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Abstract

Bioscientists reading papers or patents strive to discern the key relationships reported within a document “D* where a bioactivity
“A” with a quantitative result “R” (e.g., an ICs¢) is reported for chemical structure “C” that modulates (e.g., inhibits) a protein
target “P”. A useful shorthand for this connectivity thus becomes DARCP. The problem at the core of this article is that the
community has spent millions effectively burying these relationships in PDFs over many decades but must now spend millions
more trying to get them back out. The key imperative for this is to increase the flow into structured open databases. The positive
impacts will include expanded data mining opportunities for drug discovery and chemical biology. Over the last decade commer-
cial sources have manually extracted DARCP from ~300,000 documents encompassing ~7 million compounds interacting with
~10,000 targets. Over a similar time, the Guide to Pharmacology, BindingDB and ChEMBL have carried out analogues DARCP
extractions. Although their expert-curated numbers are lower (i.e., #2 million compounds against ~3700 human proteins), these
open sources have the great advantage of being merged within PubChem. Parallel efforts have focused on the extraction of docu-
ment-to-compound (D-C-only) connectivity. In the absence of molecular mechanism of action (mmoa) annotation, this is of less
value but can be automatically extracted. This has been significantly accomplished for patents, (e.g., by IBM, SureChEMBL and
WIPO) for over 30 million compounds in PubChem. These have recently been joined by 1.4 million D-C submissions from three
major chemistry publishers. In addition, both the European and US PubMed Central portals now add chemistry look-ups from
abstracts and full-text papers. However, the fully automated extraction of DARCLP has not yet been achieved. This stands in
contrast to the ability of biocurators to discern these relationships in minutes. Unfortunately, no journals have yet instigated a flow
of author-specified DARCP directly into open databases. Progress may come from trends such as open science, open access (OA),
findable, accessible, interoperable and reusable (FAIR), resource description framework (RDF) and WikiData. However, we will

need to await the technical applicability in respect to DARCP capture to see if this opens up connectivity.
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Introduction

This article assesses a key aspect of data sharing that has the
potential to accelerate the progress and impact of medicinal
chemistry. To achieve this the community needs to increase the
outward flow of experimental results locked-up in millions of
published PDFs into structured open databases that explicitly
capture the connectivity between structures, documents and
bioactivity results. But isn’t there enough of this out there
already? This can be answered in two parts. The first is that a
conservative estimate of the capture backlog would be at least
two-fold more data still entombed in PDFs that is not currently
indexed in database records. The second part is the imperative
to enable open science data mining at all scales. This applies
not only to individual documents (i.e., small data) but scaling
up to all papers and patents (i.e., big data). The potential of the
latter is huge, especially since artificial intelligence (Al) is
being increasingly applied to knowledge distillation. This report
will outline the principles of connectivity capture, selected
sources, progress, impediments and prospects for their amelio-
ration.

Review

Defining terms
It is necessary to outline the topics covered:

Medicinal chemistry: As directed towards drug discovery this
needs no introduction. However, in the broader context of bio-
active chemistry, it becomes indivisible from the related
domains of chemical biology (directed towards mechanistic
insight rather that direct drug discovery), enzymology, pharma-
cology, and toxicology in addition to the development of insec-
ticides or herbicides.

Connectivity: This term is used for an explicit link (e.g., a
URL) between a published document and the chemical struc-
tures specified therein. Implicit is not only manual navigation
(e.g., link-clicking) but also that such connectivity can be made
machine-readable and thus computationally interrogated at
large scale via an application programming interface (API) or a

resource description framework (RDF).

Papers as documents: This typically refers to research papers
from journals but increasingly needs to encompass their associ-
ated supplementary data. Note also that by far the majority of
medicinal chemistry, biological chemistry and pharmacology
papers are still behind subscription paywalls. However, the full-
text for some of them is not only open but also available to be
mined in both PubMed Central (PMC) [1] and European
PubMed Central (EPMC) [2]. Connectivity can extend to other
document types such as review articles and vendor catalogues.

In this article the main document type referred to will be
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the PubMed identifier (PMID). These have open abstracts
and are also indexed in the digital object identifier system
(DOI). However, significant numbers of papers in the
bioactive chemistry domain (including preprints) may be DOI-
only.

