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Abstract

In genome-wide mixed model association analysis, we stratified the genomic mixed model into two hierarchies to estimate
genomic breeding values (GBVs) using the genomic best linear unbiased prediction and statistically infer the association of
GBVs with each SNP using the generalized least square. The hierarchical mixed model (Hi-LMM) can correct confounders
effectively with polygenic effects as residuals for association tests, preventing potential false-negative errors produced with
genome-wide rapid association using mixed model and regression or an efficient mixed-model association expedited
(EMMAX). Meanwhile, the Hi-LMM performs the same statistical power as the exact mixed model association and the same
computing efficiency as EMMAX. When the GBVs have been estimated precisely, the Hi-LMM can detect more quantitative
trait nucleotides (QTNs) than existing methods. Especially under the Hi-LMM framework, joint association analysis can be
made straightforward to improve the statistical power of detecting QTNs.
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Introduction
In a genome-wide association study (GWAS), it is important to
dissect the confounding biases caused by population structures
and cryptic relatedness. Linear mixed models (LMMs) [1, 2] can
separate true signals from a vast number of false signals caused
by confounders, improving statistical power to detect quantita-
tive trait nucleotides (QTNs). When applying an LMM to GWAS
[3], the variance components or the polygenic effects in the LMM
need to be estimated using a genome relationship matrix (GRM)
[4], excluding the single nucleotide polymorphisms (SNPs) that
are going to be tested, before the association tests are conducted.
In spite of using all markers to estimate variance components
or polygenic effects, without repeatedly calculating the GRMs
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for each SNP, LMMs are much more computationally intensive
at nonlinearly solving different variance components among
high-throughput SNPs.

In initial genome-wide mixed model association studies,
variance components were generally estimated using the
maximum likelihood or restricted maximum likelihood (REML)
methods [5], which have been implemented in various numerical
optimization algorithms [3]. To reduce computationally expen-
sive matrix operations at each iteration, EMMA [6], GEMMA [7]
and FaST-LMM [8] use a single eigendecomposition of a GRM to
rotate data. BOLT-LMM [9] introduces the Monte Carlo REML
method [10, 11] to estimate variance components that only
require the solutions of LMM equations. The H-E regression
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[12, 13], another variance component method, can estimate
polygenic and residual variances by linearly regressing the
product of the phenotypes on the off-diagonal elements of
the GRM in the most straightforward way [14]. Other than
that, CMLM [15] and fastGWA [16] are more appropriate for
accelerating the estimations of variance components in the
stratified population or the population with sparse GRMs. As
approximations of the mixed model association analysis, two
popular simplified algorithms, such as EMMAX [17] or P3D [15]
and GRAMMAR [18], attempt to replace different variance com-
ponents and polygenic effects among candidate markers with
the same variance components and genomic breeding values
(GBVs), respectively, that were estimated under the null LMM,
which greatly saves computing costs. In particular, GRAMMAR-
Gamma [19] and BOLT-LMM [9] improve the statistical power
used to detect QTNs by calibrating GRAMMAR.

If QTNs exist, over-estimation of polygenic variances and
effects by genomic variances and GBVs may cause GRAMMAR
and EMMAX to produce potential false-negative errors. In this
study, we divide a genomic mixed model into two hierarchies:
the LMM for the phenotypes of GBVs and the linear regres-
sion model of GBVs on the tested SNPs. Based on the resulting
hierarchical mixed model, we first estimate GBVs using the
genomic best linear unbiased prediction (GBLUP) method [4, 20]
and then statistically infer the genetic effects of each SNP using
the generalized least square (GLS) method, regarding the GBVs
with GRMs as ‘phenotypes’. Especially in the linear regression
model, the genetic effects for the tested SNPs were excluded
from the polygenic effects or variance as the residuals to prevent
the over-estimation of polygenic effects or variances by EMMAX
and GRAMMAR. Computer simulations and real data analysis
demonstrate the utility of the genome-wide hierarchical mixed
model association analysis.

