and mortality are not clearly defined

and complex, ranging from social networks also causing lifestyle and

dietary issues, healthcare access problems, comorbidities, and their

influences on pelvic inflammation and tumor microenvironment, as

well as tumor biology with associated differences in genomic, molecu-

lar, and immunological pathways.1-3 Which of these drivers is the

most significant has been debated in the literature for some time, but,

although there are clearly differences in tumor biology, more recent

reports suggest once socioeconomic differences are removed, pros-

tate cancer specific mortality rates for African and Caucasian men are

similar.4-6 Examining retrospective data in PCa patient cohorts from

the Veterans Affairs health care system, as well as from Surveillance,

Epidemiology, and End Results (SEER) database and four Radiation

Therapy Oncology Group trials with long-term follow-up, showed

once AA men have equal access to healthcare and standardized treat-

ment, prostate cancer specific mortality (PCSM) is similar for AA and

CA men.4,5 Similarly, Tewari et al6 in a PCa patient cohort from the

Henry Ford Health Care System found differences in PCSM no longer

existed after multivariate analysis adjustment for socioeconomic sta-

tus. Nevertheless, the higher incidence of PCa in AA men remains,

and given their reduced access, one would expect the reverse. Clearly,

any discussion on racial disparity with a view to producing equity in

PCa incidence and management outcomes needs to be multifactorial

and is complicated by the fact that “race” is a social construct rather

than a biological definition. AA men have diverse and genetically het-

erogeneous ancestry, not only within Africa but also Europe and the

Americas, and so their molecular and immunological response to can-

cer as well as their tumor biology is likely to be equally diverse.7

In addition to this recent epidemiological evidence, there have

been reviews of the molecular and genomic aberrations in African

American (AA) men, and detailed analyses of the molecular and geno-

mic pathways of PCa for all ethnicities at times highlighting potential

therapeutic targets.8-11 Bhardwaj et al8 outlined the molecular differ-

ences in PCa between AA and CA men, discussing genetic polymor-

phisms, gene mutations, epigenetic changes, and microRNAs, as well as

comparative aberrations in the androgen receptor (AR), growth factor

receptor (GFR), and inflammatory signaling pathways. For all ethnicities,

an understanding of prostate cancer oncogenesis has evolved signifi-

cantly, with emerging research using this body of knowledge to explore

novel immunotherapeutics and plan “precision” treatments, aimed spe-

cifically at an individual's unique disease. Mitchell and Neal10 elegantly

describe the genomic evolution and mutational pathways of PCa, with

ETS fusion positive and negative tumors, as well as the influence on

oncogenesis of AR signaling and developmental pathways. Wang

et al12 use a comprehensive review of prostate cancer genetics listing

33 of the commonest genetic alterations with their biological function

to highlight emerging targeted therapies and immunotherapies, includ-

ing apalutamide (an AR antagonist), atrasentan (antagonist of the endo-

thelin receptor), and denosumab (RANKL targeting monoclonal

antibody) as well as PCa vaccines and checkpoint inhibitors, respec-

tively. Moreover, all forms of immunotherapy are a potentially exciting

and efficacious modality of treatment for localized and metastatic pros-

tate cancer, including vaccines, checkpoint inhibitors, adoptive cell ther-

apy, antibody therapy, and radioimmunotherapy, although there have

been few studies focused specifically on immunotherapy for the AA

race.13 Interesting studies on noncoding and micro-RNAs have shown

differential expression in AA men as compared to CA men,14 and with

specific reference to the tumor microenvironment (TME), Gillard et al15

have shown a more reactive stroma with enhanced chronic inflamma-

tory infiltrate as well as fibroblast function in AA men.

As yet, to our knowledge, there have been no reports leveraging

our understanding of molecular differences in PCa in AA men into

clinical practice. This review will first frame PCa oncogenesis across all

ethnicities in Hannahan and Weinberg's “Hallmarks of Cancer”,16

which is presented concisely in Table 1. This table aims to be used as

a reference to benchmark molecular and genomic differences in AA

men that have emerged in the recent literature, including differences

in the tumor microenvironment and noncoding RNA. Once

highlighted, and bearing the recent epidemiological evidence in mind,

these key insights will be used as a stepping stone to devising action-

able ideas and novel immunotherapies with the ultimate aim of pro-

viding at least some guidelines for reducing the incidence and

mortality of PCa in the United States in African American men.

2 | GENOMIC AND MOLECULAR
FUNDAMENTALS IN THE ONCOGENESIS
AND PROGRESSION OF PROSTATE CANCER

In their original paper, Hanahan and Weinberg86 outline 6 “Hallmarks

of Cancer” as an organizing principle to explain oncogenesis and its
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progression. This included constitutive proliferation, uncontrolled

growth, loss of cell cycle control, overriding cell death, tumor-induced

angiogenesis, and tumor Invasion and metastatic cascade.” Later, they
acknowledged the importance of “genetic instability, inflammation,

metabolic reprogramming, escaping antitumor immune response, and

tumor microenvironment” (see Figure 1 and Table 1). The genomic and

molecular pathways to the development and progression of PCa have

also been well described,10,11,25 and this knowledge will be reframed

across all ethnicities under Hanahan and Weinberg's Hallmarks.16 Each

of the Hallmarks' genetic or pathway abnormalities have been outlined

concisely, with specific reference to prostate cancer in Table 1. This

Table has been presented for use as a reference, to highlight the discus-

sion of genomic and molecular differences in the AA population. At the

time of writing, not all these pathways have demonstrated differences

in the AA population, and so may not contribute to a coherent story of

PCa tumor biology in AA men. Nevertheless, they have been included,

not only for completeness, but also as a reference should more differ-

ences emerge in the literature and potentially to stimulate further

research for this important topic. There is also an additional section on

putative genetic subclasses of PCa.

2.1 | Putative disease subclasses

ETS FUSION POSITIVE TUMOURS: E26 Transformation Specific

(ETS) transcription factor gene fusions are found in approximately half

of prostate cancers,87 the commonest of which is fusion of the

androgen-responsive promoter Transmembrane Protease Serine

2 (TMPRSS2) with the ERG gene of the ETS family.55 Other less com-

mon ETS transcription factor gene fusions include Friend leukemia

virus integration 1 (FLI1) and ETS variants 1, 4, and 5 (ETV1, ETV4,

and ETV5).10,88 This has led to a genetic based disease classification

of PCa into ETS fusion positive and ETS fusion negative tumors. The

fusion is thought to occur early in oncogenesis, being present in pros-

tatic intraepithelial dysplasia (PIN), and causes altered expression of

other genes implicated in oncogenesis, such as MYC, NKX3.1, EZH2,

and SOX-9.89-91 Once ETS Fusion has occurred, disease progression is

likely to require interaction with other aberrant pathways, for exam-

ple, PTEN inactivation discussed in Table 1.87,92-94 Most likely due to

tumor heterogeneity, studies of the clinical and prognostic signifi-

cance of ETS fusions have not produced any consistent results.88

More study is required in this area.

ETS NEGATIVE TUMORS: this accounts for the other half of pros-

tate cancers and has been putatively subclassified into three groups

according to three dominant different genomic drivers. These are

SPINK1 overexpression, SPOP mutation, and CHD1 deletion.10,11 The

details of these molecular pathways are summarized concisely in Table 1.