Patents as documents: Academics tend to overlook that
patents a) include several fold more medicinal chemistry than
papers b) appear years earlier ¢) most academic drug discovery
operations apply for them d) they include a proportion of high
quality data that never appears in journals e) they can be text-
mined and d) consequently, over 30 million structures have

entered PubChem via automated extraction [3].

Non-document sources: While this article has to be restricted
to documents an increasing amount of drug discovery data
is beginning to surface on the web that may never be
instantiated in document form. Although this started with
PubChem Bioassay as far back as 2004, the more recent
proliferation is via open-notebook science. More projects are
using open electronic laboratory notebooks (ELNs) that are
not only accessible to anyone by web browsing, but also,
crucially, crawled by Google and indexed for chemistry
searching [4,5].

Structures: A necessary focus of this article will be traditional
small-molecule chemistry that is not too far outside the rule-of-
five lead-like property space. In terms of connectivity anti-
bodies, other protein biotherapeutics, as well as large peptides
or polynucleotides, are also important to encompass. However,
capture into structured records is more challenging for these
larger therapeutic modalities than for small-molecules that can
be merged on the basis of chemistry rules. Notwithstanding,
space limitations mean that non-small molecule connectivity is

out of scope for this article.

Bioactivity: This covers a wide spectrum of assay read-outs but
with a focus on in vitro, in cellulo, in vivo and in clinico.
Ideally this should also include low or inactive analogues which
are crucial for SAR elucidation but documents are (understand-
ably) biased towards positive results.

Open: As the theme of this special issue this term will
doubtless be expanded on in other articles. However, brief
qualification in the context of this work is necessary. Regard-
less of licensing complications, open is taken here to mean
public data sources accessible via a web browser (signing in
may be an impediment but not a stopper). These are thus
distinct from commercial offerings where access has to be pur-

chased.
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Relationship representation

As outlined in the abstract the connectivity between documents,
structures and bioactivity can be expressed in shorthand as
“D-A-R-C-P” (DARCP). This is shown schematically in
Figure 1.

The entity specifications can be adapted to different use-
cases. For example, the substitution of “P” with target “T” can
be used where “T” is a cell or a microorganism. Another exam-
ple would be where an SAR series can be represented as a
multiplexed set of one-A-to-many-R-C. It can also be extended
to “D-A-R-C-L-P” where L refers to the explicit location refer-
ences for C in the document (e.g., “compound 10b” in a paper
or “example 503” in a patent). However, as a formalism for
bioactivity there are exceptions and mechanistic nuances that do
not fit a DARCP simplification. An example would be heparin
(GtoPdb ligand 4214). This could be a commercial partially
purified extract of 1200-1500 Mw which consequently does not
have a defined chemical structure as “C”. However, as a curato-
rial expedient, the chemically defined form (as PubChem CID
22833565 with 1040 Mw) has been annotated (even though the
sodium salt is the active form in vivo). Note also that while for-
mally “P” in the heparin case is SERPINC1 (ATIII) the mecha-
nism is an indirect one involving the activation of binding to F2
(activated thrombin) for inhibition. Another problematic exam-
ple is mechanism-based covalent inhibition where the time de-

pendence of IC50 for “A” is not captured.

The structured capture of DARCLP by curation (or at least
DARCP) has very high value from the additional relationships
that can be explored via the entities and attributes as outlined
below:

* Documents: clustering by content relatedness, position
within citation networks, connections via authors or

institutional affiliations.

Discovery of AM-6494: APotent SRS FE T B 001
and Orally Efficacious B-Site AT i
Amyloid Precursor Protein A S AN E T 20001
Cleaving Enzyme 1 (BACE1) o

Inhibitor with in Vivo Selectivity WETNE NG —
over BACE2. AN

T v v v r—
Blank 10* 107 107 10? 10 10* NS
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» Assays: classified by various assay ontologies.

* Results: log transformations (e.g., pICsq or pK;) for po-
tency ranking and implicit molecular mechanism of
action (mmoa), (e.g., where A-R indicates C to be a po-
tent inhibitor of P).