Method
Genomic mixed model

In general, LMMs for GWAS can be described as

y = Xb + za + g + e. (1)

where y is the justified phenotype of quantitative traits; b is the
fixed effects such as ethnicity, sex and age; X is the correspond-
ing design matrix to fixed effects b; a is the genetic effects of
the tested SNP on the phenotype; z is the indicator variables of
the SNP genotypes, which are generally coded as 0, 1 or 2 for the
three genotypes AA, AB and BB, respectively; g is the polygenic
effects, excluding the tested SNP and assumed to g ∼ N(0, Kσ 2

g ),
with σ 2

g being the polygenic variance and K being the GRM among
individuals; e is the residual error and e ∼ N(0, Iσ 2

e ), with σ 2
e being

the residual variance and I being the identity matrix.

Statistical inference

According to genomic selection, we define GBVs as

G = za + g. (2)

Then, model (1) is divided into two hierarchies

{y = Xb + G + e
G = za + g

, (3)

Where, g is regarded as the residual for GBVs when testing
an SNP.

In the first hierarchy of the mixed model, many methods
can estimate the GBVs for genomic selection. Given genomic
heritability, GBLUP is the most commonly used and the most
efficient method for estimating GBVs [4, 20]. If only one SNP is
tested at a time, then the model at the second hierarchy is a
simple linear regression model, but with a residual variance–
covariance structure due to GRM K among individuals. Therefore,
the genetic effect of the tested SNP can be statistically inferred
using the GLS method [21].

The genome-wide hierarchical mixed model association
analysis, which can be abbreviated as Hi-LMM, is summarized
in the following steps:

Firstly, we calculated the GRMs with all SNPs

K = 1
m

scale (Z) · scale(Z)
T, (4)

where Z is the indicator variable matrix of all SNPs.
Secondly, we estimated the GBVs with GBLUP

[
XTX XT

X I + δK−1

] [
b̂
Ĝ

]
=

[
XTy

y

]
(5)

with δ = σ2
g

σ2
e

being the ratio of the residual variance to the

polygenic variance. Prior to solving equations (5), σ 2
g and σ 2

e need
to be efficiently estimated with the spectrally transformed REML
[17].

Thirdly, we estimated SNP effect with GLS
We decomposed K = UDUT, where D is diagonal matrix of

eigenvalues and U eigenvector matrix, to spectrally transform
Ĝ, z and g to Ĝ∗ = UTD− 1

2 Ĝ, z∗ = UTD− 1
2 z and g∗ = UTD− 1

2 g,
respectively. The model at the second hierarchy becomes

Ĝ∗ = z∗a + g∗. (6)

Since g∗ ∼ N
(
0, Iσ 2

g

)
, least square estimate for SNP effect is

obtained

â =
[
(z∗)Tz∗

]−1
(z∗)TĜ∗. (7)

At the same times, Var(â) = [(z∗)Tz∗]
−1

σ 2
g with σ 2

g =
1

n−2 (Ĝ∗ − z∗â)
T
(Ĝ∗ − z∗â).

Lastly, we statistically infer SNP effect by the Wald statistic

Wald = â2

Var
(
â
) (8)

which follows a Chi-square distribution with one degree of free-
dom under the null model.

Joint association analysis

Through one test at a time, many SNPs were chosen as QTN
candidates at the significance level lower than the stringent
Bonferroni corrected criterion [22], but for computing efficiency
of variable selection, the number of QTN candidates should be
limited to less than the population size. After obtaining the
GBVs’ estimates with the GBLUP, we jointly analyzed multiple
QTN candidates to improve the statistical power to detect QTNs.
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Thus, we applied a backward regression approach to optimize
the multiple linear model

Ĝ∗ = Z∗
c ac + ε∗, (9)

where Z∗
c ac are the regression terms of QTN candidates, as trans-

formed in model (6). Given the Bonferroni corrected significance
level for variable selection, the genetic effects were selected
stepwise, and the corresponding QTNs were identified according
to the test statistics (8) used in multiple regression analyses.

Based on the method mentioned above, the user-friendly Hi-
LMM software with separate and joint association options was
developed, which is freely available at https://github.com/RunKi
ngProgram/Hi-LMM.

Simulations

We used the genomic datasets of humans [23] and maize [24]
to simulate the adaptability of Hi-LMM to population structures.
Of the two datasets, the maize population had a more complex
structure than the human one. We extracted 300 000 SNPs for
3000 people and 2640 maize through higher quality control. The
QTNs were distributed randomly over these SNPs. Their additive
effects were drawn from a gamma distribution with shape = 1.66
and scale = 0.4 so that few QTNs have large effects and most have
minor effects. Phenotypes were obtained by summing up the
genotypic effects of all the simulated QTNs and their residual
errors. When sampling residual errors from normal distributions
with zero expectations, residual variance is regulated by the
given genomic heritability of traits.