3 | SPECIFIC FINDINGS IN AFRICAN
AMERICAN MEN

Having outlined the fundamentals of oncogenesis for prostate cancer

according to the “Hallmarks of Cancer”16 in Table 1, studies highlight-

ing specific differences for AA versus CA men will be discussed under

the same headings. Given that some of the studies broadly investigate

differences using, for example, GWAS, there is inevitable crossover of

data, and some of these Hallmarks have been discussed in combina-

tion. At the end of this section, the importance of micro and noncod-

ing RNA disparities are addressed, as well as anatomical and molecular

Constitutive 

proliferation 

Uncontrolled cell 

division  

Overriding 

cell death 

Tumor induced 

angiogenesis 

Tumor 

invasion and 

metastatic 

cascade 

Genetic variations 

and chromosomal 

instability 

Reprogramming 

 Metabolism  

Tumour 

microenvironment 

Escaping 

anti-tumor 

immune 

response 

Pro-tumor 

in ammation 

Hallmarks of Cancer 

Resisting growth  

suppression  

F IGURE 1 The Hallmarks of Cancer
outlining a synopsis of oncogenesis
applicable to different cancers and
ethnicities. Adapted from reference 16
with permission from Elsevier
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correlations and putative disease subclassifications. A summary of the

current molecular and genomics disparities in AA men is illustrated in

Figure 2.

3.1 | Constitutive proliferation

3.1.1 | Androgen receptor signaling

The androgen hormonal axis, the androgen receptor (AR), and its signaling

pathway all play a critical role in PCa oncogenesis and management. Muta-

tions in the AR are uncommon in the treatment of naïve PCa but can be

found in up to 15% of androgen independent disease, heralding the onset

of castrate resistance, and potentially acting as a biomarker of progres-

sion.95 Moreover, many studies have shown clear differences in AR muta-

tions and signaling between AA and CA populations. Where possible, the

results of clinical studies have been presented, but the detailed frequencies

of different AR mutations or mutations in the genes of the androgen bio-

synthetic pathway in AA versus CA populations require further study.

Androgen receptor (gene locus Xq11) and target genes: The AR's

first exon contains two polymorphic nucleotide repeats, CAG and

GGN,96 and transcriptional activity of an AR correlates inversely with

CAG repeat length.96,97 Short CAG and GGN repeat length are also

linked to increased risk of PCa,98-100 and AA men more commonly

have fewer CAG repeats than CA men.101,102 Bennett et al102 exam-

ined CAG repeat length in the AR gene in 151 AA and 168 CA PCa

patients, finding AA men had significantly less mean CAG repeats

(19.8 vs 21.9), and men with shorter CAG repeats were more likely to

have metastatic disease. The specific association of polymorphic GGN

repeats with PCa is more controversial with conflicting reports of its

increase and effects in ethnic populations.96,103-105

AR derived protein expression has been investigated by immunohis-

tochemistry in benign prostatic hyperplasia and PCa tissue.106 Nuclear

AR expression in epithelial tissue was significantly increased in AA

patients (P = .048).107 In contrast, stromal AR levels are decreased in PCa

and there is a greater level of decrease in AA compared to CA

patients.108,109 The contrasting expression of epithelial and stromal AR in

PCa may be one of the commonest causes of castration resistance in

F IGURE 2 Key molecular characteristics of AA tumors with specific reference to differences in prostate cancer oncogenesis between AA and
CA populations
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PCa.96 Higher epithelial AR levels in AA men would suggest the expres-

sion of AR target genes is also increased. Using gene expression profiling,

Wang et al highlighted 1188 genes that are differentially expressed in AA

men including AR-target genes RHOA, ITGB5, and PIK3CB that are all

linked to increased invasiveness of PCa cells.96,110

AR hypermutations: unique AR specific germline and somatic hyper-

mutations have been shown in higher frequency in AA over CA men.111

Examining 200 AA and 100 CA patients with sporadic primary PCa,

somatic missense AR mutations were found in 8.5% and 2% in the AA and

CA groups, respectively. Analysis of the same groups revealed AR germline

mutations were four times more common in the AA group.111 One of the

commonest somatic mutations, which occur in PCa AR mutation, is

Thr877Ala.112 A recent mutation study characterized AR interacting pro-

teins known to bind T877A-AR, in different racial groups, and those unique

to AA men included DNA damage excision repair proteins such as ERCC1,

ERCC2, ERCC3, ERCC5, and FEN1.96,112

3.2 | Genes involved in Biosynthetic enzymes
affecting androgen

SRD5A2 (gene locus 2p23): Genetic mutations in 5α-reductase

(encoded by the SRD5A2 gene and catalyzing the conversion of tes-

tosterone to dihydrotestosterone (DHT)) may be altered in racial

groups, for example, certain SRD5A2 polymorphic alleles, such as

121-131-bp allele, are restricted to AA men.113 DHT's affinity for the

AR is five times that of testosterone, and although the significance of

this enzymic alteration is not clear and macroscopically androgen tes-

tosterone levels in AA and CA men have been shown to be similar, in

the context of increased AR tissue expression, alterations in DHT

levels may have consequence at a cellular level.114

CYP17 polymorphism (gene locus 10q24): The CYP17 gene is on

chromosome 10 and codes for the cytochrome P450-c17a enzyme in

the steroid biosynthetic pathway.115,116 T-to-C polymorphism in the

5' promoter region causes A1 (T) and A2 (C) alleles117 that may be

linked to greater PCa risk.118-120 Although the reports are somewhat

conflicting121,122, a study that investigated CYP17 polymorphism in

three different populations showed that AA men with A2 (C) allele

had an increased risk for higher grade and stage PCa.96,116

CYP3A4 polymorphism (gene locus 7q21.1): The CYP3A4 gene is

from the cytochrome p-450 family, codes for an enzyme that oxidizes

testosterone to less active metabolites.96,123,124 Race-stratified ana-

lyses showed that a germline genetic variant CYP3A4*1B was associ-

ated with aggressive PCa in AA men.125 This is in keeping with other

reports demonstrating this mutation is linked to worse outcomes in

AA men.126

Serum Androgen levels: The length of androgen exposure has

previously been implicated in PCa development,96 and young AA

men have been shown to have androgen levels 15% higher than CA

men,127 with associated increase in levels of 5-alpha reduc-

tase.128,129 Nevertheless, a causative relationship between prostate

cancer incidence and elevated androgen levels remains

controversial.

3.2.1 | EGFR signaling

EGFR signaling is important in PCa progression independent of AR

signaling pathways,130 as discussed in the section above. It is

increased in 40% to 80% of PCa patients and is more common in AA

men. EGFR expression is associated with higher Gleason scores and

castration resistant disease.130-132 Unfortunately, Phase-II studies of

the EGFR inhibitor gefitinib failed to demonstrate any effect on PSA

levels, despite low toxicity,131,133 and in resistant disease, it may be

linked to PI3K/Akt pathway hyperactivation.130,134,135

3.2.2 | Uncontrolled cell division and overriding
cell death

Bcl-2 (gene locus 18q21.33): Bcl-2 is an oncogene coding for a protein

that inhibits apoptosis.96,117,136 A number of studies have shown

altered apoptosis and proliferation status associated with Bcl-2 in AA

and CA men. De Vere White et al137 found Bcl-2 and proliferation sta-

tus was linked in AA men, but not in CA men, and Gao et al,22 in post-

radical prostatectomy patients, found significantly higher apoptosis

levels in AA rather than CA men but similar levels of proliferation.