* Compounds: a full range of cheminformatic analysis in-
cluding 2D or 3D clustering, property prediction and
chemical ontology assignments.

* Proteins: a full range of bioinformatic analysis including
gene ontology (GO) assignments, pathway annotation,
structural homology, disease associations and genetic
variation (e.g., for target validation).

Those cases where the link is only compound-to-document can
be referred to as D-C (or c2d). These have become available in
a large excess over full DARCLP since they are technically
easier to obtain and can be automated to a usable level of speci-
ficity. This needs the introduction of the intuitive concept of
“aboutness” (ABNS). The title of a document from which D-C
could be extracted usually includes an explicit ABNS statement.
For example, the code name of a lead compound would be what
a medicinal chemistry journal article would be “about”. In the
same way, the ABNS of a clinical pharmacology journal article
some years later could be describing the clinical trial results for
the identical structure which, by then, could have an interna-
tional non-proprietary name (INN). However, the extraction of
multiple compounds (i.e., one-D-to-many-Cs) immediately
becomes problematic in the absence of full relationship chains.
For example, the medicinal chemistry article may describe the
testing of a useful set of analogues for SAR but (as is usually
the case) the A-R-P data was not extracted.

At this point we need to introduce the additional concept of
name-to-structure (n2s). This is an important determinant of
both ABNS and D-C utility. Using the example again from a
paper this would mean that both the code name and the INN

Figure 1: A schematic of the document > assay > result > compound > protein target relationships, D-A-R-C-P [microplate photo adapted from
https://commons.wikimedia.org/wiki/File:Microtiter_plate.JPG by Jeffrey M. Vinocur, source licensed under the Creative Commons Attribution Generic

2.5 license (CC-BY 2.5), https://creativecommons.org/licenses/by/2.5/].
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would be included in the D-C capture record (i.e., n2s) even if
50 analogues were also tested. Other examples that present par-
ticular ABNS problems are review articles, synthetic chemistry
papers and patents. A review could exemplify 20 lead com-
pounds all with different company code numbers and/or INNs,
an extended synthesis report could give rise to 200 D-C records
and a patent could have over 500. Discerning the ABNS for
patents can be especially problematic since frankly obfuscatory

titles and abstracts are common (e.g., “Novel Compounds”).

The “hamburger” problem

This can be summarised by the following (unattributed) quote
“We have spent millions putting data into the literature but now
have to spend millions more getting it back out”. This alludes to
entombing the DARCP “meat” within a PDF “hamburger”. The
paradox is that electronic text formats typically used for
drafting papers are machine-readable (certainly with modern
parsing techniques). However, this is systematically obviated by
the PDF conversion. For example, a chemist may have SMILEs
and/or InChls in their ELN and/or molfiles in an institutional
data repository. However, they have to convert this to a Chem-
Draw proprietary file format in order to render the structural
image that eventually appears in the PDF. This means getting
the structures “back out” for database capture needs either
manual re-sketching or use of an image-to-structure (i2s) tool
such as optical structure recognition (OSRA) [6], both of which

are error-prone processes.

The common practice of including tables of Markush represen-
tations, while they improve SAR readability, makes the extrac-
tion problem worse. While most medicinal chemistry journals
will include IUPAC names in the synthesis descriptions, these
also have to be pulled “back out” of the PDF. This can be done
via PDF-to-text optical character recognition (OCR) or curated
by pasting across to the Open Parser for Systematic [IUPAC
Nomenclature (OPSIN) tool [7]. Here again, both the automatic
and manual procedures are error prone. Locally-stored SAR
data from an Excel sheet or an ELN can be used to populate
draft manuscripts (and with lower error rates) but the irony is
conversion to PDF (i.e., entombment) makes the ARC in result
tables more difficult to extract.

A specific example of the problem can be given for a 2017
article on new antimalarial compounds entering development
[8]. Because the chemistry representations were restricted only
to images in the PDF a blog post was necessary to manually
map the structures to PubChem identifiers [9]. The MyNCBI
link to the 16 CID entries given at the top of the blog post is
still live (indicating reassuring persistence for this system after
four years). While this initial connectivity was only D-C (and

where D was a review article rather than a primary activity
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report) this example had an important sequel. During the cura-
tion of the new Guide to Malaria Pharmacology 14 of the 16
compounds now have full DARCLP annotation where D is the
primary activity report, P is the Plasmodium target and activity
values against the parasite are included in the records [10].