We simulated phenotypes controlled by 40, 200 and 1000
QTNs with varying levels of low (0.2), moderate (0.5) and high
(0.8) heritabilities and drawn 10, 20, 30, 40, 50 and 60 K SNPs to
calculate GRMs. Base on the simulated phenotypes, we inves-
tigated (i) the statistical property of Hi-LMM under different
combinations of genomic heritability and the number of QTNs
simulated; (ii) sensitivities to estimate genomic heritability or
GBVs at the moderate heritability and (iii) the effects of the sam-
pled markers on statistical powers at the moderate heritability.
In all simulations, we compared Hi-LMM, a test at once, to FaST-
LMM, EMMAX, GRAMMAR, GRAMMAR-Gamma and BOLT-LMM.
In the first simulation alone, the Hi-LMM with joint association
analysis was made to improve statistical power.

Under good genomic control (very close to 1.0), the ROC
profiles can be plotted with the statistical power to detect QTNs
relative to a given series of Type I errors. Statistical power is
defined as the percentage of identified QTNs with the maximum
test statistic among their 20 closest neighbors over the total
number of simulated QTNs. We repeated these simulations 50
times and recorded the average results. Note that there are
different positions and effects for the QTNs in each repeated
simulation.

Real data

We illustrate the performance of Hi-LMM by using the datasets of
three species: (i) the Arabidopsis thaliana dataset included 216 130
SNPs and 107 phenotypes observed in 199 samples [25]; (ii) the
mouse dataset had 1940 samples with 12 226 SNPs and 123
phenotypes [26]; (iii) the maize dataset included 2279 inbred
lines with the 681 258 SNPs genotyped and the flowering time
measured as days to silk [24].

Results
Statistical property of the Hi-LMM

We compared the Hi-LMM with FaST-LMM, EMMAX, GRAMMAR,
GRAMMAR-Gamma and BOLT-LMM in statistical property.
Main features of the six competing mixed model association
methods were summarized in Table 1. The association results
were obtained with the five competing methods and the
Hi-LMM, a test at once, which are displayed selectively
in Figure 1 for Q-Q profiles and Figure 2 for ROC profiles
(Supplementary Figure S1, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/, and Supplemen-
tary Figure S2 in detail, see Supplementary Data available
online at http://bib.oxfordjournals.org/). At the same time,
genomic control values were recorded in Supplementary
Tables S1 and S2, see Supplementary Data available online
at http://bib.oxfordjournals.org/. Under genomic controls very
close to 1.0, Hi-LMM performed almost the same statistical
power to detect QTNs as FaST-LMM and EMMAX, regardless
of how many QTNs and heritabilities were simulated. However,
with the null model that had no QTNs, both FaST-LMM and
EMMAX yielded slightly higher negative false rates than Hi-
LMM, and the false-negative rates increased with the complexity
of population structures, especially for EMMAX. GRAMMAR had
the lowest genomic controls and statistical power among the
five competing methods, and it more strongly deflated test
statistics in a more complex population structure. Although
GRAMMAR-Gamma and BOLT-LMM genome-widely corrected
the test statistics of GRAMMAR by their defined calibration
factors [9, 19], GRAMMAR-Gamma slightly deflated the test
statistics for complex population structure, which generated a
genomic control of below 1.0, and BOLT-LMM strongly increased
the false-positive rate due to overcorrecting test statistics.

Furthermore, Hi-LMM jointly analyzed multiple QTN can-
didates chosen from one association test at a time, given a
significance level of 0.05. We depicted the statistical powers
obtained with joint analyses and those with a test at once
together for convenience to compare. Using backward regression
analysis, Hi-LMM increased statistical power. In comparison,
BOLT-LMM also significantly increased statistical power, but it
did not control false-positive errors in detecting QTNs, especially
for complex population structure.