Taking a different perspective, Khan et al138 looked at expression of

the apoptosis inhibitor protein, survivin, in blood-derived exosomal

vesicles of AA and CA men with PCa. AA men had higher levels of sur-

vivin protein and higher levels of exosomes. Drawing any clear conclu-

sions from these studies is challenging, suffice to say levels of

apoptosis and proliferation are important to PCa aggressiveness and

spread, and clearly are different in AA and CA men.

MDM2 (gene locus 12q15): The human mouse double-minute 2 pro-

tein (Mdm2) is a ubiquitin ligase that supports the degradation of p53

protein, itself crucial for apoptosis, DNA repair, and cell cycle arrest.96

An association between altered Mdm2 expression and increased risk of

localized and advanced PCa risk has been demonstrated in a number of

studies.139-142 Moreover, a single nucleotide polymorphism in the pro-

moter region (SNP309) of this gene results in increased transcription and

suppression of p53 activity.96,143 Despite a large meta-analysis by Yang

et al144 showing an association between the SNP309 polymorphism of

Mdm2 with reduced risk of PCa in CA men, there was no association

with PCa in men of different ethnicity.144

Other studies have investigated gene alterations in AA men, which

influence apoptotic pathways. Examining the PTEN status in AAmen using

tissue microarray on radical prostatectomy specimens, Tosoian et al145

found PTEN loss is significantly less in AA men than CA men, but if pre-

sent, was nevertheless associated with biochemical recurrence and metas-

tasis. Wang et al146 identified a putative tumor suppressor in AA men,

RGS12, that influences apoptosis by reducing MNX1 and AKT levels.

3.2.3 | Loss of cell cycle control

Telomere shortening occurs early in prostate cancer oncogenesis, pos-

sibly due to oxidative stress and local inflammation, and it can also
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increase genomic mutational burden.41 Ongoing telomere shortening

is not compatible with cancer cell survival, and in clinical and

advanced prostate cancer, telomerase activity is increased to maintain

replicative immortality. The key step in telomerase activation is

expression of a catalytic subunit TERT, such that the activity of telo-

merase directly correlates with TERT expression.41,147,148 Studies

have shown c-MYC oncogene overexpression brings about TERT

overexpression,41,149,150 and the MYC transcription factor is known

to bind to the TERT promoter.151 In AA men, both c-MYC oncogene

expression and telomerase activity are elevated and at a level that is

significantly higher than for CA men,9 so maintaining the cancer cells'

replicative potential.

3.2.4 | Tumor Invasion and metastatic cascade

Ali et al152 have examined 412 AA versus 217 CA PCa patients to link

dysregulated gene expression and tumor aggressiveness in the AA

population. They report the commonest 27 dysregulated genes

including NKX3.1, APPL2, TPD52, LTC4S, ALDH1A3, AMD1, TPD52,

and LTC4S were significantly upregulated, whose functions include

response to oxidative stress, cell cycle regulation, cellular proliferation

and apoptosis, migration, motility, cellular adhesion, and fatty acid

synthesis and metabolism, as well as influencing pathways associated

with oncogenesis, eg, constitutive PI3K/Akt and MAPK signaling.152

They conclude these deregulated signaling pathways in AA men may

drive tumor aggressiveness and so account for PCa differences.152

Other studies have found both germline mutations in the EPHB2

gene,153 which encodes the EPHB2 receptor tyrosine kinase and

BRCA gene,154 are linked to an increased incidence of PCa in AA men.

Also, mitochondrial gene COI mutations found in 72.8% of AA men

and 8.8% of CA men have been associated with aggressiveness in PCa

disease.155 Of note, in a small cohort of AA patients, Lindquist et al156

found 17% of patients had a CDC27 to OAT gene fusion, the latter of

which they note is influenced by AR signaling.156-158

Epigenetic differences affecting WNT signaling and stemness:

Differing epigenetic changes between AA and CA men have been

shown in a number of studies and have been concisely reviewed by

Karakas et al.96 The genes RARβ2, SPARC, TIMP3, and NKX2-5 are

more highly methylated in AA compared to CA men, and NKX2-5 and

TIMP3 are hypermethylated, even in benign prostatic tissue of AA

men.159 Devaney et al160 showed increased methylation of ABCG5

and SNRPN genes in AA versus CA samples, with reduced expression

being associated with less aggressive disease in CA but not in AA PCa

cell lines.96,160 Tang et al161 found RARB gene methylation increased

PCa risk in AA men, and another study in AA men found significantly

differing methylation status in five ion-binding genes (PRDM13,

MAP2K5, ZFR2, MAST1, and CDH18) was associated with recurrent

and aggressive disease.162 With regards to GSTP1 and CD44 methyla-

tion status between AA and CA men, there are conflicting reports.

One study showed there was no difference,163 whereas Woodson

et al164,165 examining racial methylation status of GSTP1 and CD44,

as well CDH1, ANXA2, RARb2, RASSF1, CAV1, and EDNRB, found it

was increased in AA men. Moreover, GSTP1 methylation has been

linked to a 13.3 × increased PCa risk in AA men compared to a 3.8 ×

increased risk in CA men.8,166 Another interesting study looking at

epigenetic differences between AA and CA men found tumors from

AA men had hypermethylated loci at MC1, whereas CA men had

hypomethylated loci at the MC3 cluster.167 The result of these epige-

netic changes was reduced noncanonical Wnt signaling (Wnt/Ca+2

signaling) in AA men, and activation via the MC3 cluster for CA men.

Furthermore, PI3K signaling and inflammatory pathways cause

increased expression of MC1 genes.167 Looking at whole blood DNA

from AA men, Moses-Fynn et al168 assessed DNA methylation status

in the genes RARβ2, TIMP3, SPARC, CDH13, HIN1, LINE1, CYB5R2,

and DRD2. Overall, they found DNA promoter methylation was more

common in AA men, and was linked to a number of clinical and patho-

logical prognostic parameters including Gleason score.168

3.2.5 | Genetic variations and chromosomal
instability

Differences in tumor biology resulting from pathways maintaining

genomic stability as well as mutational burden between AA and CA

men have been shown.8,96,169

Germline genetic mutations: Using linkage studies in hereditary

PCa, HPC1 susceptibility locus on 1q24-25 has been shown to

increase risk of early onset and inherited disease, as well as having a

higher prevalence in AA families with affected members.170-172

3.3 | Genetic polymorphisms

Genetic polymorphisms can be used as markers of genetic susceptibil-

ity as well as for disease prognosis. A study by Freedman et al,171

using whole-genome admixture mapping analysis, identified a 3.8 mb

region at 8q24 associated with PCa risk in AA men. It contained

9 genes, and a follow-up study demonstrated seven SNPs conferring a

higher risk of PCa to AA men over CA men.96,172 One of these nine

genes was the C-MYC oncogene, discussed above, with the others

listed in Table 2. Amundadottir et al173 found variants in the region of

chromosome 8q24 (specifically allele 8 of microsatellite DG8S737) in

31% of normal AA men and 41% of AA men with PCa, compared to

13% and 19% in European groups, respectively. The population attrib-

utable risk was 16% in AA men compared to 8% in CA men,

suggesting this allele may in part explain the increase incidence in AA

men.8,173 The link between PCa risk, chromosome locus 8q24, and AA

ethnicity has also been confirmed in a number of other stud-

ies.96,174-177 A GWA study, in populations of AA and CA men of over

1000 each, showed four single-nucleotide polymorphisms (SNPs)