Commercial capture

Since this report is about open connectivity it might not seem
pertinent to review commercial resources. However, a brief
assessment of these is relevant in several contexts. The first is
that, despite occasional use of the adjective “proprietary” in
their descriptions, the primary content of commercial databases
is almost entirely derived from open sources. Notwithstanding,
they capture, curate, annotate, collate, integrate and index this
in value-added ways (including user-friendly query front-ends
and customer-specific APIs) to justify subscription costs. The
second aspect is that by virtue of being able to apply more
internal resources than open databases, their statistics give some
indication of where the practical upper limits might lie. The
third aspect is that they can give insights into the challenges of
extraction, although technical details of how this is done are

sparingly presented externally.

The largest relevant commercial source is CAS-SciFinder [11]
While the mmoa may be indexed (i.e., providing C-P mappings)
it does not include a complete DARCP capture. Consequently,
this has to be classified as primarily D-C-only source. By
November of 2019 SciFinder reached 157 million unique
organic plus inorganic substances, having passed 100 million in
June 2015. While some of these are virtual structures (i.e.,
never been synthesised) this large enterprise (with over 4,500
employees according to LinkedIN) has the de facto largest
searchable collection of small-molecule structures extracted
from papers, patents and other sources. A presentation
from 2016 declared that in the first 7 months of that year
~10.5 million substances were extracted from ~0.5 million
patents and ~1.0 million documents. In addition, ~75% of cur-
rent novel structures are from patents. However, the 157 million
is exceeded by the latest public UniChem release of just under
160 million [12]. In addition, a 2019 scaffold diversity analysis
stringently filtered the CAS collection down to only ~30 million
compounds with direct links to literature and patents [13]. Since
its first release in 2009 Elsevier Reaxys has emerged as another
large-scale D-C capture endeavour, the statistics and search
characteristics of which have recently been compared with
SciFinder [14]. It has reached 31 million structures but also
subsumes PubChem which brings it up to 105 million.

The two leading commercial sources that capture DARCLP at

scale are the Global Online Structure Activity Relationship
Database (GOSTAR) [15] from Excelra (formerly GV000Bio)
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and Elsevier Reaxys Medicinal Chemistry [16]. The current

statistics for these are shown in Table 1.

The GOSTAR numbers have a more detailed breakdown in a
paper from 2013 (see Table 1 in that reference) which includes
the calculated averages of 12 compounds per paper and 43 per-
patent [17]. GOSTAR’s compound total has doubled in the
intervening six years but the extraction averages and ratio of
compounds from papers: patents of ~1:2.7 recorded in 2013 are
likely to be similar. Comparable metrics for RMC curation have
not been disclosed so it remains unclear what procedural differ-
ences that might explain their considerably larger activity,
target and document counts compared to GOSTAR but
connected to a million less compounds. Notwithstanding, using
nominally the same medicinal chemistry corpus the extracted
chemical structure ratios between SciFinder, Reaxys, GOSTAR
and RMC are very approximately 30:30:8:7. Several technical
differences may explain these ratios but the most important is
the primary focus of the latter two on full DARCLP and SAR
capture rather than just D-C. This selectivity in the choice of
which journals and patents are curated, maintains the quality of

target and activity mappings.

Public DARCP resources

The first relevant web-instantiated curated resource, Bind-
ingDB, was published in 2001 [18]. This was followed by the
IUPHAR Ion Channels Compendium of papers in 2003. This
had developed into the IUPHAR-DB website by 2009 and was
updated to the current [IUPHAR/BPS Guide to Pharmacology
(GtoPdb) by 2012 [10]. That same year also saw the first
ChEMBL publication for which the website was live by 2010
[19]. All three of these resources focus on expert-curated
DARCEP extractions from the literature. In addition, PubChem,
first appearing in 2004 has now become the de facto global hub
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for DARCP because all the three databases above submit their
structures that are integrated with ~700 other sources [20].

Comparative statistics of the four are shown below in Table 2.