Sensitivities to estimate genomic heritability or GBVs

In the competing methods, EMMAX estimates genomic heri-
tability to replace polygenic heritabilities, whereas GRAMMAR,
GRAMMAR-Gamma and BOLT-LMM estimate GBVs to replace
polygenic effects. Similarly, Hi-LMM also estimates genomic
heritability and GBVs to associate with markers. Therefore, what
are the sensitivities of Hi-LMM, EMMAX, GRAMMAR, GRAMMAR-
Gamma and BOLT-LMM to estimate genomic heritability or
GBVs?

Regarding the genomic heritability or GBVs simulated as
polygenic estimates, we analyzed the simulated phenotypes
with the five methods and the Hi-LMM, a test at once. As shown
in Figure 3 and Supplementary Figure S3, see Supplementary
Data available online at http://bib.oxfordjournals.org/, Hi-LMM,
one test at a time could achieve more highest statistical power
under the more ideal genomic controls than joint association
analysis if genomic heritability or breeding values were com-
pletely accurately estimated. In contrast, EMMAX had somewhat
decreased in both statistical power and genomic control. Addi-
tionally, GRAMMAR, GRAMMAR-Gamma and BOLT-LMM did not
find any QTNs from the residuals of GBLUP.

https://github.com/RunKingProgram/Hi-LMM
https://github.com/RunKingProgram/Hi-LMM
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
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Table 1. Main features of the six competing mixed model association methods

Method Estimates polygenic
effects (time)

Association test
method

Joint association
analysis

Avoids proximal
contamination

Potential statistical
error

FaST-LMM m GLS Not Yes No
EMMAX 1 GLS Not Not FN
GRAMMAR 1 LS Not Not FN
GRAMMAR-Gamma 1 LS Not Not No
BOLT-LMM m LS Yes Yes FP
Hi-LMM 1 GLS Yes Yes No

m is number of markers, FN false negative, FP false positive and LS least square.

Figure 1. Comparison of Hi-LMM with the five competing methods in the Q-Q profiles. The simulated phenotypes are controlled by 200 QTNs with the low, moderate

and high heritabilities in human and maize. The Q-Q profiles for all simulated phenotypes are reported in Supplementary Figure S1, see Supplementary Data available

online at http://bib.oxfordjournals.org/.

Instead of GBLUP, we adopted a Lasso technique imple-
mented in R/glmnet [27] to estimate GBVs rapidly. Through
association tests of the Hi-LMM, were also drawn corre-
sponding ROC and Q-Q profiles in Figure 3 and Supplemen-
tary Figure S3, see Supplementary Data available online at
http://bib.oxfordjournals.org/, respectively. As could be seen, Hi-
LMM achieved higher statistical power with the Lasso technique
than GBLUP, and the tendency to improve the statistical power
is consistent with that of the simulated GBVs. With selecting
ridge estimation [28] in R/glmnet, we demonstrated that Hi-
LMM also gained a statistical power as high as that GBLUP
did. In conclusion, Hi-LMM could improve statistical powers
by precisely estimating genomic heritability or breeding values,

compared with EMMAX, GRAMMAR, GRAMMAR-Gamma and
BOLT-LMM.

Calculation of the GRM with the sampling markers

With GBLUP, estimation of genomic heritability and GBVs mainly
depends on the density of markers used to calculate the GRMs
in the structured population [4, 29]. To improve computing effi-
ciency, FaST-LMM, GRAMMAR-Gamma and BOLT-LMM sampled
or screened a small proportion of the whole genomic SNPs
to estimate the GBVs or genomic heritability as precisely as
possible. Based on this, we also try to simplify the computation
of Hi-LMM by sampling markers.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
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Figure 2. Comparison of Hi-LMM with the five competing methods in the ROC profiles. The ROC profiles are plotted using the statistical powers to detect QTNs relative

to the given series of Type I errors. Here, the simulated phenotypes are controlled by 200 QTNs with the low, moderate and high heritabilities in human and maize. The

ROC profiles for all simulated phenotypes are reported in Supplementary Figure S2, see Supplementary Data available online at http://bib.oxfordjournals.org/.