(rs2660753, rs13254738, rs10090154, and rs2735839) were associ-

ated with prostate cancer aggressiveness in both groups, whereas

three SNPs were linked to PSA levels, and two other SNPs linked to

Gleason score and disease stage in AA men only.8,178 Another linkage

analysis study in AA families showed prostate cancer susceptibility

DOVEY ET AL. 13 of 28



loci at 12q24 and 2p16.8,179 Differing genetic polymorphisms

between AA and CA man have been found in CYP3A4 and CYP3A43,

the enzyme products of which play a key role in testosterone metabo-

lism, as well as in the exon encoding amino-terminal transcriptional

domain of androgen receptor (discussed above).

DNA repair pathways: Studies have demonstrated DNA repair

gene mutations and deletions in treatment naïve PCa,34,180 in approxi-

mately 19% of localized and locally advanced disease cases after pros-

tatectomy58,180,181 and in up to 20% to 30% of castration-resistant

disease patients.34 This includes genes involved in all aspects of DNA

repair. Tonon et al182 examined genomic mutations in high-risk, local-

ized PCa for AA versus CA men. After an integrated genomic study,

they demonstrated mutations (including deletions and rearrangements)

at DNA repair genes PARP1, CDK12, and the RNA gene PVT1 for the

well-described PCa susceptibility locus 8q24.182 There is also an associ-

ation between AR transcriptional activity and genomic instability,180

and AR signaling has been shown to regulate DDR.183 One of the most

prevalent somatic mutations in the AR is Thr877Ala, which has dis-

cussed in the AR hypermutation section above, but how AR signaling

influences genomic instability is not fully understood.

Castration-resistant PCa (CRPC) has increased deficiency of DNA

repair associated genes, including BRCA1, RAD54L, and RMI2. Interest-

ingly, Li et al184 found the expression of these genes is suppressed by

androgen-receptor inhibitor enzalutamide, thus creating reduced homol-

ogous DNA repair ability and “BRCAness” in CRPC cells. Applying this

therapeutically, they showed enzalutamide followed by the combination

of enzalutamide and olaparib (a PARP inhibitor), induced cell death cau-

sed by DNA damage, and prevented clonal PCa cell proliferation.184

In fact, the study of DNA damage and repair response (DDR)

pathways may be a source of other novel drugs, formed from hun-

dreds of genes that produce pathways maintaining stability of the

genome, ensuring a cell's long-term survival. They can be classified

into signaling pathways that repair single-strand lesions (mismatch or

base and nucleotide excision) and double-strand lesions (homologous

recombination (HR) or nonhomologous end joining (NHEJ)). Inactiva-

tion of core HR genes (eg, BRCA1/2) or HR associated genes (PTEN,

CHEK2, SPOP, CHD1) and impairment of NHEJ pathways by BCL2

overexpression and TMPRSS2-ERG fusion have been well described

in PCa,185 and PARP inhibition can result in synthetic lethality by

preventing not only base excision repair but alternative end joining

pathways when both HR and NHEJ pathways are compromised.

Recently, Yadav et al186 examined somatic mutations in the DNA rep-

airome of AAs and CAs, using ultrahigh depth exome sequencing from

63 tumors. They found AA men had a higher rate of somatic muta-

tions in DDR genes overall, and in their study, specific disparities in

XPC (NER), ATR (MMR), and MBD4 (MMR) in the AA cohort. With

this in mind, it is anticipated that AA men would respond well to check

point therapies, and this should be a focus of future clinical trials.

Tumor mutational burden: Jaratlerdsiri et al187 performed whole-

genome sequencing in a direct study-matched comparison of treat-

ment naïve high-risk prostate tumors between African and Caucasian

men. They found a 1.8-fold increase in AA men in smaller somatic

mutations, rising to four-fold when compared with published data

(although this published data may have been from less high-risk

populations). These mutations were in oncogenic drivers, with approx-

imately 30% of genes being novel and 79 % recurrent and associated

with early oncogenesis. In keeping with previous studies, ERG fusions,

PIK3, and PTEN loss were less in AA men, but they identified muta-

tions in genes regulating calcium ion-ATPase signal transduction.187

3.3.1 | Metabolic reprogramming

Mitochondrial factors: Recently, Xiao et al188 reviewed potential mito-

chondrial factors that might underlie racial disparity in prostate

TABLE 2 Nine Genes in 3.8 Mb region of 8q24 conferring higher
risk to AA men171

GENE Molecular changes Cellular changes

C-MYC Upregulation of genes

relating to

transcription

factors,

mitochondrial

biogenesis, RNA

and protein

biosynthesis,

glycolysis

Cellular Proliferation

with metabolic

transformation and

increased metastatic

capability

MTSS1 Protein MTSS1

involved in actin

and signaling

receptor binding

Metastasis

suppression

SQLE Squalene

Monooxygenase

enzyme

Cholesterol

biosynthesis and

cellular proliferation

ZNF572 Zinc finger protein

572

Transcriptional

regulation

C8orf36 Chromosome 8 open

reading frame 36

protein

Zinc ion binding

relating to double-

strand DNA break

repair via

homologous

recombination

KIAA196 (also

known as

WASHC5)

WASH complex

subunit 5

Regulation of actin

assembly

TRIB1 Tribbles homolog 1 Protein degradation

across a wide range

of biological

processes

FAM84B (also

known as

LRATD2)

Protein LRATD2 Cellular proliferation

TMEM75 Putative

transmembrane

protein 75

Embryonic cellular

development

Note: Molecular and cellular changes taken from www.uniprot.org/,

accessed 7/7/20. Variants in 8q24 (specifically allele 8 of microsatellite

DG8S737) may be found in 30% of AA men, 41% of AA men with PCa,

and confer a population attributable risk for PCa of 16%.173
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cancer, noting the considerable research that has linked mitochondrial

health to incidence and disease aggression. For example, mitochon-

drial DNA G10398A polymorphism has been linked to aggressive

prostate PCa in AA men,189 and other mitochondrial DNA mutations

have been associated with increased tumorigenicity in mice experi-

ments.190 Another study had found reduced mitochondrial DNA con-

tent correlates with adverse outcomes in AA patients.191 Finally,

Chaudhary et al192 found reduced apoptosis related to mitochondrial

dysfunction and defective heat shock proteins in AA men with pros-

tate cancer, more specifically related to differences in mitochondrial

unfolded protein stress response.192 More studies are required to fur-

ther investigate these differences and potentially develop actionable

ideas of clinical benefit related to them.