As for the commercial sources, comparing content statistics be-
tween databases is not straightforward because the numbers in
Figure 2 were generated in slightly different ways. Not all the
nuances can be addressed here but some salient ones can be
pointed out. Moving across the columns there is an element of
circularity in the compounds. The first reason is that ChEMBL
subsumes 0.53 million compounds from confirmed PubChem
BioAssays and 1.3 million curated from papers. The second
reason is that BindingDB and ChEMBL have a reciprocal
mirroring collaboration where BindingDB subsumes the pro-
tein target assay results from ChEMBL and the latter subsumes
BindingDB patent extraction data (e.g., the 137,000 com-
pounds in release 25). This is separated from their total data
counts in rows three and four. It also means that the overlap of
compound structures, target and document identifiers between
the two sources have extensive circularity (but some are inde-
pendently curated). The PubChem figures for bioactivities seem
large because these are factored by substances not compounds,
whereas ChEMBL (as the dominant contributor to PubChem
BioAssay) collapses their assay counts to compounds. For
GtoPdb the lower count reflects the curation of mainly lead

compounds with curated binding constants from papers.

The 18000 targets in PubChem include automated assignments
that result in an element of over-counting. Those in the other
three sources are classified manually and have species-specific
cross-references in UniProt [26]. These give the following
human Swiss-Prot counts of 3644, 2585 and 1457 for
ChEMBL, BindingDB and GtoPdb, respectively. We can see
the document counts for the curated sources in column five of

Table 1: Statistics of GOSTAR (top row, from their website [15]) and RMC (from the information sheet [16]).

compounds (millions) bioactivities (millions)

binding assays (millions) targets (1000s)

papers (1000s) patents (1000s)

7.8 9.7 8.7 9 191 76

6.8 352 - 27 370 133
Table 2: Content statistics for three DARCP sources and PubChem.

database reference  compounds nioactivities targets papers patents
PubChem (9/19) [21] 96 million 268 million 18000 14.2 million 3.2 mil
ChEMBL(release 25) [22] 1.9 million 15.5 million 124000 72000 -
BindingDB (9/19) [23] 772000 1.7 million 52000 29000 -
BindingDB patents [24] 225000 406000 1000 - 3000
GtoPdb (2019.4) [25] 75000 17000 20000 11000 600
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Table 2. From the ChEMBL release notes their literature extrac-
tion average out at ~15 compounds-per-document (n.b., the
majority will have ARCP connectivity but some have only non-
bioactivity A-R data such as plasma clearance).

Content overlaps and differences

Despite differences in the way their internal statistics are com-
puted, standardised content comparison between open data-
bases can use outputted lists for D,C and P (comparing A-R is
not so straightforward). The intersects and differences between
these are shown in the series of three Venn diagrams (Figures
2-4). See also Supporting Information File 1 for technical
details on how these were prepared.

ChEMBL 62206

BindingDB 29116

GtoPdb 11144

Figure 2: PMID content with totals appended to each segment. Those
for ChREMBL were downloaded from European PubMed Central
(EPMC) via the query (HAS_CHEMBL.y). For BindingDB the list was
provided with courtesy of Michael Gilson. For GtoPdb the list was
downloaded via the PubMed connectivity for the SIDs. The OR union
is 73500 PMIDs (but all three sources also curate a proportion of DOI-
only documents).

While there are technical caveats, we can briefly consider the
implications of Figures 2—4. The PMID capture in Figure 2
shows a pattern of intersects and differences that is to some
extent reflected for the other entities also. Each indicates some
unique capture but ChEMBL and BindingDB overlap for
~25000 papers. Despite being the smallest of the three, GtoPdb
shows proportionally more unique PMIDs. This is substantially
due to the curators adding additional references into the SID
records beyond those from which the binding data were
extracted (e.g., in vivo and clinical reports published after the
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ChEMBL 1.87 mill

BDB 0.78 mill

GtoPdb 7612

Figure 3: Chemistry content comparison for the three sources with
totals appended to each segment, selected and downloaded as
PubChem CID lists. The OR total is 2,033,127. Note that the unique-
ness in the Venn sectors is just between these three. Overall unique-
ness in PubChem as whole is 266000, 49000 and 143 for ChEMBL,
BindingDB and GtoPdb, respectively.