Figure 4 shows that the changes in genomic controls Hi-
LMMs and four competing methods made by a test at once with
numbers of sampling markers. Similar to FaST-LMM, EMMAX
and GRAMMAR-Gamma, Hi-LMM gradually controlled false-
positive errors. The number of sampling markers increased
and yielded high statistical power using all genomic markers.
GRAMMAR seemed to calibrate false negative rates by under-
estimating GBVs with fewer markers. In contrast, BOLT-LMM
produced serious positive false errors caused by inflating test
statistics, regardless of how many the markers were drawn. To
retain the ideal genomic control and statistical power to detect
QTNs (see Supplementary Figures S4 and S5, see Supplementary
Data available online at http://bib.oxfordjournals.org/), Hi-LMM
needed to draw no fewer than 40 000 markers to estimate GRMs
in the simulation.

Real data analyses

Using previously published datasets on A. thaliana,mice and
maize, we illustrated both genomic control and QTN mapping
with Hi-LMM and compared our findings to those obtained using
FaST-LMM GRAMMAR, GRAMMAR-Gamma and BOLT-LMM.
Using a visual test for normality, we selected 32 phenotypes

with less than 120 records for GWAS in A. thaliana and 109
phenotypes in mice. We did not record the computing times
for these two datasets because either population size or the
number of markers is enough to significantly differentiate these
competing methods.

We depicted the Q-Q and Manhattan profiles for the traits
of detectable QTNs in Supplementary Figure S6, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/,
for A. thaliana, Supplementary Figure S7, see Supplementary
Data available online at http://bib.oxfordjournals.org/, for mice
and Supplementary Figure S8, see Supplementary Data available
online at http://bib.oxfordjournals.org/, for maize for all com-
peting methods, GRAMMAR, GRAMMAR-Gamma and BOLT-LMM
achieved almost the same statistical properties as they did in the
simulations. GRAMMAR detected several QTNs with strong false-
negative errors. In contrast, with higher false-positive errors,
BOLT-LMM found more QTNs than the other competing meth-
ods, but fewer QTNs than Hi-LMM did with joint analysis. Even
though a test at once, Hi-LMM could identify more QTNs than
GRAMMAR-Gamma. Using Hi-LMM with joint analyses, we found
QTNs from 21 of 32 phenotypes in A. thaliana and 104 of 109
phenotypes in mice. With FaST-LMM, however, QTNs were not
found for 1/21 and 51/104 of the traits in A. thaliana and mice,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab306#supplementary-data
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Figure 3. Sensitivity of statistical powers to estimate heritabilities or GBVs for Hi-LMM. Statistical powers are dynamically evaluated with the ROC profiles. Both

GRAMMAR-Gamma and BOLT-LMM do not detect any QTN with the simulated GBVs. The simulated phenotypes are controlled by 200 QTNs with the low, moderate and

high heritabilities in human and maize.

respectively. Under the ideal genomic control condition, Hi-
LMM identified 19 and 94 more QTNs with joint analysis than
exact FaST-LMM in A. thaliana and mice, respectively. More-
over, for phenotypes in mice, Hi-LMM could cover 94% of the
QTNs obtained using FaST-LMM. In comparison, ∼72% for the
traits analyzed in A. thaliana, wherein FaST-LMM arose unstable
genomic controls.

Finally, we applied the Hi-LMM to map the QTNs for flowering
time and simultaneously executed the method using 50 000 SNPs
randomly drawn from high-throughput markers. By a test at
once, Hi-LMM detected 6 QTNs distributed on chromosomes 1,
2, 3, 8 and 10 and covered 3 of 4 QTNs on chromosomes 3, 8
and 10 detected using exact FaST-LMM. Furthermore, Hi-LMM
found the same QTNs using sampling markers beside the two
QTNs located on chromosomes 5 and 2 detected using entire
genomic markers. Joint analysis can separate all signals that
correspond to the QTN candidates generated from a test at once,
which improves the statistical power to detect QTNs and the
comparability by sampling markers. Upon inputting the geno-
types and phenotypes to obtain QTN mapping outputs, Hi-LMM
ran for 3.200 and 1.900 min in R software, respectively, for entire
and sampling markers, respectively. In contrast, GRAMMAR and
GRAMMAR-Gamma took 2.073 and 3.637 min, respectively. Addi-
tionally, FaST-LMM ran for 32.147 min in Single-Runking [30]

and BOLT-LMM for 166.448 min in BOLT [9]. All data analyses
were performed in a CentOS Linux server with 2.60 GHz Intel(R)
Xeon(R) 40 CPUs E5–2660 v3, and 512 GB memory.