3.3.2 | Tumor microenvironment, Pro-tumor
inflammation, Escaping antitumor immune response,
and Tumor-induced angiogenesis

In comparison to Asian and Caucasian populations, those of African

descent have rarer allele frequencies and more diversity in nucleotide

composition. This results in differences in immune landscape that

were adapted to their ancestral origins193 that have been shown to be

specific to tissue types, but not specific cancers.194 The influence of

these differences on immune surveillance, and the innate and adaptive

immune responses, has been suggested to affect not only oncogenesis

but also response to treatment and cancer outcomes.

Tumor microenvironment, inflammatory axis, and cytokines: The

importance of the tumor microenvironment (TME) in PCa oncogenesis

and disease progression has been established but few studies have

examined its association with racial disparity.15 Blood vessels, adipo-

cytes, and immune cells secrete various factors including growth fac-

tors and cytokines that constitute a unique landscape for PCa cells to

proliferate and spread.130 Previous studies have shown altered tumor

gene expression in AA men, with an increase in immune and inflam-

matory pathway activity, as well as cytokine signaling.195 In a recent

study, Gillard et al15 investigated the function of fibroblasts isolated

from PCa tissue in both AA and CA men and demonstrated a number

of characteristics unique to the AA derived cells. Fibroblasts from AA

men had an elevated growth response to testosterone, FGF2, and

platelet-derived growth factor, and caused increased proliferation and

motility of PCa cells, as well as higher levels of myofibroblast-

activating markers, aSMA, vimentin, and tenascin-C. A PCa cell line

derived from AA men called “E006AA” had increased tumorgenicity in

the presence of fibroblasts from AA men, and proinflammatory para-

crine mediators (BDNF, CHI3L1, DPPIV, FGF7, IL18BP, IL6, and

VEGF) were all increased in AA derived fibroblasts. Interestingly, a

TrkB-specific antagonist was able to reverse the protumorigenic

effects of AA derived fibroblasts on the E006AA PCa cell line.15 They

concluded the different characteristics of AA derived fibroblasts and

its effect on the TME, may be a critical factor underlying PCa racial

disparities. They also found an increase in collagen deposition and

myofibroblasts as part of a “reactive stroma” and enhanced

tenascin-C protein in the extracellular matrix (ECM), all of which favor

tumor growth and invasion.15

Kumar et al130 reviewing the immunobiological aspects of PCa

racial disparities, highlighted elevated IL-6 levels and the pathways it

activates, including signal transducer and activator of transcription

(STAT), mitogen-activated kinases (MAPK), and phosphatidylinositol

3-kinase (PI3K). The list of cytokines that may influence PCa racial dis-

parities includes 14 interleukins, GM-CSF, interferons, as well as TGF-

beta and TNF-alpha. How these cytokines play out in the TME and in

further stages of PCa invasion and metastasis and whether this differs

in different ethnic populations require further study.

A multi-institutional retrospective comparative genomic analysis

led by our group on a large cohort of African American and European

who underwent surgery demonstrates that tumors from African-

American men are enriched for immune-related genes and suggests

they could be better candidates for immunotherapy (manuscript under

revision).

Epithelial to mesenchymal transformation: Epithelial-

mesenchymal transition (EMT) is a slow and prolonged change that

occurs during embryonic development through oncogenesis. Epithelial

cells gradually develop mesenchymal features, and there is increasing

evidence that EMT may be linked to PCa metastatic progression as

well as stemness and drug resistance.196 Investigating EMT differ-

ences, which may underlie racial disparity, Burton et al197 used Snail

protein and Cat L activity as markers for mesenchymal transition.

They found increased expression of mesenchymal protein (Snail,

Vimentin, Cat L) and increased Cat L activity in PCa cells from AA men

compared to normal and androgen-dependent cells, and metastatic

prostate cell lines in CA men.

Lymphocyte differences: A number of studies have examined

tumor-infiltrating lymphocytes in prostate cancer and their association

with clinical and pathologic parameters.198 These found that extreme

levels of lymphocytes, both high and low, are associated with a poorer

prognosis, with the former being more frequent in published series.198

Flammiger et al,199 specifically investigating both T and B lympho-

cytes, found both very high and low levels of CD3+ T cells were asso-

ciated with biochemical recurrence, but not B lymphocytes. Kaur

et al198 further examining T cells subsets, but with a larger cohort

including a large number of AA men, found higher FOX3P+ T cell den-

sity was linked to an increased risk of metastasis in AA men, albeit

weakly, which requires validating with a larger cohort. Overall, T cell

density was similar between different ethnicities, which Kaur et al198

found surprising given the differences in tumor inflammatory microen-

vironment as well as cytokine expression (which we have eluded to

earlier in this review). They suggest this may be as a result of focusing

on T cell populations alone.198

Copy number variations influencing the immune response: Differ-

ences in genome-wide copy number variations (CNVs) between AA

and CA men have been studied, revealing 27 chromosomal regions

with significant copy number changes,96,200 all of which were associ-

ated with altered gene expression. Using array-comparative genomic

hybridization in a larger cohort, four of these regions were validated

and found to be significantly enriched with genes related to the
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immune response.200 Other differences in CNVs have been associated

with differences in gene expression.96 More recently, in high-risk AA

families, Ledet et al179 identified a germline CNV at 14q32.33

encompassing the IGHG3 gene, which they propose may contribute

to genetic susceptibility with an increased likelihood to higher inci-

dence and mortality in the families studied, and potentially in the AA

male population as a whole.

Racial differences in glucocorticoid pathway signaling influencing

the immune landscape: In addition to AR signaling, glucocorticoid

pathways are also known to influence immune status. AA men with

low SES have been shown to have higher cortisol levels, and cortisol

can influence transcription of a number of genes and, for example, NK

and CTL function by causing promoter region histone acetylation for

granzyme B and perforin genes.201

3.3.3 | Noncoding and micro RNA disparities

The evolution of enormous high-throughput sequencing data has rev-

ealed the presence of a vast majority of transcripts that do not encode

protein and are known as noncoding RNAs. Most of these noncoding

transcripts have not been functionally characterized. The noncoding

RNAs, depending on their size, are categorized either as short non-

coding RNAs that include microRNAs (miRNAs), snoRNAs, transfer

RNAs, etc., and the long noncoding RNAs that have a size greater than

200 nucleotides.