ChEMBL 8150 BindingDB 5403

GtoPdb 2017

Figure 4: Target comparisons with totals in each segment. These were
downloaded as UniProt ID lists selected via the chemistry cross-refer-
ences in UniProt. These include all species but, as expected, human
and rodent predominate in each case. The total of human proteins
covered by the three is 3745 representing 18% of the UniProt 20,365
proteome.
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initial in vitro results). Notably, the public total from all four of
~75000 is less than 50% of the journal document counts
declared by the two commercial sources (Table 1). While the
limited resources of the public sector are clearly a factor, it
would be informative to know explicitly what was behind the
differences. Journal selectivity is likely to be dominant but
other factors may come into play.

The chemistry content in Figure 3 shows similar disproportion-
ation with ChEMBL, as expected, dominating unique content at
over 1.2 million. While this is skewed by the BioAssay
subsumation of ~0.5 million, most will be a consequence of ex-
tracting ~35000 unique PMIDs. For BindingDB most of their
153000 unique structures are from the ~200000 protein-ligand
binding data points that were curated from 1,100 US Patents
during 2019 (n.b., these will eventually be subsumed into
ChEMBL release 26). We can further rationalise the proportion-
ality between compounds and PMIDs by noting that GtoPdb
extract on average ~1 lead compound per paper, ChEMBL ~14
per paper with BindingDB extracting similar numbers from

papers but ~40 per patent.

The differences in target coverage (i.e., as “P” in DARCP)
shown in Figure 4 are noteworthy and persist despite the
ChEMBL/BindingDB selective mirroring. As for PMID cover-
age it would be useful to know which types of selectivity were
responsible for this divergence in connectivity. For BindingDB
some unique proteins are likely to be patent-only but exploring
further causes of complementary target coverage are outside the
scope of this work.

Journals connecting to PubChem

As anomalous as it may seem, no individual journals have put
in place a direct feed of author-specified DARCP into PubChem
BioAssay (or any other database for that matter). Historically,
four journals have initiated D-C feeds in PubChem but two of
these, Prous Science Drugs of the Future and Nature Communi-
cations, ceased in 2012 and 2014 respectively. This has left
only Nature Chemical Biology and Nature Chemistry as still
active with 12481 and 15276 author-specified CID structures
respectively (plus some on-hold submissions) but the latter
journal does not typically include bioactivity reports. Some
Elsevier journals do list CIDs in their abstracts but without
submitted links.

One journal that has pioneered a first approximation to DARCP
flow into PubChem is the British Journal of Pharmacology (al-
though the links are technically indirect) [27]. The annotation
task was initially done by editors but since 2016 authors have
been incorporating GtoPdb ligand and target identifiers in their
text that became clickable out-links in the published HTML and
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PDF versions. This has the additional advantage of setting up a
virtuous circle of reciprocal connectivity with PubMed where
DARCEP curated by GtoPdb has been submitted to PubChem.
This is outlined in Figure 5.

Anomalies in the system

The wider informatics ecosystem exhibits a range of quirks
related to DARCP and DC capture. These can complicate
connectivity, confound standardisation and make navigation
difficult, especially where they are non-obvious. The technical
decisions that have caused such anomalies were generally been
made to accommodate different submitter requirements (i.e., no
one is trying to make the system more complicated, it just

seems that way). The following is a selection:

1.) PubChem presents users with the complexity of parallel
systems of D-C connectivity [28]. For medical subject head-
ings (MeSH) the publication links are biased towards common
name matches in many papers (e.g., the MeSH category for
chemicals and drugs links 127000 PubChem CIDs to over
14 million PMIDs). Somewhat surprisingly, the largest D-C
source by far is the IBM automated patent extraction system.
This has operated on not only patents but also PubMed (plus
MeSH terms in those abstracts) as well as full text from PMC
articles. By 2016 this was responsible for 56% of all PMID-CID
mappings (although IBM made what may have been their final
submission in 2017). PubChem has a third substantial category
of D-C connectivity from the publishers Springer, Thieme and
most recently Wiley. These three sources have added document
links for 660, 740 and 118 thousand CIDs respectively (with an
overlap of only 74000). However, those having DOI-only docu-
ment links are not connected into Entrez. They are made acces-
sible via cross-references in the CIDs for Thieme and Wiley but
only via SIDs for Springer. Since these publishers have provi-
ded a proof of concept for these D-C efforts it is to be hoped
that they will be followed by equivalent undertakings from
other chemistry publishers, for example ACS, Elsevier and
ChemRxiv.