Discussion
With the GBVs that included the genotypic effects of all the
candidate markers, we stratified the genomic mixed model into
the mixed model of random GBVs and the generalized linear
regression model of the correlated GBVs to the tested markers.
In contrast to GRAMMAR and EMMAX, which overestimated
polygenic effects and variances with GBVs and genomic heri-
tability, respectively, the Hi-LMM best and unbiasedly estimated
polygenic effects by regressing the GBVs on candidate markers
in association tests. As a result, it can avoid potential false-
negative errors and achieve statistical power as high as the exact
mixed model association analysis. Theoretically, it has the same
computational complexity as EMMAX because EMMAX also uses
GLS for association tests.

To improve statistical power to detect QTNs for economic
traits in plant and animal, peoples always replaced the pheno-
typic values with the estimated in advanced breeding values
(EBVs) by pedigree or genomic markers. If the association of EBVs
with candidate markers was statistically inferred using a simple
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Figure 4. Changes in genomic controls with the number of sampling SNPs for Hi-LMM and the five competing methods. Genomic control is calculated by averaging

genome-wide test statistics. The simulated phenotypes are controlled by 40, 200 and 1000 QTNs with the moderate heritability in human and maize.

linear regression model rather than a generalized regression
model, it would produce higher false-positive rates than that
for phenotypes, especially in breeding populations with com-
plex structures (simulations not shown). Exact and simplified
mixed model association analyses for EBVs not only repeatedly
estimate the heritability and breeding values but also enhance
computational complexity. Once the EBVs of traits have been
provided before a GWAS, we recommend using the GLS method
efficiently.

Under the assumption of minor polygenes, GBLUP is inappro-
priate to accurately estimate GBVs for quantitative traits con-
trolled by less major genes. Meanwhile, it requires to estimate
genomic heritability in advance, which increases computational
complexity. For genomic selection, many methods, such as a
series of Bayesian methods [31], can estimate GBVs by specifying
various priors for markers effects without estimate genomic her-
itability. Our simulations demonstrate that the statistical power
to detect QTNs can be significantly improved as long as the
GBVs have been accurately estimated. Therefore, highly efficient
genomic selection methods play a critical role in achieving the
performance of the Hi-LMM.

With an increasing number of high-throughput SNP markers
genotyped by deep resequencing, we can implement the
GLS method at the second hierarchy of the Hi-LMM in a
straightforward manner to finely map QTNs because the GBVs
that obtained from previous GWAS in the same population are
enough to ensure statistical power of the Hi-LMM. Once the
GBVs for multiple correlated quantitative traits have been more
accurately pre-estimated, the Hi-LMM can be easily extended
to map pleiotropic QTNs within the framework of multivariate

regression efficiently. For GWAS on dynamic quantitative traits,
genomic random regression models can be divided into three
hierarchies: random regression model with individuals’ dynamic
trajectories, the multivariate animal model for the parameters
in dynamic trajectories, and generalized multivariate regression
model for the GBVs of the parameters in dynamic trajectories,
which would greatly improve computing efficiency. If the GBVs
can be estimated once with a generalized LMM, then the Hi-LMM
is highly suited for binary disease traits because of the resulting
normal distributions of the GBVs.

Key Points
• Genomic mixed model is partitioned into two hierar-

chies, first, to estimate GBVs, and then associate GBVs
with genetic markers.

• The Hi-LMM can effectively correct confounders with
polygenic effects in association tests, preventing false-
negative errors.

• The Hi-LMM performs the same statistical power as
the exact mixed model association with the same
computing complexity as EMMAX.

• Joint association analysis greatly improves statistical
power to detect QTNs, using generalized least square
of multiple QTN candidates.

Data availability

The datasets can be available at http://archive.gramene.o
rg/db/diversity/diversity_view for Arabidopsis thaliana,

http://archive.gramene.org/db/diversity/diversity_view
http://archive.gramene.org/db/diversity/diversity_view
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http://gscan.well.ox.ac.uk for mouse, https://www.panzea.o
rg/%21#genotypes/cctl for maize, and http://www.wtccc.o
rg.uk/ with authorization for human genomic data.

Supplementary Data

Supplementary data are available online at Briefings in
Bioinformatics.
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