MicroRNAs (miRNAs or miRs) are a class of small noncoding

RNAs, 19 to 25 nucleotides in length that play a critical role in the reg-

ulation of gene expression. They act by either degrading or inhibiting

translation of target mRNAs.202 miRNAs have been demonstrated to

play critical roles in cancer development and progression,202-204 and

can act either as tumor promoter or suppressor.203,204 Several recent

studies have reported differentially expressed miRNAs in PCa across

different races. Ten differentially expressed microRNAs have been

reported in prostate tumors from AA and CA men and they form a

balance with mRNAs to drive oncogenesis.205 Theodore et al showed

a 2.2-fold to 13.3-fold increase in the expression of miR-26a in AA

PCa cell lines, when compared to CA cell lines.206 Recent studies in

PCa have also shown association of differentially expressed micro-

RNAs with AR and AR V7 expression in AA versus CA men.207,208

Interestingly, a recent study also reported polymorphisms of miR-

196a2 rs11614913, miR-146a rs2910164, and miR-499 rs3746444

as risk factor for developing PCa in Asian people.209

Long noncoding RNAs are implicated in both physiological and

pathological states, and several lncRNAs have been reported to regu-

late cancer development and progression. Research of lncRNAs in

PCa has revealed its role in cancer development and progression, epi-

genetic regulation (eg, CTBP1-AS, HOTTIP, NEAT1)210-212, transcrip-

tional regulation (NEAT1, SChLAP1),210,213 as decoys and also as a

sponge for microRNA (eg, PTENP1, KRAS1P, and PCAT1).214-218

Studies have also found that, in prostate cancer, about 50% of

disparities are seen at the 8q24 locus.174 The long noncoding RNA,

plasmacytoma variant translocation 1 (PVT1) at 8q24.21 plays an

oncogenic role in prostate cancer,219 and has been implicated in pros-

tate cancer invasion and metastasis.220 Tonon et al in a recent study

reported higher expression of PVT1 in tumors from African Caribbean

men compared to French Caucasians.182

These studies demonstrate the relevance of exploring the expres-

sion and function of noncomplex molecular regulatory networks with

coding genes, and may help develop better prognostic and therapeutic

markers for prostate cancer patients of different ethnicity.

4 | ANATOMICAL AND MOLECULAR
CORRELATIONS

Another recent study explored potential anatomical differences and

molecular correlations in PCa between AA and CA men.221 In a retro-

spective cohort of close to 300 men, they confirmed previous findings

that ETS positive tumors (with either ERG or other ETS transcription

factor fusions) were commoner in CA men, whereas SPINK over-

expression was more common in AA men. In keeping with the studies

of Sundi et al,222 they found in cases defined as low risk preopera-

tively, anterior location was more common in AA men than CA men

(50% vs 20% respectively).221 However, racial differences in molecular

subtype did not persist when tumors were analyzed by location, and

anterior tumors had higher volume, lower PSA density, and higher

risk-genomic classifier scores, suggesting a possible propensity to

increased disease progression in the future.221

5 | DIFFERENCES FOR AA MEN IN
PUTATIVE DISEASE SUBCLASSES

Khani et al,223 examining radical prostatectomy specimens in over

100 AA men and CA men, allowed a direct comparison of some of the

genomic classifications mentioned above. Specifically, they compared

ERG rearrangement, SPINK1 overexpression, PTEN deletion, and

SPOP mutation, and found, for AA men, ERG rearrangements were

significantly less (27.6% vs 42.5%), SPINK1 overexpression was signif-

icantly higher (23.4% vs 8.2%), and reductions in PTEN deletion and

SPOP mutations approached significance (6.9% vs 19.8% and 4.5% vs

10.3%, respectively).

6 | ACTIONABLE IDEAS AND NOVEL
IMMUNOTHERAPIES

6.1 | Prevention

Apart from age, race, and family history, risk factors for PCa are poorly

described.9,224 Epidemiological studies looking at various factors, such

as housing, job discrimination, and economic issues, resulting in cer-

tain dietary, lifestyle, and social behaviors have tended to focus on

Caucasian populations,9 without demonstrating any underlying spe-

cific causative agents.
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Powell et al,225 however, have demonstrated genomic abnormali-

ties in prostate cancer with links to obesity, hypertension, and diabe-

tes in AA men. They used microarray methods to assess RNA

expression levels of 517 genes known to be linked with PCa from AA

and CA men. They listed 22 genes in AA men with the most signifi-

cantly differential RNA expression, providing insight into the inter-

section of prostate cancer with dietary and social behaviors in AA

men that may result from underlying socioeconomic issues. IL6, IL8,

IL1B, CXCR4, and FASN showed significantly higher levels,225 and

since FASN polymorphisms have been associated with elevated BMIs,

they suggested FASN maybe a genetic biomarker link between obe-

sity and poor PCa outcome. Moreover, FASN inhibition may have

therapeutic role, especially in obese AA men.226 Elevated expression

of cytokines also links to obesity, hypertension, and metabolic syn-

drome, all of which have increased incidence in AA men. Clinically, this

emphasizes the benefits of maintaining a healthy lifestyle and lends

weight to public health drives in AA men to lower their incidence of

PCa.225 IL6 specifically correlates with high-risk Gleason scores and

TABLE 3 Listing PCa Trials specifically aimed at AA men (as of time of writing)

Study Title Condition Intervention Status/NCT Number Location

1. Green tea, black tea, or water in

treating patients with prostate

cancer undergoing surgery

Prostate cancer Green tea

Placebo

Dietary decaffeinated black

tea

Active (not recruiting)

NCT00685516

Los Angeles,

California.

2. Anxiety in Black Men with prostate

cancer: Validation of the memorial

anxiety scale for prostate cancer in

a sample of Black Men

Prostate cancer Questionnaires of quality of

life

Active (not recruiting)

NCT00581672

New York,

New York

3. Biobank for African American

prostate cancer research in Florida

Prostate cancer Questionnaires

Saliva samples

Tumor tissue

Recruiting

NCT03232411

Tampa,

Florida.

4. Molecular mechanisms underlying

prostate cancer disparities

Prostate cancer Biopsy or prostatectomy

tissue

Recruiting

NCT02229565

Durham,

North

Carolina.

5. Improving health literacy in African

American prostate cancer patients

Prostate cancer Educational supplement

Standard practice education

Recruiting

NCT03322891

Atlanta,

Georgia.

6. An epidemiological study of genetic

risk factors for prostate cancer in

African American and Caucasian

males

Prostate cancer N/A Active (not recruiting)

NCT00342771

Baltimore,

Maryland.

7. Absorption and metabolism of

Lyophilized Black raspberry food

products in men with prostate

cancer undergoing surgery

Localized and advanced

prostate cancer

Lyophilized black raspberry

confection

Laboratory biomarker analysis

Dietary intervention

With others

Active (not recruiting)

NCT01823562

Columbus,

Ohio

8. Men moving forward: A lifestyle

program for African American

prostate cancer survivors

Prostate cancer Guided Lifestyle Program

Intervention

Recruiting

NCT03971591

Milwaukee,

Wisconsin

9. Lifestyle intervention for the

reduction of prostate cancer

disparities among African

Americans

Prostate cancer (patient

and relatives)

Exercise intervention

Informational intervention

Interview

With others

Recruiting

NCT04215029

Houston,

Texas

10. Informed decision making

intervention in screening for

prostate cancer of predominantly

African American participants in a

Community Outreach Program

Prostate cancer Educational Intervention

Digital rectal examination

Pre-test administration

With others

Recruiting

NCT02419846

Cleveland,

Ohio

11. Avelumab Plus 2nd-generation ADT

in African American subjects with

mCRPC

Metastatic castration

resistant

Prostate

cancer

Avelumab

2nd generation ADT

(abiraterone or

enzalutamide)

Recruiting

NCT03770455

New Orleans,

Louisiana

12. Apalutamide and Abiraterone acetate

in African American and Caucasian

men with metastatic castrate

resistant prostate cancer

Prostate cancer ARN-509

Abiraterone Acetate

Prednisone

Recruiting

NCT03098836

New Orleans,

Louisiana
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AR signaling (via STAT3, MAPK kinase, and PI-3 kinase/AKT

pathways),225,227-229 and PI-3 Kinase/AKT pathway signaling is also

upregulated in diabetes, obesity, and hypertension,230 which itself can

upregulate AR signaling in PCa.225,231,232 Moreover, Mitin et al233

have found diabetes mellitus was significantly linked to aggressive

cancers in a cohort of men undergoing radiotherapy treatment, inde-

pendent of ethnicity. Since hypertension is commoner in AA men, and

AKT is activated in hypertensive men by angiotensin II, Powell et al225

suggest this supports the notion that the prostate cancer AKT signal-

ing is the highest in hypertensive AA men.