2.) The three DARCP sources with conceptually equivalent
curated links (Table 2) are indexed within the NCBI systems in
different ways. GtoPdb links into Entrez via reciprocal connec-
tivity between 11000 PMIDs and 9800 SIDs. It also has just
under 2000 BioAssay links by target class. ChEMBL has just
over 1 million BioAssay entries largely as per publication
indexing and also has its own target hierarchy in PubChem.
While the SIDs have no PMID links 34000 of the ChEMBL-
extracted PMIDs are indexed in Entrez but only via BioAssay.
BindingDB has neither extensive BioAssay links nor Entrez
SID connectivity. However, the 28000 curated PMIDs in this

case are connected into the NCBI system as a LinkOut source.
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EXPERIMENTAL APPROACH: LUFT244 was tested in vitro for (a) increasing human Iy 1 and canine I, and (b) decreasing dofetilide-
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3.) As a commendable initiative the Journal of Medicinal
Chemistry requires authors to provide SMILES [29] and in
some cases, they may also add activity values, as supplemen-
tary data. These are made available as comma-separated (.csv)
files. However, while this was envisaged to facilitate auto-
mated extraction, no one actually does this (or at least has not
openly surfaced the results). These files thus useful contain C-R
but A and P remain in the paper (although DARCP from this
journal is extensively curated by GtoPdb, ChEMBL and Bind-
ingDB).

4.) Despite the pioneering efforts of Nature Chemical Biology
there are caveats associated with their D-C mappings. The first
is that in their SID records they index DOIs in the Depositor
Comments but not PMIDs. This means there is no connection
into the Entrez system (although this may have been an expe-
dient choice to avoid the lag time associated with post-publica-
tion PMID assignments). As another quirk, there are 2,447

structures submitted by the journal that do not have an exact

match to those extracted by the Springer automated pipeline for
the same documents. It would be advantageous (including in-
creasing traffic to the journal) if they could extend the author
data submissions to enable full DARCP representation in
PubChem BioAssay for suitable data sets.

5.) The transfer of data from the literature into on-line open
resources (by an individual or a curation enterprise) could
conceivably come up against copyright issues. The complexi-
ties of permissions to mine scholarly content were reviewed in
2016 [30]. It was reported therein that small amounts of data
(e.g., presumably encompassing DARCP) would not generally
be considered “creative expression” and thus should be exempt
from copyright. We can also note that, after the fact, many
public databases have been adding both curated and automati-
cally mined “data facts” for well over a decade.

6.) The extraction of DARCP and D-C connectivity from

patents presents a number of anomalies specific to this docu-
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ment type. The first is that, compared to journal articles in
which a proportions of the same data are later republished, in
terms of compound structures in-common the appropriate
PubChem query records a CID intersect of 29% between
ChEMBL and all the major automated patent chemistry extrac-
tion sources adding up to 29.7 million), the document corpus
has no paywalls. This means it is not only free-to-mine but also
the HTML (before hamburgerisation) available from the
USPTO greatly facilitates automated extraction. The second is
that, in contrast to the commercial DARCP curation efforts by
Excelra and Elsevier (implying the perceived high value),
public extraction of patent ARCP is limited almost exclusively
to BindingDB. However, as a consequence of being free-to-
mine a number of operations have carried out public large-scale
automated D-C extractions. These include, SureChEMBL [31],
IBM, World Intellectual Property Organization (WIPO) and
most recently Google Patents. However, the problem arises in
PubChem and other sources) of what could be called
“swamping” from the continual re-indexing (i.e., D-C linking)
of common chemistry and structures without any ARCP data.
As an example, in PubChem CID2244 for aspirin there are
143,180 connections to patent documents.