When epidemiological studies have involved AA men, it is clear

that low socioeconomic status increases risk of high-grade

PCa,9,234-236 and since it is not clear how socioeconomic and environ-

mental factors interact with AA genomic susceptibility, targeted “pre-
ventative” measures are not yet available. Notwithstanding the

results of Powell et al225 above, this means that current activities

directed at AA men are public health measures, education, and oppor-

tunistic screening with a view to redressing some of the social, cul-

tural, and healthcare access issues. As discussed earlier, two recent

epidemiological studies have demonstrated that when AA men have

equal access to diagnosis and treatment, disparities in outcomes no

longer exist.4,5

With this in mind, we suggest a number of specific initiatives and

“Paths to Victory” to improve early diagnosis and potentially reduce

incidence and mortality of prostate cancer in AA men. This includes

addressing lifestyle, behavioral, and access to healthcare problems

and focusing on comorbidities for AA men and inflammatory etiologi-

cal associations as they relate to disparate prostate cancer outcomes.

For the former, initiatives may comprise of AA specific prostate can-

cer clinics, race-specific prognostic tools for AA men entering active

surveillance programs (see Biomarker section below), exercise,

smoking cessation, and diet interventions, and developing AA specific

MRI imaging protocols. With regards to managing comorbidities and

associated inflammation that may contribute to etiology, we propose

careful diabetic control for those AA men affected, reducing obesity

with associated metabolic syndrome, and developing mind and body

intervention programs (potentially in a trial setting). All of these initia-

tives could potentially be orchestrated in the setting of an AA specific

prostate cancer facility mentioned above.

Once screened for hereditary disease, the prospect of preclinical

gene therapy to prevent prostate cancer from developing is an excit-

ing one. Gene therapy remains in its infancy, and currently clinical tri-

als aimed at preventing the onset of disease are directed at younger

individuals with such conditions as muscular dystrophy, hemophilia,

and inherited metabolic disorders. The results are encouraging, but

there are no studies examining specifically hereditary prostate

cancer.237,238

6.2 | Clinical trials involving AA men

Overall, the recruitment of AA men for prostate cancer trials has tradi-

tionally been a challenge, and disappointingly, the statistics for AA

men's involvement in PCa trials is not improving. A recent study

showed the % of AA men has reduced from 11.3% in 1995 to 2.8% in

2014,239 and overall, reviewing 51 trials from 1987, 96% of those rec-

ruited were non-Hispanic White men. In part, the reasons for this are

the same as those suggested for the differences in incidence and mor-

tality, such as lifestyle issues and healthcare access problems, and

Recsok et al suggest other reasons are negative beliefs about trials,

and lack of knowledge about what is involved in taking part.239 With

these figures in mind, there is an urgent need to plan novel recruit-

ment techniques specifically targeting AA patients, in order that they

are fairly represented in future trials.

7 | SPECIFIC BIOMARKERS FOR THE AA
POPULATION

Biomarkers for PCa have the potential to inform diagnosis and prog-

nosis, as well as influence treatment decisions at all stages of the

disease,9 especially when they correlate with aggressive pheno-

types.9,240-244 In a recent review, Rebbeck9 highlights markers for all

stages of the disease across AA and CA men. Apart from TMPRSS2:

ERG, which is only present in 20% of AA men versus 62% of CA

men,245 most biomarkers considered were more prevalent in AA men,

especially in the early stages of oncogenesis (eg, TMPRSS2/ERG

translocation/fusions, telomere dysregulation, GSTM1

hypermethylation, and C-MYC alteration), during the metastatic stage

(eg, PTEN loss and telomerase activation) and for castration resistant

disease (eg, AR mutation and activation) (Rebbeck, 2016-9). For local-

ized disease, the increase in prevalence of common biomarkers linked

to specific genomic abnormalities was less marked (eg, loss of P27

and NXK3.1). As well as for TMPRSS2:ERG translocation status, other

studies have highlighted biomarker differences between AA and CA

men including SPINK1, AMCAR, NXK3.1 ERG, SRD5A2, Ki67

GOLM1, and AR.223,246 SPINK1 overexpression was associated with

higher risk disease,223 but the prognostic value of TMPRSS2:ERG

translocation status is less well described.9 Nevertheless, TMPRSS2:

ERG translocation status may have prognostic value when associated

with other risk factors: for example, in the presence of obesity, it is

linked to poor disease outcomes,9,247 and Echevarria et al248 recently

demonstrated 81 ETS dependent genes that were AA race specific

and overexpressed in AA men with BCR, potentially providing a useful

biomarker of more aggressive disease.

Some of the findings of Powell et al225 have been discussed with

regards to links of genomic signatures of prostate cancer to obesity,

hypertension, and diabetes. They also found increased RNA expres-

sion of CXCR4 and BMP2 in AA men. BMP2 is involved in metastasis

to bone249 and CXCR4 is a chemokine receptor regulating metastatic

behavior in PCa cells and associated with aggression and treatment

resistance.225,250 Both of these may have actionable roles as prognos-

tic biomarkers associated with aggressive phenotypes.

Sanchez et al251 examined immunoseroproteomic profiling in AA

men with PCa. They demonstrated differing autoantibody response to

tumor cell ENO1 (one of the glycolytic enzymes), related to differing
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posttranslational modification of the enzyme itself. They suggest fur-

ther proteomic analysis of antitumor antibody responses in AA men

compared to CA men may help to unveil aggressive disease pheno-

types and so guide treatment choices.

The Decipher Genomic Classifier is a 22 gene mRNA based prog-

nostic tool used after RP to assess future risk of BCR, metastatic pro-

gression, and mortality. Its utility has recently been validated in a

cohort of AA men with equal access to healthcare, and in fact was

potentially found to perform better than in CA men, although a study

with larger numbers is needed to confirm this.252

McCabe et al253 outline PTEN as a prognostic and predictive bio-

marker in prostate cancer. PCa patients will have PTEN mutations in

2% to 14% of cases and copy number loss in 12% to 41% of cases.

Moreover, PTEN loss is more common in mCRPC and is a marker for

reduced PFS.253

Potential specific biomarkers for AA men have been presented, of

which some, for example, those linked to RNA sequencing, proteomic

analysis and immune response gene expression may also be targets

for novel immunotherapeutics. Clinicians treating patients with PCa

will be very familiar with the currently available biomarkers (PSA, 4K

test, PCA3, Select MDx, Confirm MDx, Oncotype MDx, Prolaris, and

Decipher). Given the differences in tumor biology that have been

described, the hope is that research will develop biomarkers and gene

panels to provide prognostic information and aid in treatment deci-

sions specifically for the AA population.