Conclusion

Comparing the historical connectivity between bioinformatics
and cheminformatics points towards the root of the problems
we currently face. Over more than three decades the links be-
tween sequence data and the literature have become a blazing
success, first for molecular biology followed by genomics. This
was driven mainly by the combination of journal mandates for
author inclusion of sequence accession numbers and somewhat
later, pointers to genomic and expression data sets. This has
needed herculean technical integration efforts not only from the
NCBI Entrez system and the equivalent EBI resources but also
global coordination by the International Nucleotide Sequence
Database Collaboration (INSDC) [32]. While compliance is not
100%, extensive literature and data set connections are now
captured by both PubMed, PMC and EPMC.

The paradox is that no open equivalent ever emerged in the
chemistry domain, in part due to the dominance of SciFinder.
Thus, despite PubChem CIDs appearing in 2004 and the InChl
identifier being implemented in 2013, publishers (with a few
exceptions) have neither mandated nor encouraged the inclu-
sion of open, machine readable chemical representations and/or
open chemical database identifiers in their journals (external to
the PDFs). The consequent shortfall for chemistry capture in
general and DARCP in particular, shows no signs of dimin-
ishing. A rough estimate, derived from comparing commercial
numbers from Figure 3 with public ones in Table 1, would be a

chemical structure ratio of roughly 2 million to 7 million (i.e., a

Beilstein J. Org. Chem. 2020, 16, 596—606.

public shortfall in the order of ~5 million although the major

part of the later comes from patents).

An important corollary is that despite progress in automated
chemical and biomedical entity recognition from text (e.g., via
Natural Language Processing, NLP) [33] the fully automated
extraction of explicit DARCLP relationships from documents
has not yet been achieved (although Al efforts are doubtless
pushing towards this). This stands in contrast to the ability of
biocurators to discern such relationships from a paper in
minutes (but needing extra minutes for a patent) [34]. The
expansion of automated D-C capture in PubChem (e.g., by
Springer, Thieme and Wiley) as well as automated chemical
look-up in PMC and EPMC are certainly welcome develop-
ments. Notwithstanding, the associated ABNE problems
severely limit knowledge distillation from D-C connections

alone.

So, where do we go from here? The good news is that GtoPdb,
ChEMBL and BindingDB should continue their expert capture
role. The bad news is that it looks like, even by 2020, no journal
will yet have instigated a formal process to extract DARCP and
pipe it directly into open databases. One can only surmise that
there is neither sufficient publisher “pull” nor author-incen-
tivised “push” to make this happen. An alternative solution
would be for authors to independently facilitate the transfer of
their own annotated DARCP data into, for example, PubChem
BioAssay. While the key connectivity to a PMID (via Entrez)
could be added later, the necessary database submissions
(possibly directly from an ELN) could, in principle, be
de-coupled from the publishing process and thereby bypass
PDF-entombment. Here again, we come up against the impasse
of which stakeholders would value this high enough to insti-

gate it.

Notwithstanding, we can take a more optimistic look at recent
developments in the wider context of knowledge sharing in-
cluding semantics and linked data that have the potential to
improve the situation for DARCP capture. These include open
data [35], open access (OA) [36], FAIR (findable, accessible,
interoperable and reusable) [37,38], resource description frame-
work (RDF) [39] and [40] WikiData [40]. While there is
certainly momentum behind these trends, the persistence of
publisher paywalls still remains a serious obstacle (e.g., of the
62000 papers curated by ChEMBL in EPMC only 85000 are
full-text and only 600 OA). Strong community adoption (in-
cluding from publishers) is also being seen for FAIR, which, in
principle, should encompass accessibility to D, A, R, C and P
(even if not their explicit connectivity) Planning is underway
for the capture of FAIR data in various repositories (e.g.,

Figshare) but quite how this would practically expedite the flow
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of connected DARCP into major databases (including core
resources of the ELIXIR - distributed infrastructure for biologi-
cal data [41]) is not yet clear. Another new development in the
list, WikiData [40], is a community-maintained knowledge base
that builds on the principles of FAIR. Here again, we will have
to see how the practicalities of crowdsourcing DARCP curation
and feeds into open databases can be accomplished.
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