8 | TREATMENT

Prostate cancer treatment has seen a number of advances in recent

years and, in response to a deepening understanding of molecular

pathways underlying the evolution of the disease, the concept of

“Precision Medicine” has emerged.254 This aims to provide individual-

ized treatment, potentially in combination, once a patient's prostate

cancer has undergone genomic profiling, over and above other treat-

ments that have gained widespread acceptance (eg, cytotoxic therapy

with radium-223 or cabazitaxel, anti-AR signaling with enzalutamide

or abiraterone, and antitumor immunotherapy with sipuleucel.255-260

Performing genomics on patients' solid tumor tissue, after biopsy or

surgical treatment, to identify abnormalities in AR signaling, DNA

repair, PI3K, WNT, and cell cycle pathways, as well as examining for

immune/tumor microenvironment response signatures, allows the

integration of clinical and genomic data to choose appropriate thera-

peutic trials for individual patients.254 Furthermore, potential bio-

markers described above from research on RNA sequencing,

proteomic analysis, and immune response gene expression in AA men

may also reveal targets for exciting novel immunotherapies, not only

highlighting an individual patient's genomic risk profile, but also those

who may develop therapeutic resistance, so earmarking them for spe-

cific combination therapies.

Currently, some of the commonest abnormalities found on geno-

mic profiling relate to deficiencies in homologous recombination DNA

repair (genes such as ATM, PALB2, BRCA1, BRCA2, CHEK2, and the

FANC (Fanconi's anemia) genes) or in microsatellite instability

resulting from deficiencies in mismatch repair genes (eg MLH1, PMS2,

MSH2 and MSH6).260 These will be considered individually, although

it is worth noting that, at the time of writing, only DDR and MSI-H

treatments are currently actionable.

8.1 | Treatment for homologous recombination
DNA (HRD) repair deficiencies

PARP inhibition: PARP functions to repair single-strand DNA breaks.

If there is no PARP function, cells convert single strand to double

strand DNA breaks, which are dealt with by HRD repair. When PARP

is inhibited, and HDR repair pathways are deficient, the chromosome

becomes unstable, and cell death occurs due to overwhelming geno-

mic damage.260 In the phase 3 PROFound trial assessing olaparib vs

enzalutamide or abiraterone (having had standard ADT) for mCRPC,

the PARP inhibitor gave a nearly 4 month progression-free survival

advantage.261 The patient cohort receiving olaparib had at least one

deficiency in ATM, BRCA1, or BRCA2, and so in this study, the effect

is limited to patients with DDR deficiency. Similarly, a prior recent

phase 2 trial of the PARP inhibitor, Olaparib, not specific for AA men,

but in 50 patients with castration resistant metastatic disease,

reported encouraging results. All patients had received multiple treat-

ments prior to the trail, were resistant to taxanes, and 22% had more

than 50% reduction in PSA values. Of the 32% of patients' biomarker

positive for HDR deficiencies (as in deficient of the above genes on

profiling), 88% responded and clinical outcomes were significantly

better than for biomarker-negative patients.262 As far as we are

aware, differential responses between AA biomarker positive and CA

biomarker positive men have not been evaluated and require further

study.

Checkpoint immunotherapy: Following the success of sipileucel-

T,259 there has been a focus on immunotherapy for prostate

cancer,260 and specifically checkpoint inhibitors linked to PD1 and

CTL4 pathways. However, a phase 1 trial for Nivolumab (antiPD1)263

and two phase 3 trials for Ipilimumab (anti-CTL4)264,265 failed to show

any convincing treatment responses.260 Other trails with anti-PD1s

(eg Pembrolizumab) have shown some PSA and radiographic

response,260,266,267 raising the possibility of a subset of patients who

may respond. On the basis that some BRCA deficient tumors have

responded to PD1 inhibition, trials are exploring its use in tumors bio-

marker positive for HDR and MMR abnormalities.260,268 How this

may direct treatment for populations of AA men will also require fur-

ther investigation (see Table 1.).

8.2 | Treatment for microsatellite instability-high
tumors (MSI-high) and mismatch repair (MMR) gene
deficiencies

Only approximately 5% of advanced prostate cancers have MSI-high

and MMR abnormalities,260 and trials have been targeting this
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population with PD1 inhibition (eg, Pembrolizumab) in lung, colorectal

tumors, and malignant melanoma, where the mutational load is

high.269-271 However, a recent trial of castration resistant metastatic

PCa with MSI, using combined enzalutamide with pembrolizumab,

showed complete PSA response in 3 of 10 patients, one of whom had

combined MSI and PDL-1 tumor expression.260,266 Similarly, biallelic

somatic CDK12 mutations have been found in nearly 7% of mCRPC,

which were not only associated with immune cell infiltration and

enhanced checkpoint protein expression, but also increased efficacy

of pembrolizumab PD-1 inhibitor treatment.272 Once again, more

study is required to assess how these responses may differ in a popu-

lation of AA men.

8.3 | Other immunotherapeutic initiatives

The use of Sipuleucel-T for patients with mCRPC has been well

described but a recent subanalysis of data from the original PROCEED

trial demonstrated an 0S advantage of 9.5 months for AA men over

CA men for all patients, as well as nearly 21 months when comparing

AA to CA men with PSAs under 30.273 More study is required to

understand the immunogenetics underlying this difference, and

potentially develop focused AA therapies to exploit it further.

As mentioned earlier, our group has been applying the integrative

use of clinical and genomic data, to uncover individual patients who

may have high risk disease (with high risk of biochemical relapse), in

combination with an immune/TME response signature. Such patients

have more CD8/3 T-cells, lower AR-receptor activity, more inflamma-

tion, and lower levels of immune suppressive inflammatory cells

(T-reg cells and MDSC cells). By identifying specific cohorts of AA and

CA men in this way and offering them “Precision Medicine” with

entry in targeted therapeutic trials, the differential response of AA

men can be studied. The results of these investigations will be avail-

able in the future.

9 | CONCLUSION

This review has outlined the molecular and genomic fundamentals of

prostate cancer for all ethnicities, framed in Hanahan and Weinberg's

updated “Hallmarks” of cancer.
Using this framework as a benchmark, the molecular and geno-

mic differences for AA men have been described, which may in part

explain the racial disparity in disease incidence, even though recent

epidemiological studies have shown equal access for AA men results

in equal outcomes.4,5 Emphasizing genetic abnormalities in prostate

cancer, recommendations have been made for genomic profiling to

integrate clinical and genomic data for the purposes of diagnosis,

prognosis, and treatment planning for “Precision Medicine”. Treat-
ment options have also been discussed, with a concise description of

recent work in AA specific populations, showing an immune

response signature, and detailing a number of targeted therapies. A

summary of the current clinical trials that are active or recruiting can

be seen in Table 3 (see below). It is encouraging that many of these

are exploring lifestyle and educational initiatives, as well as thera-

peutic interventions, but clearly there is much work to be done to

reduce incidence and mortality in AA men, and equalize current

racial disparities.
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